1
|
Slama Schwok A, Henri J. Long Neuro-COVID-19: Current Mechanistic Views and Therapeutic Perspectives. Biomolecules 2024; 14:1081. [PMID: 39334847 PMCID: PMC11429791 DOI: 10.3390/biom14091081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/30/2024] Open
Abstract
Long-lasting COVID-19 (long COVID) diseases constitute a real life-changing burden for many patients around the globe and, overall, can be considered societal and economic issues. They include a variety of symptoms, such as fatigue, loss of smell (anosmia), and neurological-cognitive sequelae, such as memory loss, anxiety, brain fog, acute encephalitis, and stroke, collectively called long neuro-COVID-19 (long neuro-COVID). They also include cardiopulmonary sequelae, such as myocardial infarction, pulmonary damage, fibrosis, gastrointestinal dysregulation, renal failure, and vascular endothelial dysregulation, and the onset of new diabetes, with each symptom usually being treated individually. The main unmet challenge is to understand the mechanisms of the pathophysiologic sequelae, in particular the neurological symptoms. This mini-review presents the main mechanistic hypotheses considered to explain the multiple long neuro-COVID symptoms, namely immune dysregulation and prolonged inflammation, persistent viral reservoirs, vascular and endothelial dysfunction, and the disruption of the neurotransmitter signaling along various paths. We suggest that the nucleoprotein N of SARS-CoV-2 constitutes a "hub" between the virus and the host inflammation, immunity, and neurotransmission.
Collapse
Affiliation(s)
- Anny Slama Schwok
- Sorbonne Université, INSERM U938, Biology and Cancer Therapeutics, Centre de Recherche Saint Antoine, Saint Antoine Hospital, 75231 Paris, France
| | - Julien Henri
- Sorbonne Université, CNRS UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, 75005 Paris, France
| |
Collapse
|
2
|
Hong X, Ma J, Zheng S, Zhao G, Fu C. Advances in the research and application of neurokinin-1 receptor antagonists. J Zhejiang Univ Sci B 2024; 25:91-105. [PMID: 38303494 PMCID: PMC10835208 DOI: 10.1631/jzus.b2300455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/07/2023] [Indexed: 02/03/2024]
Abstract
Recently, the substance P (SP)/neurokinin-1 receptor (NK-1R) system has been found to be involved in various human pathophysiological disorders including the symptoms of coronavirus disease 2019 (COVID-19). Besides, studies in the oncological field have demonstrated an intricate correlation between the upregulation of NK-1R and the activation of SP/NK-1R system with the progression of multiple carcinoma types and poor clinical prognosis. These findings indicate that the modulation of SP/NK-1R system with NK-1R antagonists can be a potential broad-spectrum antitumor strategy. This review updates the latest potential and applications of NK-1R antagonists in the treatment of human diseases and cancers, as well as the underlying mechanisms. Furthermore, the strategies to improve the bioavailability and efficacy of NK-1R antagonist drugs are summarized, such as solid dispersion systems, nanonization, and nanoencapsulation. As a radiopharmaceutical therapeutic, the NK-1R antagonist aprepitant was originally developed as radioligand receptor to target NK-1R-overexpressing tumors. However, combining NK-1R antagonists with other drugs can produce a synergistic effect, thereby enhancing the therapeutic effect, alleviating the symptoms, and improving patients quality of life in several diseases and cancers.
Collapse
Affiliation(s)
- Xiangyu Hong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junjie Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shanshan Zheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guangyu Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Caiyun Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Janket SJ, Fraser DD, Baird AE, Tamimi F, Sohaei D, Conte HA, Prassas I, Diamandis EP. Tachykinins and the potential causal factors for post-COVID-19 condition. THE LANCET. MICROBE 2023; 4:e642-e650. [PMID: 37327802 PMCID: PMC10263974 DOI: 10.1016/s2666-5247(23)00111-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
The most prevalent symptoms of post-COVID-19 condition are pulmonary dysfunction, fatigue and muscle weakness, anxiety, anosmia, dysgeusia, headaches, difficulty in concentrating, sexual dysfunction, and digestive disturbances. Hence, neurological dysfunction and autonomic impairments predominate in post-COVID-19 condition. Tachykinins including the most studied substance P are neuropeptides expressed throughout the nervous and immune systems, and contribute to many physiopathological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems and participate in inflammation, nociception, and cell proliferation. Substance P is a key molecule in neuroimmune crosstalk; immune cells near the peripheral nerve endings can send signals to the brain with cytokines, which highlights the important role of tachykinins in neuroimmune communication. We reviewed the evidence that relates the symptoms of post-COVID-19 condition to the functions of tachykinins and propose a putative pathogenic mechanism. The antagonism of tachykinins receptors can be a potential treatment target.
Collapse
Affiliation(s)
- Sok-Ja Janket
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, USA
| | - Douglas D Fraser
- Paediatric Critical Care, Western University and Lawson Health Research Institute, London, ON, Canada
| | - Alison E Baird
- Department of Neurology, SUNY Health Sciences University, Brooklyn, NY, USA
| | - Faleh Tamimi
- College of Dental Medicine, Qatar University, Doha, Qatar
| | - Dorsa Sohaei
- McGill University School of Medicine, Montreal, QC, Canada
| | - Harry A Conte
- Department of Infectious Diseases, Johnson Memorial Hospital, Stafford Springs, CT, USA
| | - Ioannis Prassas
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | | |
Collapse
|
4
|
Schirinzi T, Lattanzi R, Maftei D, Grillo P, Zenuni H, Boffa L, Albanese M, Simonetta C, Bovenzi R, Maurizi R, Loccisano L, Vincenzi M, Greco A, Di Girolamo S, Mercuri NB, Passali FM, Severini C. Substance P and Prokineticin-2 are overexpressed in olfactory neurons and play differential roles in persons with persistent post-COVID-19 olfactory dysfunction. Brain Behav Immun 2023; 108:302-308. [PMID: 36549578 PMCID: PMC9760596 DOI: 10.1016/j.bbi.2022.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Persistent olfactory dysfunction (OD) is one of the most complaining and worrying complications of long COVID-19 because of the potential long-term neurological consequences. While causes of OD in the acute phases of the SARS-CoV-2 infection have been figured out, reasons for persistent OD are still unclear. Here we investigated the activity of two inflammatory pathways tightly linked with olfaction pathophysiology, namely Substance P (SP) and Prokineticin-2 (PK2), directly within the olfactory neurons (ONs) of patients to understand mechanisms of persistent post-COVID-19 OD. ONs were collected by non-invasive brushing from ten patients with persistent post-COVID-19 OD and ten healthy controls. Gene expression levels of SP, Neurokinin receptor 1, Interleukin-1β (IL-1β), PK2, PK2 receptors type 1 and 2, and Prokineticin-2-long peptide were measured in ONs by Real Time-PCR in both the groups, and correlated with residual olfaction. Immunofluorescence staining was also performed to quantify SP and PK2 proteins. OD patients, compared to controls, exhibited increased levels of both SP and PK2 in ONs, the latter proportional to residual olfaction. This work provided unprecedented, preliminary evidence that both SP and PK2 pathways may have a role in persistent post-COVID-19 OD. Namely, if the sustained activation of SP, lasting months after infection's resolution, might foster chronic inflammation and contribute to hyposmia, the PK2 expression could instead support the smell recovery.
Collapse
Affiliation(s)
- Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Italy.
| | - Roberta Lattanzi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Italy
| | - Daniela Maftei
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Italy
| | - Piergiorgio Grillo
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Italy
| | - Henri Zenuni
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Italy
| | - Laura Boffa
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Italy
| | - Maria Albanese
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Italy
| | - Clara Simonetta
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Italy
| | - Roberta Bovenzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Italy
| | - Riccardo Maurizi
- Unit of ENT, Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Italy
| | - Laura Loccisano
- Unit of ENT, Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Italy
| | - Martina Vincenzi
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - Stefano Di Girolamo
- Unit of ENT, Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Italy
| | - Nicola B. Mercuri
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, Italy
| | - Francesco M. Passali
- Unit of ENT, Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Italy
| | - Cinzia Severini
- Department of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| |
Collapse
|
5
|
MacRaild CA, Mohammed MUR, Faheem, Murugesan S, Styles IK, Peterson AL, Kirkpatrick CMJ, Cooper MA, Palombo EA, Simpson MM, Jain HA, Agarwal V, McAuley AJ, Kumar A, Creek DJ, Trevaskis NL, Vasan SS. Systematic Down-Selection of Repurposed Drug Candidates for COVID-19. Int J Mol Sci 2022; 23:11851. [PMID: 36233149 PMCID: PMC9569752 DOI: 10.3390/ijms231911851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 01/09/2023] Open
Abstract
SARS-CoV-2 is the cause of the COVID-19 pandemic which has claimed more than 6.5 million lives worldwide, devastating the economy and overwhelming healthcare systems globally. The development of new drug molecules and vaccines has played a critical role in managing the pandemic; however, new variants of concern still pose a significant threat as the current vaccines cannot prevent all infections. This situation calls for the collaboration of biomedical scientists and healthcare workers across the world. Repurposing approved drugs is an effective way of fast-tracking new treatments for recently emerged diseases. To this end, we have assembled and curated a database consisting of 7817 compounds from the Compounds Australia Open Drug collection. We developed a set of eight filters based on indicators of efficacy and safety that were applied sequentially to down-select drugs that showed promise for drug repurposing efforts against SARS-CoV-2. Considerable effort was made to evaluate approximately 14,000 assay data points for SARS-CoV-2 FDA/TGA-approved drugs and provide an average activity score for 3539 compounds. The filtering process identified 12 FDA-approved molecules with established safety profiles that have plausible mechanisms for treating COVID-19 disease. The methodology developed in our study provides a template for prioritising drug candidates that can be repurposed for the safe, efficacious, and cost-effective treatment of COVID-19, long COVID, or any other future disease. We present our database in an easy-to-use interactive interface (CoviRx that was also developed to enable the scientific community to access to the data of over 7000 potential drugs and to implement alternative prioritisation and down-selection strategies.
Collapse
Affiliation(s)
- Christopher A. MacRaild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia
| | - Muzaffar-Ur-Rehman Mohammed
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani 333031, Rajasthan, India
| | - Faheem
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani 333031, Rajasthan, India
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani 333031, Rajasthan, India
| | - Ian K. Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia
| | - Amanda L. Peterson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia
- Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia
| | - Carl M. J. Kirkpatrick
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Moana M. Simpson
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Hardik A. Jain
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Vinti Agarwal
- Department of Computer Science and Information Systems, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Alexander J. McAuley
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, Portarlington Road, Geelong, VIC 3220, Australia
| | - Anupama Kumar
- Commonwealth Scientific and Industrial Research Organisation, Land and Water, Waite Campus, SA 5064, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia
| | - Natalie L. Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia
| | - Seshadri S. Vasan
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, Portarlington Road, Geelong, VIC 3220, Australia
- Department of Health, 189 Royal Street, East Perth, WA 6004, Australia
- Department of Health Sciences, University of York, York YO10 5DD, UK
| |
Collapse
|
6
|
Carson E, Hemenway AN. A Scoping Review of Pharmacological Management of Postacute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 Infection in 2021. Am J Ther 2022; 29:e305-e321. [PMID: 35383586 DOI: 10.1097/mjt.0000000000001486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection (PASC), or long-COVID, are signs and symptoms that persist after the acute phase of Coronavirus disease 2019 infection has passed. PASC is newly recognized, and research is ongoing to answer questions about pathology, symptoms, diagnosis, and optimal treatment. AREAS OF UNCERTAINTY Use of pharmacologic treatment for symptoms of PASC is currently evolving. This scoping review aims to assess medical literature for any evidence supporting or refuting use of any medications to specifically treat PASC. DATA SOURCES PubMed, EMBASE, Web of Science, and gray literature sources were searched for any study of medication use for PASC. Studies were included if they described medication use in patients with PASC. There were no exclusion criteria based on study type or if results were reported. Studies were divided into completed works and ongoing research. RESULTS Fifty-two records were included in final analysis from an initial 3524 records found, including 2 randomized controlled trials, 7 prospective, open-label or observational studies, 14 case reports or case series, 1 survey, 1 correspondence, 1 retrospective analysis, and 26 studies in progress. Seven of the 26 completed works investigate ivabradine or beta-blockers, whereas 7 investigate local or systemic corticosteroids. Three investigate multi-ingredient nutritional supplements. The other 9 completed works as well as the 26 studies in progress investigate a wide variety of other treatments including drugs in development, drugs used for other conditions, herbals, supplements, and vitamins. CONCLUSIONS There is limited, but evolving, literature on medication treatment for PASC. Providers who opt to use pharmacologic therapy for PASC need to be vigilant in their knowledge of these evolving data.
Collapse
Affiliation(s)
- Erin Carson
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Rockford, IL
| | | |
Collapse
|