1
|
Zou H, Rau A, Thompson L, Henderson D. Pancytopenia Concurrent With Metabolic Encephalopathy. Cureus 2024; 16:e67963. [PMID: 39193059 PMCID: PMC11349386 DOI: 10.7759/cureus.67963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 08/29/2024] Open
Abstract
Pancytopenia is a decrease in the number of cells in all peripheral blood cell lines and has been associated with anemias, cancers, chemotherapy, infections, and nutritional deficiencies. However, pancytopenia concurrent with encephalopathy is rare and not well-studied. We present a case of pancytopenia concurrent with metabolic encephalopathy. An 81-year-old female patient presented to the emergency department for two weeks of increased fatigue and hypersomnolence. The patient had trouble staying awake during the initial physical exam, and her laboratory results were significant for pancytopenia, hypercreatinemia, hypernatremia, hypermagnesemia, and alkalemia. She was admitted to the floor, diagnosed with metabolic encephalopathy and acute kidney injury, and treated with medication withholding, fluid resuscitation, and electrolyte repletion. She also received a comprehensive workup for pancytopenia, iron replacement, and red blood cell transfusion therapy. After her metabolic encephalopathy was resolved, she was discharged with plans to follow up with hematology/oncology for stable but unresolved pancytopenia. We hypothesize that the patient's metabolic encephalopathy was likely due to acute kidney injury-induced uremia or dehydration. We further hypothesize that parvovirus B19 and myelodysplastic syndrome are possible etiologies for pancytopenia. Our case highlights the importance of closely monitoring patients taking Sodium-glucose co-transporter-2 (SGLT-2) inhibitors and loop diuretics for dehydration and subsequent organ failure.
Collapse
Affiliation(s)
- Henry Zou
- Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, USA
| | - Akash Rau
- Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, USA
| | - Laura Thompson
- Family Medicine, Trinity Health Family Medicine, Grand Rapids, USA
| | - David Henderson
- Family Medicine, Trinity Health Family Medicine, Grand Rapids, USA
| |
Collapse
|
2
|
Hoffmann M, Willruth LL, Dietrich A, Lee HK, Knabl L, Trummer N, Baumbach J, Furth PA, Hennighausen L, List M. Blood transcriptomics analysis offers insights into variant-specific immune response to SARS-CoV-2. Sci Rep 2024; 14:2808. [PMID: 38307916 PMCID: PMC10837437 DOI: 10.1038/s41598-024-53117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/28/2024] [Indexed: 02/04/2024] Open
Abstract
Bulk RNA sequencing (RNA-seq) of blood is typically used for gene expression analysis in biomedical research but is still rarely used in clinical practice. In this study, we propose that RNA-seq should be considered a diagnostic tool, as it offers not only insights into aberrant gene expression and splicing but also delivers additional readouts on immune cell type composition as well as B-cell and T-cell receptor (BCR/TCR) repertoires. We demonstrate that RNA-seq offers insights into a patient's immune status via integrative analysis of RNA-seq data from patients infected with various SARS-CoV-2 variants (in total 196 samples with up to 200 million reads sequencing depth). We compare the results of computational cell-type deconvolution methods (e.g., MCP-counter, xCell, EPIC, quanTIseq) to complete blood count data, the current gold standard in clinical practice. We observe varying levels of lymphocyte depletion and significant differences in neutrophil levels between SARS-CoV-2 variants. Additionally, we identify B and T cell receptor (BCR/TCR) sequences using the tools MiXCR and TRUST4 to show that-combined with sequence alignments and BLASTp-they could be used to classify a patient's disease. Finally, we investigated the sequencing depth required for such analyses and concluded that 10 million reads per sample is sufficient. In conclusion, our study reveals that computational cell-type deconvolution and BCR/TCR methods using bulk RNA-seq analyses can supplement missing CBC data and offer insights into immune responses, disease severity, and pathogen-specific immunity, all achievable with a sequencing depth of 10 million reads per sample.
Collapse
Affiliation(s)
- Markus Hoffmann
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748, Garching, Germany.
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, 20892, USA.
| | - Lina-Liv Willruth
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Alexander Dietrich
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hye Kyung Lee
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, 20892, USA
| | | | - Nico Trummer
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jan Baumbach
- Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Odense, Denmark
| | - Priscilla A Furth
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748, Garching, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, 20892, USA
- Departments of Oncology & Medicine, Georgetown University, Washington, DC, USA
| | - Lothar Hennighausen
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748, Garching, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Markus List
- Data Science in Systems Biomedicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
3
|
Hoffmann M, Willruth LL, Dietrich A, Lee HK, Knabl L, Trummer N, Baumbach J, Furth PA, Hennighausen L, List M. Blood transcriptomics analysis offers insights into variant-specific immune response to SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.564190. [PMID: 38076885 PMCID: PMC10705570 DOI: 10.1101/2023.11.03.564190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bulk RNA sequencing (RNA-seq) of blood is typically used for gene expression analysis in biomedical research but is still rarely used in clinical practice. In this study, we argue that RNA-seq should be considered a routine diagnostic tool, as it offers not only insights into aberrant gene expression and splicing but also delivers additional readouts on immune cell type composition as well as B-cell and T-cell receptor (BCR/TCR) repertoires. We demonstrate that RNA-seq offers vital insights into a patient's immune status via integrative analysis of RNA-seq data from patients infected with various SARS-CoV-2 variants (in total 240 samples with up to 200 million reads sequencing depth). We compare the results of computational cell-type deconvolution methods (e.g., MCP-counter, xCell, EPIC, quanTIseq) to complete blood count data, the current gold standard in clinical practice. We observe varying levels of lymphocyte depletion and significant differences in neutrophil levels between SARS-CoV-2 variants. Additionally, we identify B and T cell receptor (BCR/TCR) sequences using the tools MiXCR and TRUST4 to show that - combined with sequence alignments and pBLAST - they could be used to classify a patient's disease. Finally, we investigated the sequencing depth required for such analyses and concluded that 10 million reads per sample is sufficient. In conclusion, our study reveals that computational cell-type deconvolution and BCR/TCR methods using bulk RNA-seq analyses can supplement missing CBC data and offer insights into immune responses, disease severity, and pathogen-specific immunity, all achievable with a sequencing depth of 10 million reads per sample.
Collapse
Affiliation(s)
- Markus Hoffmann
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Institute for Advanced Study (Lichtenbergstrasse 2 a, D-85748 Garching, Germany), Technical University of Munich, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
| | - Lina-Liv Willruth
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Alexander Dietrich
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Hye Kyung Lee
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
| | | | - Nico Trummer
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Jan Baumbach
- Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Odense, Denmark
| | - Priscilla A. Furth
- Institute for Advanced Study (Lichtenbergstrasse 2 a, D-85748 Garching, Germany), Technical University of Munich, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
- Departments of Oncology & Medicine, Georgetown University, Washington, DC, United States of America
| | - Lothar Hennighausen
- Institute for Advanced Study (Lichtenbergstrasse 2 a, D-85748 Garching, Germany), Technical University of Munich, Germany
- National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892, United States of America
| | - Markus List
- Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Wu L, Zhang G, Dang S, Zhang S, Zhao L, Zhai J. Application of immunomodulatory therapy in a human brucellosis patient with pancytopenia: A case report. Heliyon 2023; 9:e18907. [PMID: 37588608 PMCID: PMC10425886 DOI: 10.1016/j.heliyon.2023.e18907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
Brucellosis is a common zoonotic infectious disease with diverse and non-specific clinical manifestations caused by Brucella. Although Brucella can cause damage to multiple systems in the human body, hematological complications are relatively rare. We present a case of a 47-year-old male brucellosis patient with pancytopenia. In May 2018, the patient was diagnosed with brucellosis and recovered after receiving antibiotic treatment (rifampicin 600 mg/day and doxycycline 200 mg/day) for six weeks. However, after three years, the patient experienced a recurring high fever. Brucellosis relapse was confirmed based on the patient's clinical history, Rose Bengal plate agglutination test and standard tube agglutination test results. Routine blood examination revealed a decrease in the whole blood cell count, suggesting bone marrow suppression. Bone marrow aspiration and bacterial culture confirmed the diagnosis of brucellosis with pancytopenia. Antibiotic treatment failed to effectively improve the patient's condition. Therefore, a combination of immunomodulatory and antibiotic treatments was used. The antibiotic regimen included oral rifampicin 600 mg/day, intravenous doxycycline hydrochloride 200 mg/day, and subcutaneous injection of human granulocyte-stimulating factor (0.2 mg/day). Immunomodulatory therapy consisted of 20,000 mg/day intravenous human immunoglobulin (pH 4) for five days and 800 mg/day oral pidotimod liquid for 20 days. As the treatment progressed, the count gradually recovered to normal levels, and the symptoms of bone marrow suppression were alleviated. PCR testing revealed the absence of Brucella DNA in both monocyte and serum samples. Furthermore, negative standard tube agglutination test results were obtained. These findings indicate that the immunomodulatory therapy resulted in a complete clearance of Brucella. Therefore, immunomodulatory therapy could be an effective option in cases of brucellosis with pancytopenia that are unresponsive to conventional antibiotic treatment. Further research and clinical evidence are required to confirm and optimize the use of immunomodulatory therapies in patients with brucellosis.
Collapse
Affiliation(s)
- Liankui Wu
- Department of Intensive Medicine, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028000, China
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Guoqing Zhang
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
- Laboratory of Hulunbuir City People's Hospital, Hulunbuir City, 021008, China
| | - Sheng Dang
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
- Keerqin District First People's Hospital, Tongliao, 028000, China
| | - Shuai Zhang
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Leheng Zhao
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
- Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, 028000, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, 028000, China
| | - Jingbo Zhai
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
- Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, 028000, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, 028000, China
| |
Collapse
|
5
|
Multiple drugs. REACTIONS WEEKLY 2022. [PMCID: PMC9099319 DOI: 10.1007/s40278-022-15178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|