1
|
Huang L, Fang H, Zhang T, Hu B, Liu S, Lv F, Zeng Z, Liu H, Zhou W, Wang X. Drug-loaded balloon with built-in NIR controlled tip-separable microneedles for long-effective arteriosclerosis treatment. Bioact Mater 2022; 23:526-538. [PMID: 36514389 PMCID: PMC9730155 DOI: 10.1016/j.bioactmat.2022.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/24/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Drug-eluting balloon (DEB) angioplasty has emerged as an effective treatment for cardiovascular and cerebrovascular diseases. However, distal embolism and late lumen restenosis could be caused by drug loss during DEB handling and rapid drug metabolization. Here, a drug-loaded balloon equipped with tip-separable microneedles on the balloon surface (MNDLB) was developed. Inbuilt near-infrared (NIR) ring laser inside the catheter inner shaft was introduced to activate the biodegradable microneedle tips for the first time. The drug-loaded tips thus could be embedded in the vasculature and then released antiproliferative drug - paclitaxel slowly via polymer degradation for more than half a year. A significant increase in drug delivery efficiency and superior therapeutic effectiveness compared with the standard DEB were demonstrated using an atherosclerosis rabbit model.
Collapse
Affiliation(s)
- Li Huang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330006, PR China,The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China
| | - Huaqiang Fang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Teng Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Binbin Hu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China
| | - Shichen Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Fanzhen Lv
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Zhaoxia Zeng
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Huijie Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330006, PR China,Corresponding author.
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China,School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330088, PR China,Corresponding author. The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China.
| |
Collapse
|
2
|
Tian J, Song X, Wang Y, Cheng M, Lu S, Xu W, Gao G, Sun L, Tang Z, Wang M, Zhang X. Regulatory perspectives of combination products. Bioact Mater 2022; 10:492-503. [PMID: 34901562 PMCID: PMC8637005 DOI: 10.1016/j.bioactmat.2021.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022] Open
Abstract
Combination products with a wide range of clinical applications represent a unique class of medical products that are composed of more than a singular medical device or drug/biological product. The product research and development, clinical translation as well as regulatory evaluation of combination products are complex and challenging. This review firstly introduced the origin, definition and designation of combination products. Key areas of systematic regulatory review on the safety and efficacy of device-led/supervised combination products were then presented. Preclinical and clinical evaluation of combination products was discussed. Lastly, the research prospect of regulatory science for combination products was described. New tools of computational modeling and simulation, novel technologies such as artificial intelligence, needs of developing new standards, evidence-based research methods, new approaches including the designation of innovative or breakthrough medical products have been developed and could be used to assess the safety, efficacy, quality and performance of combination products. Taken together, the fast development of combination products with great potentials in healthcare provides new opportunities for the advancement of regulatory review as well as regulatory science.
Collapse
Affiliation(s)
- Jiaxin Tian
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Xu Song
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Yongqing Wang
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Maobo Cheng
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Shuang Lu
- Center for Drug Evaluation, National Medical Products Administration, Beijing, China
| | - Wei Xu
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Guobiao Gao
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Lei Sun
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Zhonglan Tang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Minghui Wang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Xingdong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Wang Z, Yin Y, Li J, Qi W, Yu B, Xu Z, Zhu W, Yang F, Cao M, Zhang H. New Ultrasound-Controlled Paclitaxel Releasing Balloon vs. Asymmetric Drug-Eluting Stent in Primary ST-Segment Elevation Myocardial Infarction - A Prospective Randomized Trial. Circ J 2022; 86:642-650. [PMID: 34759131 DOI: 10.1253/circj.cj-21-0315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Application of drug-coated balloons (DCBs) is popular for the treatment of percutaneous coronary intervention (PCI). A new DCB has been designed as ultrasound-controlled paclitaxel releasing. This study was conducted to determine whether a DCB-only strategy has a similar safety profile and equal angiographic and clinical outcomes to DES implantation in primary ST-elevation myocardial infarction (STEMI) patients, as well as determine the efficiency and safety of this new DCB. METHODS AND RESULTS Overall, 184 pretreated STEMI patients were randomized into DCB and DES groups with a 1:1 allocation. The main study end-point was late lumen loss (LLL) during the 9 months after PCI. Late lumen loss was reported to be 0.24±0.39 mm in the DCB group and 0.31±0.38 mm in the DES group (P=0.215). Diameter stenosis was 28.27±15.35% in the DCB group and 25.73±15.41% in the DES group (P=0.312). Major adverse cardiovascular events (MACEs) were reported in 3 patients (3.4%) in the DCB group and 4 patients (4.7%) in the DES group (P=0.718). TLR and TVR in the DCB group was 2.3%, 3.4% and 2.4%, 3.5% in the DES group (P=1.000), respectively. No cardiac death and stent thrombosis (ST) was found in the DCB group at 12 months clinical follow up. CONCLUSIONS The DCB-only strategy showed good angiographic and clinical outcomes in the 9- and 12-month follow-up periods, respectively. The VasoguardTM DCB is safe and feasible to treat STEMI patients.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Emergency Cardiology, Heart Center, Inner Mongolia People's Hospital
| | - Yuxia Yin
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing
| | - Jianfei Li
- Department of Emergency Cardiology, Heart Center, Inner Mongolia People's Hospital
| | - Wantao Qi
- Department of Emergency Cardiology, Heart Center, Inner Mongolia People's Hospital
| | - Bo Yu
- Department of Emergency Cardiology, Heart Center, Inner Mongolia People's Hospital
| | - Zhiru Xu
- Department of Emergency Cardiology, Heart Center, Inner Mongolia People's Hospital
| | - Wangliang Zhu
- Department of Emergency Cardiology, Heart Center, Inner Mongolia People's Hospital
| | - Fa Yang
- Department of Emergency Cardiology, Heart Center, Inner Mongolia People's Hospital
| | - Mingkun Cao
- Department of Vascular & Intervention, Tenth Peoples' Hospital of Tongji University, Tongji University
| | - Haijun Zhang
- Department of Vascular & Intervention, Tenth Peoples' Hospital of Tongji University, Tongji University
| |
Collapse
|