1
|
Fernández-Canto N, García-Gómez MB, Vázquez-Odériz ML, Lombardero-Fernández M, Pereira-Lorenzo S, Cobos Á, Díaz O, Romero-Rodríguez MÁ. Autochthonous Wheat Grown in Organic and Conventional Systems: Nutritional Quality of Flour and Bread. Foods 2024; 13:1120. [PMID: 38611424 PMCID: PMC11012170 DOI: 10.3390/foods13071120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
A growing interest in the recovery and enhancement of crops, particularly local varieties such as 'Caaveiro' wheat, has been observed. This study aims to investigate the impact of cultivation systems (organic versus conventional) on the nutritional quality of 'Caaveiro' flour and breads protected by the PGI "Pan Galego," employing two fermentation methods (sourdough versus sourdough and biological yeast). Organic flour exhibited significantly higher levels of moisture, fat, sucrose, phosphorus (P), sodium (Na), and copper (Cu) while also exhibiting a lower total starch and zinc (Zn) content. Organic bread, produced using both fermentation methods, demonstrated significantly higher protein, carbohydrate, total, resistant, and rapidly digestible starch, ash, Na, P, iron (Fe), and Cu content. Additionally, they contained less moisture compared to conventional bread. Despite variations in nutritional characteristics based on the cultivation system, the organic approach proved effective at producing high-quality products with a positive environmental impact, which is highly appreciated by consumers.
Collapse
Affiliation(s)
- Nerea Fernández-Canto
- Areas of Nutrition and Food Science and Food Technology, Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Sciences, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.F.-C.); (M.B.G.-G.); (M.L.V.-O.); (Á.C.); (M.Á.R.-R.)
| | - María Belén García-Gómez
- Areas of Nutrition and Food Science and Food Technology, Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Sciences, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.F.-C.); (M.B.G.-G.); (M.L.V.-O.); (Á.C.); (M.Á.R.-R.)
| | - María Lourdes Vázquez-Odériz
- Areas of Nutrition and Food Science and Food Technology, Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Sciences, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.F.-C.); (M.B.G.-G.); (M.L.V.-O.); (Á.C.); (M.Á.R.-R.)
| | - Matilde Lombardero-Fernández
- Agronomy and Animal Science Group, Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
- Instituto de Biodiversidade Agraria e Desenvolvemento Rural (IBADER), Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Santiago Pereira-Lorenzo
- Instituto de Biodiversidade Agraria e Desenvolvemento Rural (IBADER), Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
- Department of Plant Production and Engineering Projects, Escuela Politécnica Superior, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Ángel Cobos
- Areas of Nutrition and Food Science and Food Technology, Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Sciences, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.F.-C.); (M.B.G.-G.); (M.L.V.-O.); (Á.C.); (M.Á.R.-R.)
| | - Olga Díaz
- Areas of Nutrition and Food Science and Food Technology, Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Sciences, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.F.-C.); (M.B.G.-G.); (M.L.V.-O.); (Á.C.); (M.Á.R.-R.)
| | - María Ángeles Romero-Rodríguez
- Areas of Nutrition and Food Science and Food Technology, Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Sciences, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.F.-C.); (M.B.G.-G.); (M.L.V.-O.); (Á.C.); (M.Á.R.-R.)
- Instituto de Biodiversidade Agraria e Desenvolvemento Rural (IBADER), Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| |
Collapse
|
2
|
Majzoobi M, Jafarzadeh S, Teimouri S, Ghasemlou M, Hadidi M, Brennan CS. The Role of Ancient Grains in Alleviating Hunger and Malnutrition. Foods 2023; 12:2213. [PMID: 37297458 PMCID: PMC10252758 DOI: 10.3390/foods12112213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Meeting the United Nation's sustainable development goals for zero hunger becomes increasingly challenging with respect to climate change and political and economic challenges. An effective strategy to alleviate hunger and its severe implications is to produce affordable, nutrient-dense, and sustainable food products. Ancient grains were long-forgotten due to the dominance of modern grains, but recently, they have been rediscovered as highly nutritious, healthy and resilient grains for solving the nutrition demand and food supply chain problems. This review article aims to critically examine the progress in this emerging field and discusses the potential roles of ancient grains in the fight against hunger. We provide a comparative analysis of different ancient grains with their modern varieties in terms of their physicochemical properties, nutritional profiles, health benefits and sustainability. A future perspective is then introduced to highlight the existing challenges of using ancient grains to help eradicate world hunger. This review is expected to guide decision-makers across different disciplines, such as food, nutrition and agronomy, and policymakers in taking sustainable actions against malnutrition and hunger.
Collapse
Affiliation(s)
- Mahsa Majzoobi
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia; (S.T.); (M.G.); (C.S.B.)
| | - Shima Jafarzadeh
- School of Civil and Mechanical Engineering, Curtin University, Bentley, WA 6102, Australia;
| | - Shahla Teimouri
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia; (S.T.); (M.G.); (C.S.B.)
| | - Mehran Ghasemlou
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia; (S.T.); (M.G.); (C.S.B.)
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13001 Ciudad Real, Spain;
| | - Charles S. Brennan
- Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia; (S.T.); (M.G.); (C.S.B.)
| |
Collapse
|
3
|
Suitability of Improved and Ancient Italian Wheat for Bread-Making: A Holistic Approach. Life (Basel) 2022; 12:life12101613. [PMID: 36295048 PMCID: PMC9605622 DOI: 10.3390/life12101613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ancient and old wheat grains are gaining interest as a genetic reservoir to develop improved Italian genotypes with peculiar features. In this light, the aim of this study was to assess the baking performance of two improved einkorn (Monlis and Norberto) and two improved emmer (Padre Pio and Giovanni Paolo) genotypes in comparison with two Italian landraces (Garfagnana and Cappelli) and Khorasan. This set was evaluated following a holistic approach considering the flour, dough, and bread properties. The results showed that the flour properties, dough rheology, pasting, and fermentation parameters, as well as the bread properties, significantly differed among the studied genotypes. Cappelli produced the bread with the best quality, i.e., the highest volume and lowest firmness. Despite having the same pedigrees, Giovanni Paolo and Padre Pio resulted in significantly different technological properties. Giovanni Paolo flour showed the highest protein content and provided a dough with a high gas production capacity, resulting in the bread having a similar firmness to Cappelli. Padre Pio flour provided bread having a similar volume to Cappelli but a high firmness similar to Khorasan and Garfagnana. The einkorn genotypes, Monlis and Norberto, showed poor fermentation properties and high gelatinization viscosity that resulted in bread with poor quality. Alternatively, they could be more suitable for making non-fermented flatbreads. Our results showed that the improved wheat showed a high versatility of features, which offers bakers a flexible material to make a genotype of bread types.
Collapse
|