1
|
Akodad M, Trpkov C, Cheung A, Ye J, Chatfield AG, Alosail A, Besola L, Yu M, Leipsic JA, Lounes Y, Meier D, Yang C, Nestelberger T, Tzimas G, Sathananthan J, Wood DA, Moss RR, Blanke P, Sathananthan G, Webb JG. Valve-in-Valve Transcatheter Mitral Valve Replacement: A Large First-in-Human 13-Year Experience. Can J Cardiol 2023; 39:1959-1970. [PMID: 37625668 DOI: 10.1016/j.cjca.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/04/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Favourable early outcomes have been reported following valve-in-valve transcatheter mitral valve replacement (TMVR). However, reports of long-term outcomes are lacking. We aimed to evaluate early and late outcomes in a large first-in-human valve-in-valve TMVR 13-year experience. METHODS All patients undergoing valve-in-valve TMVR in our centre from 2008 to 2021 were included. Clinical and echocardiographic outcomes, defined according to the Mitral Valve Academic Research Consortium, were reported. RESULTS A total of 119 patients were analysed: mean age 76.8 ± 10.2 years, mean Society of Thoracic Surgeons score 10.7 ± 6.8%, 55.4% female, 63.9% transapical access. Thirty-day mortality was 2.5% for the total population and 0.0% after transseptal TMVR. Maximum follow-up was 13.1 years. During a median follow-up of 3.4 years (interquartile range 1.8-5.3 years), 55 patients (46.2%) died, mainly from noncardiovascular causes. Valve hemodynamics were acceptable at 5 years, with 2.5% structural dysfunction. Patients treated from 2016 on (n = 68; 57.1%), following the advent of routine use of the Sapien 3 valve, CT screening, and transseptal access, were compared with those treated before 2016 (n = 51; 42.9%). Patients from 2016 on had a higher technical success rate (100.0% vs 94.1%; P = 0.04), shorter hospitalisation (P < 0.001), trending lower 30-day mortality (1.5% vs 3.9%; P = 0.4) and better 5-year survival (74.7% vs 41.1%; P = 0.03). CONCLUSIONS Valve-in-valve TMVR can be performed with little morbidity and low mortality. Mid- to long-term survival remains limited owing to advanced age and comorbidities. Structural bioprosthetic valve dysfunction was rare and redo TMVR feasible in selected patients. Outcomes continue to improve, but the role for valve-in-valve TMVR in lower surgical risk patients remains unclear.
Collapse
Affiliation(s)
- Mariama Akodad
- Centres for Heart Valve Innovation and for Cardiovascular Innovation, St Paul's and Vancouver General Hospitals, Vancouver, British Columbia, Canada; Division of Cardiology, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada; Cardiovascular Translational Laboratory, Centre for Heart Lung Innovation, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Cvet Trpkov
- Centres for Heart Valve Innovation and for Cardiovascular Innovation, St Paul's and Vancouver General Hospitals, Vancouver, British Columbia, Canada; Division of Cardiology, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada; Cardiovascular Translational Laboratory, Centre for Heart Lung Innovation, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Anson Cheung
- Centres for Heart Valve Innovation and for Cardiovascular Innovation, St Paul's and Vancouver General Hospitals, Vancouver, British Columbia, Canada; Division of Cardiology, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Jian Ye
- Centres for Heart Valve Innovation and for Cardiovascular Innovation, St Paul's and Vancouver General Hospitals, Vancouver, British Columbia, Canada; Division of Cardiology, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Andrew G Chatfield
- Centres for Heart Valve Innovation and for Cardiovascular Innovation, St Paul's and Vancouver General Hospitals, Vancouver, British Columbia, Canada; Division of Cardiology, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Abdulmajeed Alosail
- Centres for Heart Valve Innovation and for Cardiovascular Innovation, St Paul's and Vancouver General Hospitals, Vancouver, British Columbia, Canada; Division of Cardiology, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada; Cardiovascular Translational Laboratory, Centre for Heart Lung Innovation, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Laura Besola
- Centres for Heart Valve Innovation and for Cardiovascular Innovation, St Paul's and Vancouver General Hospitals, Vancouver, British Columbia, Canada; Division of Cardiology, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada; Cardiovascular Translational Laboratory, Centre for Heart Lung Innovation, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Maggie Yu
- Centres for Heart Valve Innovation and for Cardiovascular Innovation, St Paul's and Vancouver General Hospitals, Vancouver, British Columbia, Canada
| | - Jonathon A Leipsic
- Centres for Heart Valve Innovation and for Cardiovascular Innovation, St Paul's and Vancouver General Hospitals, Vancouver, British Columbia, Canada; Division of Cardiology, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada; Cardiovascular Translational Laboratory, Centre for Heart Lung Innovation, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada; Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Youcef Lounes
- Centres for Heart Valve Innovation and for Cardiovascular Innovation, St Paul's and Vancouver General Hospitals, Vancouver, British Columbia, Canada; Division of Cardiology, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada; Cardiovascular Translational Laboratory, Centre for Heart Lung Innovation, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada
| | - David Meier
- Centres for Heart Valve Innovation and for Cardiovascular Innovation, St Paul's and Vancouver General Hospitals, Vancouver, British Columbia, Canada; Division of Cardiology, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada; Cardiovascular Translational Laboratory, Centre for Heart Lung Innovation, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Cathevine Yang
- Centres for Heart Valve Innovation and for Cardiovascular Innovation, St Paul's and Vancouver General Hospitals, Vancouver, British Columbia, Canada; Division of Cardiology, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada; Cardiovascular Translational Laboratory, Centre for Heart Lung Innovation, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Thomas Nestelberger
- Centres for Heart Valve Innovation and for Cardiovascular Innovation, St Paul's and Vancouver General Hospitals, Vancouver, British Columbia, Canada; Division of Cardiology, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada; Cardiovascular Translational Laboratory, Centre for Heart Lung Innovation, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Georgios Tzimas
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Janarthanan Sathananthan
- Centres for Heart Valve Innovation and for Cardiovascular Innovation, St Paul's and Vancouver General Hospitals, Vancouver, British Columbia, Canada; Division of Cardiology, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada; Cardiovascular Translational Laboratory, Centre for Heart Lung Innovation, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada
| | - David A Wood
- Centres for Heart Valve Innovation and for Cardiovascular Innovation, St Paul's and Vancouver General Hospitals, Vancouver, British Columbia, Canada; Division of Cardiology, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada; Cardiovascular Translational Laboratory, Centre for Heart Lung Innovation, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Rob R Moss
- Centres for Heart Valve Innovation and for Cardiovascular Innovation, St Paul's and Vancouver General Hospitals, Vancouver, British Columbia, Canada; Division of Cardiology, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Philipp Blanke
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gnalini Sathananthan
- Centres for Heart Valve Innovation and for Cardiovascular Innovation, St Paul's and Vancouver General Hospitals, Vancouver, British Columbia, Canada; Division of Cardiology, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada; Cardiovascular Translational Laboratory, Centre for Heart Lung Innovation, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada
| | - John G Webb
- Centres for Heart Valve Innovation and for Cardiovascular Innovation, St Paul's and Vancouver General Hospitals, Vancouver, British Columbia, Canada; Division of Cardiology, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada; Cardiovascular Translational Laboratory, Centre for Heart Lung Innovation, University of British Columbia and St Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Kaiser AD, Shad R, Hiesinger W, Marsden AL. A design-based model of the aortic valve for fluid-structure interaction. Biomech Model Mechanobiol 2021; 20:2413-2435. [PMID: 34549354 PMCID: PMC10752438 DOI: 10.1007/s10237-021-01516-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 08/22/2021] [Indexed: 11/27/2022]
Abstract
This paper presents a new method for modeling the mechanics of the aortic valve and simulates its interaction with blood. As much as possible, the model construction is based on first principles, but such that the model is consistent with experimental observations. We require that tension in the leaflets must support a pressure, then derive a system of partial differential equations governing its mechanical equilibrium. The solution to these differential equations is referred to as the predicted loaded configuration; it includes the loaded leaflet geometry, fiber orientations and tensions needed to support the prescribed load. From this configuration, we derive a reference configuration and constitutive law. In fluid-structure interaction simulations with the immersed boundary method, the model seals reliably under physiological pressures and opens freely over multiple cardiac cycles. Further, model closure is robust to extreme hypo- and hypertensive pressures. Then, exploiting the unique features of this model construction, we conduct experiments on reference configurations, constitutive laws and gross morphology. These experiments suggest the following conclusions: (1) The loaded geometry, tensions and tangent moduli primarily determine model function. (2) Alterations to the reference configuration have little effect if the predicted loaded configuration is identical. (3) The leaflets must have sufficiently nonlinear material response to function over a variety of pressures. (4) Valve performance is highly sensitive to free edge length and leaflet height. These conclusions suggest appropriate gross morphology and material properties for the design of prosthetic aortic valves. In future studies, our aortic valve modeling framework can be used with patient-specific models of vascular or cardiac flow.
Collapse
Affiliation(s)
- Alexander D Kaiser
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford, CA, USA.
| | - Rohan Shad
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - William Hiesinger
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Alison L Marsden
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Gozdek M, Zieliński K, Pasierski M, Matteucci M, Fina D, Jiritano F, Meani P, Raffa GM, Malvindi PG, Pilato M, Paparella D, Słomka A, Kubica J, Jagielak D, Lorusso R, Suwalski P, Kowalewski M. Transcatheter Aortic Valve Replacement with Self-Expandable ACURATE neo as Compared to Balloon-Expandable SAPIEN 3 in Patients with Severe Aortic Stenosis: Meta-Analysis of Randomized and Propensity-Matched Studies. J Clin Med 2020; 9:E397. [PMID: 32024168 PMCID: PMC7074302 DOI: 10.3390/jcm9020397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/26/2020] [Accepted: 01/30/2020] [Indexed: 12/29/2022] Open
Abstract
Frequent occurrence of paravalvular leak (PVL) after transcatheter aortic valve replacement (TAVR) was the main concern with earlier-generation devices. Current meta-analysis compared outcomes of TAVR with next-generation devices: ACURATE neo and SAPIEN 3. In random-effects meta-analysis, the pooled incidence rates of procedural, clinical and functional outcomes according to VARC-2 definitions were assessed. One randomized controlled trial and five observational studies including 2818 patients (ACURATE neo n = 1256 vs. SAPIEN 3 n = 1562) met inclusion criteria. ACURATE neo was associated with a 3.7-fold increase of moderate-to-severe PVL (RR (risk ratio): 3.70 (2.04-6.70); P < 0.0001), which was indirectly related to higher observed 30-day mortality with ACURATE valve (RR: 1.77 (1.03-3.04); P = 0.04). Major vascular complications, acute kidney injury, periprocedural myocardial infarction, stroke and serious bleeding events were similar between devices. ACURATE neo demonstrated lower transvalvular pressure gradients both at discharge (P < 0.00001) and at 30 days (P < 0.00001), along with lower risk of patient-prosthesis mismatch (RR: 0.29 (0.10-0.87); P = 0.03) and pacemaker implantation (RR: 0.64 (0.50-0.81); P = 0.0002), but no differences were observed regarding composite endpoints early safety and device success. In conclusion, ACURATE neo, as compared with SAPIEN 3, was associated with higher rates of moderate-to-severe PVL, which were indirectly linked with increased observed 30-day all-cause mortality.
Collapse
Affiliation(s)
- Mirosław Gozdek
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Collegium Medicum, 85067 Bydgoszcz, Poland; (M.G.); (J.K.)
- Thoracic Research Centre, Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Innovative Medical Forum, 85067 Bydgoszcz, Poland; (K.Z.); (M.P.)
| | - Kamil Zieliński
- Thoracic Research Centre, Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Innovative Medical Forum, 85067 Bydgoszcz, Poland; (K.Z.); (M.P.)
- Department of Cardiology, Warsaw Medical University, 02091 Warsaw, Poland
| | - Michał Pasierski
- Thoracic Research Centre, Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Innovative Medical Forum, 85067 Bydgoszcz, Poland; (K.Z.); (M.P.)
- Clinical Department of Cardiac Surgery, Central Clinical Hospital of the Ministry of Interior and Administration, Centre of Postgraduate Medical Education, 02607 Warsa, Poland; (P.S.)
| | - Matteo Matteucci
- Department of Cardio-Thoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (M.M.); (D.F.); (F.J.); (P.M.); (R.L.)
- Department of Cardiac Surgery, Circolo Hospital, University of Insubria, 21100 Varese, Italy
| | - Dario Fina
- Department of Cardio-Thoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (M.M.); (D.F.); (F.J.); (P.M.); (R.L.)
- Department of Cardiology, IRCCS Policlinico San Donato, University of Milan, 20097 Milan, Italy
| | - Federica Jiritano
- Department of Cardio-Thoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (M.M.); (D.F.); (F.J.); (P.M.); (R.L.)
- Department of Cardiac Surgery, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Paolo Meani
- Department of Cardio-Thoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (M.M.); (D.F.); (F.J.); (P.M.); (R.L.)
- Department of Intensive Care Unit, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands
| | - Giuseppe Maria Raffa
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Instituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), 90127 Palermo, Italy; (G.M.R.); (M.P.)
| | | | - Michele Pilato
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Instituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), 90127 Palermo, Italy; (G.M.R.); (M.P.)
| | - Domenico Paparella
- GVM Care & Research, Department of Cardiovascular Surgery, Santa Maria Hospital, 70124 Bari, Italy;
- Department of Emergency and Organ Transplant, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Artur Słomka
- Thoracic Research Centre, Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Innovative Medical Forum, 85067 Bydgoszcz, Poland; (K.Z.); (M.P.)
- Chair and Department of Pathophysiology, Nicolaus Copernicus University, Collegium Medicum, 85067 Bydgoszcz, Poland
| | - Jacek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Collegium Medicum, 85067 Bydgoszcz, Poland; (M.G.); (J.K.)
| | - Dariusz Jagielak
- Department of Cardiac Surgery, Gdańsk Medical University, 80210 Gdańsk, Poland;
| | - Roberto Lorusso
- Department of Cardio-Thoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (M.M.); (D.F.); (F.J.); (P.M.); (R.L.)
| | - Piotr Suwalski
- Clinical Department of Cardiac Surgery, Central Clinical Hospital of the Ministry of Interior and Administration, Centre of Postgraduate Medical Education, 02607 Warsa, Poland; (P.S.)
| | - Mariusz Kowalewski
- Thoracic Research Centre, Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Innovative Medical Forum, 85067 Bydgoszcz, Poland; (K.Z.); (M.P.)
- Clinical Department of Cardiac Surgery, Central Clinical Hospital of the Ministry of Interior and Administration, Centre of Postgraduate Medical Education, 02607 Warsa, Poland; (P.S.)
- Department of Cardio-Thoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (M.M.); (D.F.); (F.J.); (P.M.); (R.L.)
| |
Collapse
|