1
|
Joosen RS, van der Palen RL, Udink ten Cate FE, Voskuil M, Krings GJ, Bökenkamp R, Molenschot MC, Hahurij ND, Dickinson MG, Hazekamp MG, Schoof PH, Slieker MG, Straver B, Blom NA, Breur JM. 30 Years' Experience in Percutaneous Pulmonary Artery Interventions in Transposition of the Great Arteries. JACC. ADVANCES 2024; 3:101327. [PMID: 39493316 PMCID: PMC11528233 DOI: 10.1016/j.jacadv.2024.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 11/05/2024]
Abstract
Background Pulmonary artery (PA) stenosis is common after arterial switch operation (ASO) for transposition of the great arteries (TGA). Differences between balloon angioplasty (BA) and stents on right ventricular (RV) and PA pressures are not well studied. Objectives The purpose of this study was to analyze percutaneous PA interventions' frequency after ASO, complications, and the effects of BA and stents on RV and PA pressures. Methods All TGA patients with ASO between 1977 and 2022 in 2 Dutch congenital heart centers were included in this multicenter retrospective study. Peri-operative ASO characteristics and pre-intervention and post-intervention invasive and echocardiographic data were analyzed. Results ASO was performed in 960 TGA patients, of which 888 survived 30 days and had complete follow-up. Seventy-seven (9%) underwent percutaneous PA interventions. Taussig-Bing anomaly (OR: 2.8; 95% CI: 1.228-6.168; P = 0.014), ASO time era 1990 to 1999 (OR: 4.7; 95% CI: 1.762-12.780; P = 0.002), and 2000 to 2009 (OR: 4.3; 95% CI: 1.618-11.330; P = 0.003) were independently associated with percutaneous PA interventions after ASO. Invasive post-interventional pressures and gradients were lower after stent implantation compared to BA (RV pressure: 47 ± 14 vs 58 ± 11; right PA-PA gradient: 11 ± 11 vs 25 ± 12, P < 0.05; RV/left ventricle pressure ratio: 0.4 ± 0.1 vs 0.6 ± 0.2, P < 0.001). Of the patients with unilateral PA stenosis (left PA: 41%, right PA: 59%), 77% showed increased RV pressure (>30 mm Hg) and RV/left ventricle pressure ratio improved post-intervention (0.5 ± 0.2 vs 0.6 ± 0.2, P < 0.05). Seventeen complications, most minor, were reported (13%). Two post-procedural deaths were reported. Conclusions Percutaneous PA interventions are common after ASO and can be performed safely but caution for serious complications is warranted. Unilateral PA stenosis can impact RV pressures. Stents may be more successful at treating PA stenosis compared to BA.
Collapse
Affiliation(s)
- Renée S. Joosen
- Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Roel L.F. van der Palen
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
- Center for Congenital Heart Disease Amsterdam-Leiden, Leiden, the Netherlands
| | - Floris E.A. Udink ten Cate
- Department of Pediatric Cardiology, Amalia Children’s Hospital, Radboud university medical center, Nijmegen, the Netherlands
| | - Michiel Voskuil
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gregor J. Krings
- Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Regina Bökenkamp
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
- Center for Congenital Heart Disease Amsterdam-Leiden, Leiden, the Netherlands
| | - Mirella C. Molenschot
- Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nathan D. Hahurij
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
- Center for Congenital Heart Disease Amsterdam-Leiden, Leiden, the Netherlands
| | - Michael G. Dickinson
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mark G. Hazekamp
- Center for Congenital Heart Disease Amsterdam-Leiden, Leiden, the Netherlands
- Heart Lung Center, Department of Cardio-thoracic Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul H. Schoof
- Division of Pediatrics, Department of Pediatric Cardiac Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Martijn G. Slieker
- Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bart Straver
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
- Center for Congenital Heart Disease Amsterdam-Leiden, Leiden, the Netherlands
- Division of Pediatric Cardiology, Department of Pediatrics, Amsterdam UMC, Amsterdam, the Netherlands
| | - Nico A. Blom
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
- Center for Congenital Heart Disease Amsterdam-Leiden, Leiden, the Netherlands
- Division of Pediatric Cardiology, Department of Pediatrics, Amsterdam UMC, Amsterdam, the Netherlands
| | - Johannes M.P.J. Breur
- Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
2
|
Kozitza CJ, Colebank MJ, Gonzalez-Pereira JP, Chesler NC, Lamers L, Roldán-Alzate A, Witzenburg CM. Estimating pulmonary arterial remodeling via an animal-specific computational model of pulmonary artery stenosis. Biomech Model Mechanobiol 2024; 23:1469-1490. [PMID: 38918266 PMCID: PMC11436313 DOI: 10.1007/s10237-024-01850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/17/2024] [Indexed: 06/27/2024]
Abstract
Pulmonary artery stenosis (PAS) often presents in children with congenital heart disease, altering blood flow and pressure during critical periods of growth and development. Variability in stenosis onset, duration, and severity result in variable growth and remodeling of the pulmonary vasculature. Computational fluid dynamics (CFD) models enable investigation into the hemodynamic impact and altered mechanics associated with PAS. In this study, a one-dimensional (1D) fluid dynamics model was used to simulate hemodynamics throughout the pulmonary arteries of individual animals. The geometry of the large pulmonary arteries was prescribed by animal-specific imaging, whereas the distal vasculature was simulated by a three-element Windkessel model at each terminal vessel outlet. Remodeling of the pulmonary vasculature, which cannot be measured in vivo, was estimated via model-fitted parameters. The large artery stiffness was significantly higher on the left side of the vasculature in the left pulmonary artery (LPA) stenosis group, but neither side differed from the sham group. The sham group exhibited a balanced distribution of total distal vascular resistance, whereas the left side was generally larger in the LPA stenosis group, with no significant differences between groups. In contrast, the peripheral compliance on the right side of the LPA stenosis group was significantly greater than the corresponding side of the sham group. Further analysis indicated the underperfused distal vasculature likely moderately decreased in radius with little change in stiffness given the increase in thickness observed with histology. Ultimately, our model enables greater understanding of pulmonary arterial adaptation due to LPA stenosis and has potential for use as a tool to noninvasively estimate remodeling of the pulmonary vasculature.
Collapse
Affiliation(s)
- Callyn J Kozitza
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Mitchel J Colebank
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, and Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | | | - Naomi C Chesler
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, and Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Luke Lamers
- Pediatrics, Division of Cardiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alejandro Roldán-Alzate
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Colleen M Witzenburg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Joosen RS, Voskuil M, Krings GJ, Handoko ML, Dickinson MG, van de Veerdonk MC, Breur JMPJ. The impact of unilateral pulmonary artery stenosis on right ventricular to pulmonary arterial coupling in patients with transposition of the great arteries. Catheter Cardiovasc Interv 2024; 103:943-948. [PMID: 38577955 DOI: 10.1002/ccd.31036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Unilateral pulmonary artery (PA) stenosis is common in the transposition of the great arteries (TGA) after arterial switch operation (ASO) but the effects on the right ventricle (RV) remain unclear. AIMS To assess the effects of unilateral PA stenosis on RV afterload and function in pediatric patients with TGA-ASO. METHODS In this retrospective study, eight TGA patients with unilateral PA stenosis underwent heart catheterization and cardiac magnetic resonance (CMR) imaging. RV pressures, RV afterload (arterial elastance [Ea]), PA compliance, RV contractility (end-systolic elastance [Ees]), RV-to-PA (RV-PA) coupling (Ees/Ea), and RV diastolic stiffness (end-diastolic elastance [Eed]) were analyzed and compared to normal values from the literature. RESULTS In all TGA patients (mean age 12 ± 3 years), RV afterload (Ea) and RV pressures were increased whereas PA compliance was reduced. RV contractility (Ees) was decreased resulting in RV-PA uncoupling. RV diastolic stiffness (Eed) was increased. CMR-derived RV volumes, mass, and ejection fraction were preserved. CONCLUSION Unilateral PA stenosis results in an increased RV afterload in TGA patients after ASO. RV remodeling and function remain within normal limits when analyzed by CMR but RV pressure-volume loop analysis shows impaired RV diastolic stiffness and RV contractility leading to RV-PA uncoupling.
Collapse
Affiliation(s)
- Renée S Joosen
- Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel Voskuil
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gregor J Krings
- Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Louis Handoko
- Department of Cardiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael G Dickinson
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marielle C van de Veerdonk
- Department of Cardiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes M P J Breur
- Department of Pediatric Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Chaszczewski KJ, Huang J, Fuller S, Smith CL, Dori Y, Glatz AC, Gillespie MJ, Rome JJ, O'Byrne ML. Impact of Transcatheter Pulmonary Artery Intervention Following Superior Cavopulmonary Connection on Pulmonary Artery Growth. World J Pediatr Congenit Heart Surg 2021; 12:635-642. [PMID: 34597205 DOI: 10.1177/21501351211033238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Balloon and stent angioplasty of the pulmonary arteries (PAs) are frequently performed following superior cavopulmonary connection (SCPC), not only to normalize the caliber of the affected PA but also in hopes of maximizing downstream growth over time. There are limited data on the impact on subsequent PA growth prior to total cavopulmonary connection (TCPC). METHODS A single-center, retrospective cohort study was performed on children who underwent transcatheter (TC) PA intervention following SCPC between January 1, 2010, and December 31, 2018. Growth of treated and contralateral PAs was measured at the lobar bifurcation (distal branch PA [DBPA]) and in the proximal lower lobe (lower lobe branch [LLB]) on serial angiograms. Growth rate was evaluated using a mixed-effect model clustered by individual patient with an interaction term for treated PA and time to evaluate for differential growth rates between treated and contralateral PAs. RESULTS Thirty-five patients underwent TC PA intervention following SCPC, at a median of 70 days (interquartile range: 19-297 days) postoperatively. Significant growth was seen at both DBPA and LLB for raw (0.8 mm/year, 95% CI: 0.6-1.0, P < .001 for both) and body surface area (BSA) adjusted measures (8.4mm/m2/year, 95% CI: 5.6-11.2, P < .001; 7.9 mm/m2/year, 95% CI: 5.5-10.2, P < .001). The growth rate of the treated vessel was not significantly different from that of the contralateral vessel at the DBPA or LLB positions for raw (P = .71, .70) or BSA-adjusted measurements (P = .86, .64). CONCLUSION Transcatheter PA intervention was associated with normal distal PA growth rate relative to the untreated side.
Collapse
Affiliation(s)
- Kasey J Chaszczewski
- Division of Cardiology, The Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Jing Huang
- Center for Pediatric Clinical Effectiveness, The Children's Hospital of Philadelphia, PA, USA.,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Stephanie Fuller
- Division of Cardiothoracic Surgery, The Children's Hospital of Philadelphia and Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Christopher L Smith
- Division of Cardiology, The Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Yoav Dori
- Division of Cardiology, The Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Andrew C Glatz
- Division of Cardiology, The Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, PA, USA.,Center for Pediatric Clinical Effectiveness, The Children's Hospital of Philadelphia, PA, USA
| | - Matthew J Gillespie
- Division of Cardiology, The Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Jonathan J Rome
- Division of Cardiology, The Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, PA, USA
| | - Michael L O'Byrne
- Division of Cardiology, The Children's Hospital of Philadelphia and Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, PA, USA.,Center for Pediatric Clinical Effectiveness, The Children's Hospital of Philadelphia, PA, USA.,Leonard Davis Institute and Center for Cardiovascular Outcomes, Quality, and Evaluative Research, University of Pennsylvania, PA, USA
| |
Collapse
|
5
|
Pewowaruk R, Ralphe J, Lamers L, Roldán-Alzate A. Non-invasive MRI Derived Hemodynamic Simulation to Predict Successful vs. Unsuccessful Catheter Interventions for Branch Pulmonary Artery Stenosis: Proof-of-Concept and Experimental Validation in Swine. Cardiovasc Eng Technol 2021; 12:494-504. [PMID: 34008077 DOI: 10.1007/s13239-021-00543-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study assessed the ability of hemodynamic simulations to predict the success of catheter interventions in a swine model of branch pulmonary artery stenosis (bPAS). BACKGROUND bPAS commonly occurs in congenital heart disease and is often managed with catheter based interventions. However, despite technical success, bPAS interventions do not lead to improved distal pulmonary blood flow (PBF) distribution in approximately 1/3rd of patients. New tools are needed to better identify which patients with bPAS would most benefit from catheter interventions. METHODS For 13 catheter intervention cases in swine with surgically created left PAS (LPAS), PA pressures from right heart catheterization (RHC) and PBF distributions from MRI were measured before and after catheter interventions. Hemodynamic simulations with a reduced order computational fluid dynamics (CFD) model were performed using non-invasive PBF measurements derived from MRI, and then correlated with changes in invasive measures of hemodynamics and PBF distributions before and after catheter intervention to relieve bPAS. RESULTS Compared to experimentally measured changes in left PBF distribution, simulations had a small bias (3.4 ± 11.1%), moderate agreement (ICC = 0.69 [0.24-0.90], 0.71 [0.23-0.91]), and good diagnostic capability to predict successful interventions (> 20% PBF increase) (AUC 0.83 [0.59-1.0]). Simulations had poorer prediction of changes in stenotic pressure gradient (ICC = 0.28 [- 0.33 to 0.73], r = 0.57 [- 0.04 to 0.87]) and MPA systolic pressure (ICC = 0.00 [- 0.52 to 0.53], r = 0.29 [- 0.32 to 0.72]). CONCLUSION While there was only weak to moderate agreement between predicted and measured changes in PA pressures and pulmonary blood flow distributions, hemodynamic simulations did show good diagnostic value for predicting successful versus unsuccessful catheter based interventions to relieve bPAS. The results of this proof of concept study are promising and should encourage future development for using hemodynamic models in planning interventions for patients with bPAS.
Collapse
Affiliation(s)
- Ryan Pewowaruk
- Cardiovascular Research Center, University of Wisconsin - Madison, Madison, USA. .,Division of Cardiology, Department of Medicine, William S. Middleton Memorial Veteran's Hospital, Office: D222, 2500 Overlook Terrace, Madison, WI, 53705-4108, USA.
| | - John Ralphe
- Division of Cardiology, Department of Pediatrics, University of Wisconsin - Madison, Madison, USA
| | - Luke Lamers
- Division of Cardiology, Department of Pediatrics, University of Wisconsin - Madison, Madison, USA
| | - Alejandro Roldán-Alzate
- Mechanical Engineering, University of Wisconsin - Madison, Madison, USA.,Department of Radiology, University of Wisconsin - Madison, Madison, USA
| |
Collapse
|
6
|
Pewowaruk R, Lamers L, Roldán-Alzate A. Accelerated Estimation of Pulmonary Artery Stenosis Pressure Gradients with Distributed Lumped Parameter Modeling vs. 3D CFD with Instantaneous Adaptive Mesh Refinement: Experimental Validation in Swine. Ann Biomed Eng 2021; 49:2365-2376. [PMID: 33948748 DOI: 10.1007/s10439-021-02780-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/11/2021] [Indexed: 11/30/2022]
Abstract
Branch pulmonary artery stenosis (PAS) commonly occurs in congenital heart disease and the pressure gradient over a stenotic PA lesion is an important marker for re-intervention. Image based computational fluid dynamics (CFD) has shown promise for non-invasively estimating pressure gradients but one limitation of CFD is long simulation times. The goal of this study was to compare accelerated predictions of PAS pressure gradients from 3D CFD with instantaneous adaptive mesh refinement (AMR) versus a recently developed 0D distributed lumped parameter CFD model. Predictions were then experimentally validated using a swine PAS model (n = 13). 3D CFD simulations with AMR improved efficiency by 5 times compared to fixed grid CFD simulations. 0D simulations further improved efficiency by 6 times compared to the 3D simulations with AMR. Both 0D and 3D simulations underestimated the pressure gradients measured by catheterization (- 1.87 ± 4.20 and - 1.78 ± 3.70 mmHg respectively). This was partially due to simulations neglecting the effects of a catheter in the stenosis. There was good agreement between 0D and 3D simulations (ICC 0.88 [0.66-0.96]) but only moderate agreement between simulations and experimental measurements (0D ICC 0.60 [0.11-0.86] and 3D ICC 0.66 [0.21-0.88]). Uncertainty assessment indicates that this was likely due to limited medical imaging resolution causing uncertainty in the segmented stenosis diameter in addition to uncertainty in the outlet resistances. This study showed that 0D lumped parameter models and 3D CFD with instantaneous AMR both improve the efficiency of hemodynamic modeling, but uncertainty from medical imaging resolution will limit the accuracy of pressure gradient estimations.
Collapse
Affiliation(s)
- Ryan Pewowaruk
- Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Luke Lamers
- Pediatrics, Division of Cardiology, University of Wisconsin, Madison, WI, USA
| | - Alejandro Roldán-Alzate
- Biomedical Engineering, University of Wisconsin, Madison, WI, USA. .,Mechanical Engineering, University of Wisconsin, Madison, WI, USA. .,Radiology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
7
|
Pewowaruk RJ, Barton GP, Johnson C, Ralphe JC, Francois CJ, Lamers L, Roldán-Alzate A. Stent interventions for pulmonary artery stenosis improve bi-ventricular flow efficiency in a swine model. J Cardiovasc Magn Reson 2021; 23:13. [PMID: 33627121 PMCID: PMC7905680 DOI: 10.1186/s12968-021-00709-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Branch pulmonary artery (PA) stenosis (PAS) commonly occurs in patients with congenital heart disease (CHD). Prior studies have documented technical success and clinical outcomes of PA stent interventions for PAS but the impact of PA stent interventions on ventricular function is unknown. The objective of this study was to utilize 4D flow cardiovascular magnetic resonance (CMR) to better understand the impact of PAS and PA stenting on ventricular contraction and ventricular flow in a swine model of unilateral branch PA stenosis. METHODS 18 swine (4 sham, 4 untreated left PAS, 10 PAS stent intervention) underwent right heart catheterization and CMR at 20 weeks age (55 kg). CMR included ventricular strain analysis and 4D flow CMR. RESULTS 4D flow CMR measured inefficient right ventricular (RV) and left ventricular (LV) flow patterns in the PAS group (RV non-dimensional (n.d.) vorticity: sham 82 ± 47, PAS 120 ± 47; LV n.d. vorticity: sham 57 ± 5, PAS 78 ± 15 p < 0.01) despite the PAS group having normal heart rate, ejection fraction and end-diastolic volume. The intervention group demonstrated increased ejection fraction that resulted in more efficient ventricular flow compared to untreated PAS (RV n.d. vorticity: 59 ± 12 p < 0.01; LV n.d. vorticity: 41 ± 7 p < 0.001). CONCLUSION These results describe previously unknown consequences of PAS on ventricular function in an animal model of unilateral PA stenosis and show that PA stent interventions improve ventricular flow efficiency. This study also highlights the sensitivity of 4D flow CMR biomarkers to detect earlier ventricular dysfunction assisting in identification of patients who may benefit from PAS interventions.
Collapse
MESH Headings
- Animals
- Computed Tomography Angiography
- Disease Models, Animal
- Endovascular Procedures/instrumentation
- Magnetic Resonance Imaging, Cine
- Myocardial Contraction
- Myocardial Perfusion Imaging
- Pulmonary Artery/diagnostic imaging
- Pulmonary Artery/physiopathology
- Recovery of Function
- Stenosis, Pulmonary Artery/diagnostic imaging
- Stenosis, Pulmonary Artery/physiopathology
- Stenosis, Pulmonary Artery/therapy
- Stents
- Sus scrofa
- Ventricular Dysfunction, Right/diagnostic imaging
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/therapy
- Ventricular Function, Left
- Ventricular Function, Right
Collapse
Affiliation(s)
- Ryan J Pewowaruk
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Gregory P Barton
- University of Wisconsin-Madison, Madison, WI, USA
- Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Cody Johnson
- University of Wisconsin-Madison, Madison, WI, USA
| | - J Carter Ralphe
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Division of Cardiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher J Francois
- University of Wisconsin-Madison, Madison, WI, USA
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Luke Lamers
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Division of Cardiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alejandro Roldán-Alzate
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin-Madison, Madison, WI, USA
- Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Pewowaruk R, Lamers L, Roldán-Alzate A. Longitudinal Evolution of Pulmonary Artery Wall Shear Stress in a Swine Model of Pulmonary Artery Stenosis and Stent Interventions. Ann Biomed Eng 2021; 49:1477-1492. [PMID: 33398618 DOI: 10.1007/s10439-020-02696-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022]
Abstract
Branch pulmonary artery stenosis (PAS) commonly occurs in congenital heart disease and it has previously been hypothesized that in branch PAS the pulmonary arteries (PAs) remodel their lumen diameter to maintain constant wall shear stress (WSS). We quantified the longitudinal progression of PA WSS in a swine model of unilateral PAS and two different intervention time courses to test this hypothesis. To quantify WSS in the entire pulmonary tree we used 4D Flow MRI for the large-proximal PAs and a structured tree model for the small-distal PAs. Our results only partially supported the hypothesis that in branch PAS the PAs remodel their lumen diameter to maintain WSS homeostasis. Proximal PA WSS was similar between groups at the final study time-point but WSS of mid-sized (5 mm to 500 μm) PA segments was found to be different between the sham and LPAS groups. This suggests that WSS homeostasis may only be achieved for the large-proximal PAs. Additionally, our results do not show WSS homeostasis being achieved over shorter periods of time suggesting that any potential WSS dependent changes in PA lumen diameter were a long-term remodeling response rather than a short-term vasodilation response. Future studies should confirm if these findings hold true in humans and investigate the impacts of WSS at different levels of the pulmonary tree on growth.
Collapse
Affiliation(s)
- Ryan Pewowaruk
- Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Luke Lamers
- Pediatrics, Division of Cardiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Alejandro Roldán-Alzate
- Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA. .,Mechanical Engineering, University of Wisconsin - Madison, Madison, WI, USA. .,Radiology, University of Wisconsin - Madison, Madison, WI, USA. .,Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53792-4108, USA.
| |
Collapse
|
9
|
Pewowaruk R, Hermsen J, Johnson C, Erdmann A, Pettit K, Aesif S, Ralphe JC, Francois CJ, Roldán-Alzate A, Lamers L. Pulmonary artery and lung parenchymal growth following early versus delayed stent interventions in a swine pulmonary artery stenosis model. Catheter Cardiovasc Interv 2020; 96:1454-1464. [PMID: 33063918 PMCID: PMC10831906 DOI: 10.1002/ccd.29326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Compare lung parenchymal and pulmonary artery (PA) growth and hemodynamics following early and delayed PA stent interventions for treatment of unilateral branch PA stenosis (PAS) in swine. BACKGROUND How the pulmonary circulation remodels in response to different durations of hypoperfusion and how much growth and function can be recovered with catheter directed interventions at differing time periods of lung development is not understood. METHODS A total of 18 swine were assigned to four groups: Sham (n = 4), untreated left PAS (LPAS) (n = 4), early intervention (EI) (n = 5), and delayed intervention (DI) (n = 5). EI had left pulmonary artery (LPA) stenting at 5 weeks (6 kg) with redilation at 10 weeks. DI had stenting at 10 weeks. All underwent right heart catheterization, computed tomography, magnetic resonance imaging, and histology at 20 weeks (55 kg). RESULTS EI decreased the extent of histologic changes in the left lung as DI had marked alveolar septal and bronchovascular abnormalities (p = .05 and p < .05 vs. sham) that were less prevalent in EI. EI also increased left lung volumes and alveolar counts compared to DI. EI and DI equally restored LPA pulsatility, R heart pressures, and distal LPA growth. EI and DI improved, but did not normalize LPA stenosis diameter (LPA/DAo ratio: Sham 1.27 ± 0.11 mm/mm, DI 0.88 ± 0.10 mm/mm, EI 1.01 ± 0.09 mm/mm) and pulmonary blood flow distributions (LPA-flow%: Sham 52 ± 5%, LPAS 7 ± 2%, DI 44 ± 3%, EI 40 ± 2%). CONCLUSION In this surgically created PAS model, EI was associated with improved lung parenchymal development compared to DI. Longer durations of L lung hypoperfusion did not detrimentally affect PA growth and R heart hemodynamics. Functional and anatomical discrepancies persist despite successful stent interventions that warrant additional investigation.
Collapse
Affiliation(s)
- Ryan Pewowaruk
- Biomedical Engineering, University of Wisconsin – Madison
| | - Joshua Hermsen
- School of Medicine and Public Health, University of Wisconsin – Madison
- Cardiovascular Surgery, University of Wisconsin – Madison
| | | | - Alexandra Erdmann
- School of Medicine and Public Health, University of Wisconsin – Madison
| | - Kevin Pettit
- School of Medicine and Public Health, University of Wisconsin – Madison
| | - Scott Aesif
- School of Medicine and Public Health, University of Wisconsin – Madison
- Pathology, University of Wisconsin – Madison
| | - J. Carter Ralphe
- School of Medicine and Public Health, University of Wisconsin – Madison
- Pediatrics, Division of Cardiology, University of Wisconsin – Madison
| | - Christopher J. Francois
- School of Medicine and Public Health, University of Wisconsin – Madison
- Radiology, University of Wisconsin – Madison
| | - Alejandro Roldán-Alzate
- Biomedical Engineering, University of Wisconsin – Madison
- Mechanical Engineering, University of Wisconsin – Madison
- Radiology, University of Wisconsin – Madison
| | - Luke Lamers
- School of Medicine and Public Health, University of Wisconsin – Madison
- Pediatrics, Division of Cardiology, University of Wisconsin – Madison
| |
Collapse
|
10
|
Pewowaruk R, Mendrisova K, Larrain C, Francois CJ, Roldán-Alzate A, Lamers L. Comparison of pulmonary artery dimensions in swine obtained from catheter angiography, multi-slice computed tomography, 3D-rotational angiography and phase-contrast magnetic resonance angiography. Int J Cardiovasc Imaging 2020; 37:743-753. [PMID: 33034866 PMCID: PMC7545377 DOI: 10.1007/s10554-020-02043-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Accurate pulmonary artery (PA) imaging is necessary for management of patients with complex congenital heart disease (CHD). The ability of newer imaging modalities such as 3D rotational angiography (3DRA) or phase-contrast magnetic resonance angiography (PC-MRA) to measure PA diameters has not been compared to established angiography techniques. Measurements of PA diameters (including PA stenosis and PA stents) from 3DRA and non-contrast-enhanced PC-MRA were compared to 2D catheter angiography (CA) and multi-slice computed tomography (MSCT) in a swine CHD model (n = 18). For all PA segments 3DRA had excellent agreement with CA and MSCT (ICC = 0.94[0.91-0.95] and 0.92[0.89-0.94]). 3DRA PA stenosis measures were similar to CA and MSCT and 3DRA was on average within 5% of 10.8 ± 1.3 mm PA stent diameters from CA and MSCT. For compliant PA segments, 3DRA was on average 3-12% less than CA (p < 0.05) and MSCT (p < 0.01) for 6-14 mm vessels. PC-MRA could not reliably visualize stents and distal PA vessels and only identified 34% of all assigned measurement sites. For measured PA segments, PC-MRA had good agreement to CA and MSCT (ICC = 0.87[0.77-0.92] and 0.83[0.72-0.90]) but PC-MRA overestimated stenosis diameters and underestimated compliant PA diameters. Excellent CA-MSCT PA diameter agreement (ICC = 0.95[0.93-0.96]) confirmed previous data in CHD patients. There was little bias in PA measurements between 3DRA, CA and MSCT in stenotic and stented PAs but 3DRA underestimates measurements of compliant PA regions. Accurate PC-MRA imaging was limited to unstented proximal PA anatomy.
Collapse
Affiliation(s)
- Ryan Pewowaruk
- Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Klarka Mendrisova
- Mechanical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Carolina Larrain
- School of Medicine and Public Health, H6/516D Clinical Science Center, University of Wisconsin - Madison, 600 Highland Ave., Madison, WI, 53792-4108, USA
| | - Christopher J Francois
- School of Medicine and Public Health, H6/516D Clinical Science Center, University of Wisconsin - Madison, 600 Highland Ave., Madison, WI, 53792-4108, USA.,Radiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Alejandro Roldán-Alzate
- Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA.,Mechanical Engineering, University of Wisconsin - Madison, Madison, WI, USA.,Radiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Luke Lamers
- School of Medicine and Public Health, H6/516D Clinical Science Center, University of Wisconsin - Madison, 600 Highland Ave., Madison, WI, 53792-4108, USA. .,Pediatrics, Division of Cardiology, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
11
|
Pewowaruk R, Roldán-Alzate A. 4D Flow MRI Estimation of Boundary Conditions for Patient Specific Cardiovascular Simulation. Ann Biomed Eng 2019; 47:1786-1798. [PMID: 31069584 DOI: 10.1007/s10439-019-02285-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
Accurate image based cardiovascular simulations require patient specific boundary conditions (BCs) for inlets, outlets and vessel wall mechanical properties. While inlet BCs are typically determined non-invasively, invasive pressure catheterization is often used to determine patient specific outlet BCs and vessel wall mechanical properties. A method using 4D Flow MRI to non-invasively determine both patient specific outlet BCs and vessel wall mechanical properties is presented and results for both in vitro validation with a latex tube and an in vivo pulmonary artery stenosis (PAS) stent intervention are presented. For in vitro validation, acceptable agreement is found between simulation using BCs from 4D Flow MRI and benchtop measurements. For the PAS virtual intervention, simulation correctly predicts flow distribution with 9% error compared to MRI. Using 4D Flow MRI to noninvasively determine patient specific BCs increases the ability to use image based simulations as pressure catheterization is not always performed.
Collapse
Affiliation(s)
- Ryan Pewowaruk
- Biomedical Engineering, University of Wisconsin - Madison, 1111 Highland Ave, Room 2476 WIMR 2, Madison, WI, 53705, USA
| | - Alejandro Roldán-Alzate
- Biomedical Engineering, University of Wisconsin - Madison, 1111 Highland Ave, Room 2476 WIMR 2, Madison, WI, 53705, USA. .,Mechanical Engineering, University of Wisconsin - Madison, 1111 Highland Ave, Room 2476 WIMR 2, Madison, WI, 53705, USA. .,Department of Radiology, University of Wisconsin - Madison, 1111 Highland Ave, Room 2476 WIMR 2, Madison, WI, 53705, USA.
| |
Collapse
|