1
|
Matsumoto H, Iwai T, Sawamura M, Miura Y. Continuous-Flow Catalysis Using Phosphine-Metal Complexes on Porous Polymers: Designing Ligands, Pores, and Reactors. Chempluschem 2024; 89:e202400039. [PMID: 38549362 DOI: 10.1002/cplu.202400039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Continuous-flow syntheses using immobilized catalysts can offer efficient chemical processes with easy separation and purification. Porous polymers have gained significant interests for their applications to catalytic systems in the field of organic chemistry. The porous polymers are recognized for their large surface area, high chemical stability, facile modulation of surface chemistry, and cost-effectiveness. It is crucial to immobilize transition-metal catalysts due to their difficult separation and high toxicity. Supported phosphine ligands represent a noteworthy system for the effective immobilization of metal catalysts and modulation of catalytic properties. Researchers have been actively pursuing strategies involving phosphine-metal complexes supported on porous polymers, aiming for high activities, durabilities, selectivities, and applicability to continuous-flow systems. This review provides a concise overview of phosphine-metal complexes supported on porous polymers for continuous-flow catalytic reactions. Polymer catalysts are categorized based on pore sizes, including micro-, meso-, and macroporous polymers. The characteristics of these porous polymers are explored concerning their efficiency in immobilized catalysis and continuous-flow systems.
Collapse
Affiliation(s)
- Hikaru Matsumoto
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Iwai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
2
|
Rossino G, Marrubini G, Brindisi M, Granje M, Linciano P, Rossi D, Collina S. A green Heck reaction protocol towards trisubstituted alkenes, versatile pharmaceutical intermediates. Front Chem 2024; 12:1431382. [PMID: 39050371 PMCID: PMC11266092 DOI: 10.3389/fchem.2024.1431382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
The Heck reaction is widely employed to build a variety of biologically relevant scaffolds and has been successfully implemented in the production of active pharmaceutical ingredients (APIs). Typically, the reaction with terminal alkenes gives high yields and stereoselectivity toward the trans-substituted alkenes product, and many green variants of the original protocol have been developed for such substrates. However, these methodologies may not be applied with the same efficiency to reactions with challenging substrates, such as internal olefins, providing trisubstituted alkenes. In the present work, we have implemented a Heck reaction protocol under green conditions to access trisubstituted alkenes as final products or key intermediates of pharmaceutical interest. A set of preliminary experiments performed on a model reaction led to selecting a simple and green setup based on a design of experiments (DoE) study. In such a way, the best experimental conditions (catalyst loading, equivalents of alkene, base and tetraalkylammonium salt, composition, and amount of solvent) have been identified. Then, a second set of experiments were performed, bringing the reaction to completion and considering additional factors. The protocol thus defined involves using EtOH as the solvent, microwave (mw) irradiation to achieve short reaction times, and the supported catalyst Pd EnCat®40, which affords an easier recovery and reuse. These conditions were tested on different aryl bromides and internal olefines to evaluate the substrate scope. Furthermore, with the aim to limit as much as possible the production of waste, a simple isomerization procedure was developed to convert the isomeric byproducts into the desired conjugated E alkene, which is also the thermodynamically favoured product. The approach herein disclosed represents a green, efficient, and easy-to-use handle towards different trisubstituted alkenes via the Heck reaction.
Collapse
Affiliation(s)
- Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | | | - Marc Granje
- Department of Drug Sciences, University of Pavia, Pavia, Italy
- Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | | | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Jeddi N, Scott NWJ, Tanner T, Beaumont SK, Fairlamb IJS. Evidence for Suzuki-Miyaura cross-couplings catalyzed by ligated Pd 3-clusters: from cradle to grave. Chem Sci 2024; 15:2763-2777. [PMID: 38404373 PMCID: PMC10882490 DOI: 10.1039/d3sc06447f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024] Open
Abstract
Pdn clusters offer unique selectivity and exploitable reactivity in catalysis. Understanding the behavior of Pdn clusters is thus critical for catalysis, applied synthetic organic chemistry and greener outcomes for precious Pd. The Pd3 cluster, [Pd3(μ-Cl)(μ-PPh2)2(PPh3)3][Cl] (denoted as Pd3Cl2), which exhibits distinctive reactivity, was synthesized and immobilized on a phosphine-functionalized polystyrene resin (denoted as immob-Pd3Cl2). The resultant material served as a tool to study closely the role of Pd3 clusters in a prototypical Suzuki-Miyaura cross-coupling of 4-fluoro-1-bromobenzene and 4-methoxyphenyl boronic acid at varying low Pd ppm concentrations (24, 45, and 68 ppm). Advanced heterogeneity tests such as Hg poisoning and the three-phase test showed that leached mononuclear or nanoparticulate Pd are unlikely to be the major active catalyst species under the reaction conditions tested. EXAFS/XANES analysis from (pre)catalyst and filtered catalysts during and after catalysis has shown the intactness of the triangular structure of the Pd3X2 cluster, with exchange of chloride (X) by bromide during catalytic turnover of bromoarene substrate. This finding is further corroborated by treatment of immob-Pd3Cl2 after catalyzing the Suzuki-Miyaura reaction with excess PPh3, which releases the cluster from the polymer support and so permits direct observation of [Pd3(μ-Br)(μ-PPh2)2(PPh3)3]+ ions by ESI-MS. No evidence is seen for a proposed intermediate in which the bridging halogen on the Pd3 motif is replaced by an aryl group from the organoboronic acid, i.e. formed by a transmetallation-first process. Our findings taken together indicate that the 'Pd3X2' motif is an active catalyst species, which is stabilized by being immobilized, providing a more robust Pd3 cluster catalyst system. Non-immobilized Pd3Cl2 is less stable, as is followed by stepwise XAFS of the non-immobilized Pd3Cl2, which gradually changes to a species consistent with 'Pdx(PPh3)y' type material. Our findings have far-reaching future implications for Pd3 cluster involvement in catalysis, showing that immobilization of Pd3 cluster species offers advantages for rigorous mechanistic examination and applied chemistries.
Collapse
Affiliation(s)
- Neda Jeddi
- Department of Chemistry, University of York York YO20 5DD UK
| | - Neil W J Scott
- Department of Chemistry, University of York York YO20 5DD UK
| | - Theo Tanner
- Department of Chemistry, University of York York YO20 5DD UK
| | - Simon K Beaumont
- Department of Chemistry, Durham University South Road Durham DH1 3LE UK
| | | |
Collapse
|
4
|
Vice A, Langer N, Reinhart B, Kedem O. Surface-Modified Pd/CeO 2 Single-Atom Catalyst Shows Increased Activity for Suzuki Cross-Coupling. Inorg Chem 2023; 62:21479-21486. [PMID: 38054605 DOI: 10.1021/acs.inorgchem.3c03649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Single-atom catalysts (SACs) comprise catalytically active atoms dispersed on supports; they combine the high activity and site uniformity of homogeneous catalysts with the ease of separability of heterogeneous catalysts. However, SACs lack fine control over the active site, provided by ligands in homogeneous catalysts. In this work, we demonstrate that modification of the support with an organic monolayer is a viable approach to improving the catalytic performance. The addition of catechol-type monolayers to a Pd/CeO2 SAC increases its catalytic activity for Suzuki cross-coupling, a central reaction in the synthesis of fine chemicals and pharmaceuticals. Kinetic trials reveal that the coating reduces the activation energy from 49 ± 9 to 22 ± 5 kJ/mol and produces a 4-fold rate enhancement at 25 °C, an effect we attribute to π-π interactions between the reactant and the catechol coating. Further development of this approach could vastly increase the utility of SACs in organic synthesis.
Collapse
Affiliation(s)
- Audrey Vice
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Nicholas Langer
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| | - Benjamin Reinhart
- X-ray Science Division, Argonne National Laboratory, Argonne, Lemont, Illinois 60439, United States
| | - Ofer Kedem
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
5
|
Kinetic Aspects of Suzuki Cross-Coupling Using Ligandless Pd Nanoparticles Embedded in Aromatic Polymeric Matrix. Processes (Basel) 2023. [DOI: 10.3390/pr11030878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
During the last decades, palladium nanoparticles (Pd(0) NPs) and Pd(II) compounds were shown to be attractive catalysts for fine organic synthesis. Nanostructured Pd(0) or Pd(II) catalysts have a relatively low environmental impact, but, at the same time, they are indispensable for such processes as Suzuki cross-coupling. This paper describes the preparation of Pd(0) or Pd(II) supported/embedded in hyper-cross-linked polystyrene (HPS) and compares their activity in Suzuki cross-coupling between phenylboronic acid and 4-bromoanisole. Obviously, the palladium charge (Pd(0) ↔ Pd(II)) changes continuously during the reaction catalytic cycle. It would seem that the use of the starting palladium in the form of Pd(0) or Pd(II) should not affect the reaction’s kinetic laws for both catalysts, but their special individuality is manifested between them. Nanoparticulate Pd(0) catalysts are stable during the reaction. In contrast, catalysts based on Pd(II) are extremely active in the initial period of the reaction, but then the “hot form” of the catalyst is rapidly converted into the form of Pd(0), whose activity is identical to that of the preliminarily reduced catalyst. This work discusses the possible nature of this phenomenon. A mathematical model for Suzuki cross-coupling reaction was suggested that was able to adequately describe experimental data. The level of reliability (R2) of the correlation between the experimental and calculated data was R2 = 0.97–0.99.
Collapse
|
6
|
TiO 2-Modified Montmorillonite-Supported Porous Carbon-Immobilized Pd Species Nanocomposite as an Efficient Catalyst for Sonogashira Reactions. Molecules 2023; 28:molecules28052399. [PMID: 36903644 PMCID: PMC10005427 DOI: 10.3390/molecules28052399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
In this study, a combination of the porous carbon (PCN), montmorillonite (MMT), and TiO2 was synthesized into a composite immobilized Pd metal catalyst (TiO2-MMT/PCN@Pd) with effective synergism improvements in catalytic performance. The successful TiO2-pillaring modification for MMT, derivation of carbon from the biopolymer of chitosan, and immobilization of Pd species for the prepared TiO2-MMT/PCN@Pd0 nanocomposites were confirmed using a combined characterization with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption isotherms, high-resolution transition electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. It was shown that the combination of PCN, MMT, and TiO2 as a composite support for the stabilization of the Pd catalysts could synergistically improve the adsorption and catalytic properties. The resultant TiO2-MMT80/PCN20@Pd0 showed a high surface area of 108.9 m2/g. Furthermore, it exhibited moderate to excellent activity (59-99% yield) and high stability (recyclable 19 times) in the liquid-solid catalytic reactions, such as the Sonogashira reactions of aryl halides (I, Br) with terminal alkynes in organic solutions. The positron annihilation lifetime spectroscopy (PALS) characterization sensitively detected the development of sub-nanoscale microdefects in the catalyst after long-term recycling service. This study provided direct evidence for the formation of some larger-sized microdefects during sequential recycling, which would act as leaching channels for loaded molecules, including active Pd species.
Collapse
|
7
|
Ashraf M, Ahmad MS, Inomata Y, Ullah N, Tahir MN, Kida T. Transition metal nanoparticles as nanocatalysts for Suzuki, Heck and Sonogashira cross-coupling reactions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Pd/C embedded crosslinked polystyrene fibers as an efficient catalyst for Heck reactions. J Appl Polym Sci 2022. [DOI: 10.1002/app.53363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Faust Akl D, Poier D, D'Angelo SC, Araújo TP, Tulus V, Safonova OV, Mitchell S, Marti R, Guillén-Gosálbez G, Pérez-Ramírez J. Assessing the environmental benefit of palladium-based single-atom heterogeneous catalysts for Sonogashira coupling. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2022; 24:6879-6888. [PMID: 36276229 PMCID: PMC9487187 DOI: 10.1039/d2gc01853e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 06/16/2023]
Abstract
The Pd-Cu catalysed Sonogashira coupling of terminal alkynes and aryl halides is a cornerstone synthetic strategy for C-C bond formation. Homogeneous organometallic systems conventionally applied are typically not reusable and require efficient downstream Pd removal steps for product purification, making it challenging to fully recover the precious metal. A holistic cradle-to-gate life cycle assessment (LCA) unveils that process footprint can be improved up to two orders of magnitude from repeated catalyst reuse. New classes of heterogeneous catalysts based on isolated metal atoms (single-atom catalysts, SACs) demonstrate promising potential to synergise the benefits of solid and molecular catalysts for efficient Pd utilisation. Here we show that using Pd atoms anchored on nitrogen-doped carbon permits full recovery of the metal and reuse of the catalyst over multiple cycles. A hybrid process using the Pd-SAC with a homogeneous CuI cocatalyst is more effective than a fully heterogeneous analogue based on a bimetallic Pd-Cu SAC, which deactivates severely due to copper leaching. In some scenarios, the LCA-based metrics demonstrate the footprint of the hybrid homogeneous-heterogeneous catalytic process is leaner than the purely homogeneous counterpart already upon single reuse. Combining LCA with experimental evaluation will be a useful guide to the implementation of solid, reusable catalysts for sustainable organic transformations.
Collapse
Affiliation(s)
- D Faust Akl
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - D Poier
- Institute of Chemical Technology, University of Applied Sciences and Arts of Western Switzerland Fribourg Boulevard de Pérolles 80 1700 Fribourg Switzerland
| | - S C D'Angelo
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - T P Araújo
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - V Tulus
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - O V Safonova
- Paul-Scherrer Institute Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | - S Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - R Marti
- Institute of Chemical Technology, University of Applied Sciences and Arts of Western Switzerland Fribourg Boulevard de Pérolles 80 1700 Fribourg Switzerland
| | - G Guillén-Gosálbez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - J Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| |
Collapse
|
10
|
McMillin RE, Clark B, Kay K, Gupton BF, Ferri JK. Customizing continuous chemistry and catalytic conversion for carbon–carbon cross-coupling with 3dP. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2022. [DOI: 10.1515/ijcre-2022-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Support structures of various materials are used to enhance the performance of catalytic process chemistry. Typically, fixed bed supports contain regular channels enabling high throughput because of the low pressure drop that accompanies high flow rates. However, many fixed bed supports have a low surface-area-to-volume ratio resulting in poor contact between the substrates and catalyst. Three dimensional polymer printing (3dP) can be used to overcome these disadvantages by offering precise control over key design parameters of the fixed bed, including total bed surface area, as well as accommodating system integration features that are compatible with continuous flow chemistry. Additionally, 3dP allows for optimization of the catalytic process based on extrinsic constraints (e.g. operating pressure) and digital design features. These design parameters together with the physicochemical characterization and optimization of catalyst loading can be tuned to prepare customizable reactors based on objectives for substrate conversion and desired throughput. Using a Suzuki (carbon–carbon) cross-coupling reaction catalyzed by palladium, we demonstrate our integrated approach. We discuss key elements of our strategy including the rational design of hydrodynamics, immobilization of the heterogeneous catalyst, and substrate conversion. This hybrid digital-physical approach enables a range of pharmaceutical process chemistries spanning discovery to manufacturing scale.
Collapse
Affiliation(s)
- Robert E. McMillin
- Chemical and Life Science Engineering , Virginia Commonwealth University College of Engineering , Richmond , VA , 23284, USA
| | - Brian Clark
- Chemical and Life Science Engineering , Virginia Commonwealth University College of Engineering , Richmond , VA , 23284, USA
| | - Kaitlin Kay
- Chemical and Life Science Engineering , Virginia Commonwealth University College of Engineering , Richmond , VA , 23284, USA
| | - B. Frank Gupton
- Chemical and Life Science Engineering , Virginia Commonwealth University College of Engineering , Richmond , VA , 23284, USA
| | - James K. Ferri
- Chemical and Life Science Engineering , Virginia Commonwealth University College of Engineering , Richmond , VA , 23284, USA
| |
Collapse
|
11
|
Shi Y, Zhou Y, Lou Y, Chen Z, Xiong H, Zhu Y. Homogeneity of Supported Single-Atom Active Sites Boosting the Selective Catalytic Transformations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201520. [PMID: 35808964 PMCID: PMC9404403 DOI: 10.1002/advs.202201520] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Selective conversion of specific functional groups to desired products is highly important but still challenging in industrial catalytic processes. The adsorption state of surface species is the key factor in modulating the conversion of functional groups, which is correspondingly determined by the uniformity of active sites. However, the non-identical number of metal atoms, geometric shape, and morphology of conventional nanometer-sized metal particles/clusters normally lead to the non-uniform active sites with diverse geometric configurations and local coordination environments, which causes the distinct adsorption states of surface species. Hence, it is highly desired to modulate the homogeneity of the active sites so that the catalytic transformations can be better confined to the desired direction. In this review, the construction strategies and characterization techniques of the uniform active sites that are atomically dispersed on various supports are examined. In particular, their unique behavior in boosting the catalytic performance in various chemical transformations is discussed, including selective hydrogenation, selective oxidation, Suzuki coupling, and other catalytic reactions. In addition, the dynamic evolution of the active sites under reaction conditions and the industrial utilization of the single-atom catalysts are highlighted. Finally, the current challenges and frontiers are identified, and the perspectives on this flourishing field is provided.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yuwei Zhou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zupeng Chen
- College of Chemical EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Haifeng Xiong
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
12
|
Visible Light Enhanced Photosynthesis of C-C bonds using PdO/Pd@PEDOT nanocomposite. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Lawrence AS, Martin N, Sivakumar B, Cirujano FG, Dhakshinamoorthy A. Palladium‐Based Metal Organic Frameworks as Heterogeneous Catalysts for C‐C Couplings. ChemCatChem 2022. [DOI: 10.1002/cctc.202200403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Nuria Martin
- Universidad de Valencia: Universitat de Valencia Chemistry SPAIN
| | | | | | - Amarajothi Dhakshinamoorthy
- Maduarai University School of Chemistry Palkalai NagarPalkalai NagarMadurai Kamaraj University 625 021 Madurai INDIA
| |
Collapse
|
14
|
Kargar H, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Bahadori M, Moghadam M, Ashfaq M, Munawar KS, Tahir MN. Synthesis, crystal structure, spectral characterization, catalytic studies and computational studies of Ni(II) and Pd(II) complexes of symmetrical tetradentate Schiff base ligand. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2092846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hadi Kargar
- Department of Chemical Engineering, Faculty of Engineering, Ardakan University, Ardakan, Iran
| | | | | | - Mehrnaz Bahadori
- Catalysis Division, Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Majid Moghadam
- Catalysis Division, Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Muhammad Ashfaq
- Department of Physics, University of Sargodha, Punjab, Pakistan
| | - Khurram Shahzad Munawar
- Department of Chemistry, University of Sargodha, Punjab, Pakistan
- Department of Chemistry, University of Mianwali, Mianwali, Pakistan
| | | |
Collapse
|
15
|
Karami K, Abedanzadeh S, Afroomand M, Hervés P, Bayat P. Heterogeneous Copper-Free Sonogashira Cross-Coupling Reactions Catalyzed by a Recyclable Orthopalladated Azo-Complex. Catal Letters 2022. [DOI: 10.1007/s10562-022-04059-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Kalay E. Investigation of the activity of palladium nanoparticles supported on mesoporous graphitic carbon nitride in Heck and Suzuki cross-coupling reactions. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2084416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Erbay Kalay
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| |
Collapse
|
17
|
Yahya RO. Magnetic Graphene Oxide/Carboxymethyl-Imidazolium-Grafted Chitosan Schiff Base Nanocomposite: A New PdNPs Support for Efficient Catalytic Reduction of Hazardous Nitroarenes. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Galaverna RS, Fernandes LP, Menezes da Silva VH, de Siervo A, Pastre JC. Humins‐Like Solid Support for Palladium Immobilization: Highly Efficient and Recyclable Catalyst for Cross‐Coupling Reactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Renan S. Galaverna
- State University of Campinas: Universidade Estadual de Campinas Chemistry BRAZIL
| | - Lucas P. Fernandes
- State University of Campinas: Universidade Estadual de Campinas Chemistry BRAZIL
| | | | - Abner de Siervo
- State University of Campinas: Universidade Estadual de Campinas Physics BRAZIL
| | - Julio Cezar Pastre
- University of Campinas Organic Chemistry Rua Monteiro Lobatos/n 13083-970 Campinas BRAZIL
| |
Collapse
|
19
|
Surface reconstruction, modification and functionalization of natural diatomites for miniaturization of shaped heterogeneous catalysts. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Wussow K, Abram A, Köhler K, Chang CR, Genest A, Li J, Rösch N. Leaching of palladium atoms from small cluster models during Heck reactions – An experimental and theoretical study. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
21
|
Comparative assessment of heterogeneous and homogeneous Suzuki-Miyaura catalytic reactions using bio-Profiles and bio-Factors. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Giannakakis G, Mitchell S, Pérez-Ramírez J. Single-atom heterogeneous catalysts for sustainable organic synthesis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Ye L, Hooshmand T, Thompson BC. Recycling Heterogenous Catalysts for Multi-Batch Conjugated Polymer Synthesis via Direct Arylation Polymerization. ACS Macro Lett 2022; 11:78-83. [PMID: 35574785 DOI: 10.1021/acsmacrolett.1c00722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite the inherent sustainability direct arylation polymerization (DArP) offers through a C-H activation pathway, the use of expensive homogeneous Pd catalysts remains problematic for large-scale conjugated polymer (CP) synthesis. Herein, the first report on the recycling of heterogeneous catalysts for CP synthesis using DArP is presented. We found SiliaCat Pd-DPP to be a highly efficient and recyclable catalyst for multi-batch CP synthesis providing CPs with molecular weights (Mn) up to 82 kg/mol even after being recycled three times. Batch-to-batch variations were further optimized to afford up to five batches of polymers with a Mn of 25 ± 2.5 kg/mol without structural disparity. Significantly, this work discloses among the most sustainable CP synthesis protocols to date and presents the critical concept of catalyst-recycling to the important field of organic semiconducting polymers, which potentially enables access to truly low-cost flow chemistry for industrial-scale CP synthesis.
Collapse
Affiliation(s)
- Liwei Ye
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Tanin Hooshmand
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
24
|
Díaz-Sánchez M, Delgado-Álvarez PN, Gómez IJ, Díaz-García D, Prashar S, Gómez-Ruiz S. Modulation of the photocatalytic activity and crystallinity of F-TiO 2 nanoparticles by using green natural carboxylic acids. CrystEngComm 2022. [DOI: 10.1039/d2ce00699e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrareactive F-doped mesoporous TiO2 nanoparticles with potential environmental applications have been synthesized using green natural carboxylic acids.
Collapse
Affiliation(s)
- Miguel Díaz-Sánchez
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Paula N. Delgado-Álvarez
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - I. Jénnifer Gómez
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, E.S.C.E.T, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| |
Collapse
|
25
|
Liu X, Chen L, Wu Y, Zhang X, Chambaud G, Han Y, Meng C. Pd Speciation on Black Phosphorene in CO and C2H4 Atmosphere: A First-principles Investigation. Phys Chem Chem Phys 2022; 24:14284-14293. [DOI: 10.1039/d2cp01726a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deposited transition metal clusters and nanoparticles are widely used as catalysts and have long been thought stable in reaction conditions. We investigated the electronic structure and stability of freestanding and...
Collapse
|
26
|
Recycling Oryza sativa wastes into poly-imidazolium acetic acid-tagged nanocellulose Schiff base supported Pd nanoparticles for applications in cross-coupling reactions. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Kuchkina NV, Sorokina SA, Bykov AV, Sulman MG, Bronstein LM, Shifrina ZB. Magnetically Recoverable Nanoparticulate Catalysts for Cross-Coupling Reactions: The Dendritic Support Influences the Catalytic Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3345. [PMID: 34947694 PMCID: PMC8708486 DOI: 10.3390/nano11123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Carbon-carbon cross-coupling reactions are among the most important synthetic tools for the preparation of pharmaceuticals and bioactive compounds. However, these reactions are normally carried out using copper, phosphines, and/or amines, which are poisonous for pharmaceuticals. The use of nanocomposite catalysts holds promise for facilitating these reactions and making them more environmentally friendly. In the present work, the PEGylated (PEG stands for poly(ethylene glycol) pyridylphenylene dendrons immobilized on silica loaded with magnetic nanoparticles have been successfully employed for the stabilization of Pd2+ complexes and Pd nanoparticles. The catalyst developed showed excellent catalytic activity in copper-free Sonogashira and Heck cross-coupling reactions. The reactions proceeded smoothly in green solvents at low palladium loading, resulting in high yields of cross-coupling products (from 80% to 97%) within short reaction times. The presence of magnetic nanoparticles allows easy magnetic separation for repeated use without a noticeable decrease of catalytic activity due to the strong stabilization of Pd species by rigid and bulky dendritic ligands. The PEG dendron periphery makes the catalyst hydrophilic and better suited for green solvents. The minor drop in activity upon the catalyst reuse is explained by the formation of Pd nanoparticles from the Pd2+ species during the catalytic reaction. The magnetic separation and reuse of the nanocomposite catalyst reduces the cost of target products as well as energy and material consumption and diminishes residual contamination by the catalyst. These factors as well as the absence of copper in the catalyst makeup pave the way for future applications of such catalysts in cross-coupling reactions.
Collapse
Affiliation(s)
- Nina V. Kuchkina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia; (N.V.K.); (S.A.S.)
| | - Svetlana A. Sorokina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia; (N.V.K.); (S.A.S.)
| | - Alexey V. Bykov
- Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia; (A.V.B.); (M.G.S.)
| | - Mikhail G. Sulman
- Department of Biotechnology and Chemistry, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia; (A.V.B.); (M.G.S.)
| | - Lyudmila M. Bronstein
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia; (N.V.K.); (S.A.S.)
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
- Department of Physics, Faculty of Science, King Abdulaziz University, P.O. Box 80303, Jeddah 21589, Saudi Arabia
| | - Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., 119991 Moscow, Russia; (N.V.K.); (S.A.S.)
| |
Collapse
|
28
|
Kaikake K, Jou N, Shitara G, Jin RH. Microflowers formed by complexation-driven self-assembly between palladium(ii) and bis-theophyllines: immortal catalyst for C-C cross-coupling reactions. RSC Adv 2021; 11:35311-35320. [PMID: 35493180 PMCID: PMC9042804 DOI: 10.1039/d1ra06177a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022] Open
Abstract
The Pd catalyst for Suzuki–Miyaura or the other C–C coupling reactions is one of the central tools in organic synthesis related to medicine, agricultural chemicals and advanced materials. However, recycling palladium is a bottleneck for developing the extreme potential of Pd in chemistry. Herein, we established a new heterogeneous Pd catalytic system in which the catalyst is a nanopetal-gathered flower-like microsphere self-assembled from PdCl2 and alkyl-linked bis-theophyllines. The microflowers catalyzed quantitatively the reaction of aryl bromides and phenylboronic acid in aqueous media at room temperature. It was found that the reaction proceeds better in an air atmosphere than in nitrogen gas even though the Pd(ii) species employed was lowered to 0.001 mol% in the substance. Very interestingly, the microflowers could be recycled 20 times without deactivation in the C–C coupling reaction between bromobenzene and phenylboronic acid in the presence of sodium chloride. We found that the sodium chloride added played an important role in maintaining the morphology of microflowers and preventing the formation of metallic Pd particles. Bis-theophylline-palladium complex exhibit high catalytic activity in the C–C coupling reaction with excellent recyclability in the presence of NaCl.![]()
Collapse
Affiliation(s)
- Katsuya Kaikake
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University 3-27-1 Rokkakubashi, Kanagawa-ku Yokohama 221-8686 Japan
| | - Naoki Jou
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University 3-27-1 Rokkakubashi, Kanagawa-ku Yokohama 221-8686 Japan
| | - Go Shitara
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University 3-27-1 Rokkakubashi, Kanagawa-ku Yokohama 221-8686 Japan
| | - Ren-Hua Jin
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University 3-27-1 Rokkakubashi, Kanagawa-ku Yokohama 221-8686 Japan
| |
Collapse
|
29
|
Sengupta T, Bista D, Khanna SN. Developing Efficient Suzuki Cross-Coupling Catalysts by Doping Palladium Clusters with Silver. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Turbasu Sengupta
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284-2000, United States
| | - Dinesh Bista
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284-2000, United States
| | - Shiv N. Khanna
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284-2000, United States
| |
Collapse
|
30
|
A 1D palladium coordination polymer and its catalytic activity in microwave-assisted Sonogashira reactions. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Alkabli J, Rizk MA, Elshaarawy RFM, El-Sayed WN. Ionic chitosan Schiff bases supported Pd(II) and Ru(II) complexes; production, characterization, and catalytic performance in Suzuki cross-coupling reactions. Int J Biol Macromol 2021; 184:454-462. [PMID: 34157331 DOI: 10.1016/j.ijbiomac.2021.06.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023]
Abstract
Taking the advantage of multifunctional characteristics of chitosan (CS), we have developed new scaffolds (imidazolium-vanillyl-chitosan Schiff bases (IVCSSBs)) for supporting Pd(II) and Ru(II) ions in catalyzing Suzuki coupling reactions. The structures of new materials were described based on their elemental, spectral, thermal, and microscopic analysis. The strong interactions between the binding sites of IVCSSB ligand (OH, H-C=N, and OCH3 groups) and Pd(II) ions resulted in the formation of an excellent heterogeneous catalyst (Pd(II)IVCSSB1) with amazing catalytic activity (up to 99%) and highly stable in the reaction medium. The reusability experiments for Pd(II)IVCSSB1 revealed that there is no appreciable decrease in its catalytic activity even after five consecutive operation runs. Furthermore, this heterogeneous catalyst showed an excellent selectivity toward the cross-coupling reaction where no homo-coupling byproducts were observed in the 1H NMR spectra of the obtained products. Consequently, the present ionic catalytic system may open a new window for a novel generation of ionic bio-based catalysts for organic transformations.
Collapse
Affiliation(s)
- J Alkabli
- Department of Chemistry, College of Sciences and Arts - Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Moustafa A Rizk
- Chemistry Department, College of Science and Arts-Sharurah, Najran University, Sharurah, Saudi Arabia; Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Reda F M Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| | - W N El-Sayed
- Department of Chemistry, College of Sciences and Arts - Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia; Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt.
| |
Collapse
|
32
|
Abstract
![]()
Palladium-catalyzed oxidations involving cascade processes provide
a versatile platform for streamlined conversion of simple feedstocks
into functional molecules with high atom and step economy. However,
the achievement of high palladium efficiency and selectivity in Pd-catalyzed
oxidative cascade reactions is still challenging in many cases, as
a result of the aggregation of active palladium species to Pd black
and the possible side reactions during each bond-forming step. The
two current solutions for addressing these issues are either to utilize
oxidant-stable ligands or to use electron transfer mediators (ETMs).
The former solution, which includes the use of amines, pyridines,
sulfoxides, and carbene derivatives, inhibits aggregation of Pd0 during the catalytic cycle, while the latter solution facilitates
reoxidation of Pd0 to PdII to improve the activity
and selectivity. Following our long-standing interest in Pd-catalyzed
oxidations, very recently we developed heterogeneous catalysts to
resolve the issues mentioned above in oxidative cascade reactions.
The heterogeneous palladium catalysts (Pd-AmP-MCF or Pd-AmP-CNC) comprise
palladium nanoclusters (1–2 nm) immobilized on amino-functionalized
siliceous mesocellular foam (MCF) or on crystalline nanocellulose
(CNC), exhibiting high activity, selectivity as well as excellent
recycling ability. In this Account, we will discuss the synthesis
and characterizations
of the heterogeneous palladium catalysts, as well as their catalytic
behaviors, and the mechanisms involved in their reactions. An important
aspect of these catalysts in oxidation reactions is the generation
of active Pd(II) species within the heterogeneous phase. Typical oxidative
cascade reactions of our recent research on this topic include oxidative
carbocyclization-carbonylation, oxidative carbocyclization-borylation,
oxidative alkynylation-cyclization, oxidative carbonylation-cyclization,
and oxidative carbocyclization-alkynylation. These reactions provide
access to important compounds attractive in medicinal chemistry and
functional materials, such as γ-lactone/γ-lactam-based
poly rings, cyclobutenols, highly substituted furans, and oxaboroles.
During these processes, the heterogeneous catalysts exhibited much
higher turnover numbers (TONs) than their homogeneous counterparts
(e.g., Pd(OAc)2) as well as unique selectivity that cannot
be achieved by homogeneous palladium catalysts. The origin of the
high efficiency and unique selectivity of the heterogeneous catalysts
was also investigated. Asymmetric syntheses for the construction of
optically pure compounds were realized based on the excellent selectivity
in these heterogeneous processes. Kinetic studies revealed that the
rate and yield of the reactions were essentially maintained during
recycling, which demonstrates that Pd-AmP-MCF and Pd-AmP-CNC are robust
and highly active in these oxidative cascade reactions. In addition,
inductively coupled plasma optical emisson spectroscopy (ICP-OES)
analysis and hot filtration test suggest that these processes most
likely proceed via a heterogeneous pathway. Recent progress
in our group has shown that the activity of Pd-AmP-MCF
and Pd-AmP-CNC could be improved even further by the addition of Ag+ to generate cationic Pd(II). Furthermore, intriguing solvent
effects were observed in a Pd-AmP-MCF-catalyzed oxidative cascade
process, and solvent-controlled chemoselective transformations were
developed based on this property of the catalyst. The heterogeneous
strategy of this Account provides solutions to palladium deactivation
and selectivity issues in Pd(II)-catalyzed oxidative cascade reactions
and enables efficient catalyst recycling, which will open up new opportunities
in oxidative cascade reactions.
Collapse
Affiliation(s)
- Man-Bo Li
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P.R. China
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230601, P.R. China
| | - Jan-E. Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
- Department of Natural Sciences, Mid Sweden University, SE-85170 Sundsvall, Sweden
| |
Collapse
|
33
|
Suzuki coupling reactions catalyzed by Schiff base supported palladium complexes bearing the vitamin B6 cofactor. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Vásquez-Céspedes S, Betori RC, Cismesia MA, Kirsch JK, Yang Q. Heterogeneous Catalysis for Cross-Coupling Reactions: An Underutilized Powerful and Sustainable Tool in the Fine Chemical Industry? Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00041] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Suhelen Vásquez-Céspedes
- Product & Process Technology R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Rick C. Betori
- Product & Process Technology R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Megan A. Cismesia
- Product & Process Technology R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Janelle K. Kirsch
- Product & Process Technology R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Qiang Yang
- Product & Process Technology R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| |
Collapse
|
35
|
Niknam E, Panahi F, Khalafi-Nezhad A. Immobilized Pd on a NHC-functionalized metal-organic FrameworkMIL-101(Cr): An efficient heterogeneous catalyst in the heck and copper-free Sonogashira coupling reactions. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Khandaka H, Sharma KN, Joshi RK. Aerobic Cu and amine free Sonogashira and Stille couplings of aryl bromides/chlorides with a magnetically recoverable Fe3O4@SiO2 immobilized Pd(II)-thioether containing NHC. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Luo YH, Zhou C, Bi Y, Long X, Wang B, Tang Y, Krajmalnik-Brown R, Rittmann BE. Long-Term Continuous Co-reduction of 1,1,1-Trichloroethane and Trichloroethene over Palladium Nanoparticles Spontaneously Deposited on H 2-Transfer Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2057-2066. [PMID: 33236898 DOI: 10.1021/acs.est.0c05217] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
1,1,1-Trichloroethane (1,1,1-TCA) and trichloroethene (TCE) are common recalcitrant contaminants that coexist in groundwater. H2-induced reduction over precious-metal catalysts has proven advantageous, but its application to long-term continuous treatment has been limited due to poor H2-transfer efficiency and catalyst loss. Furthermore, catalytic reductions of aqueous 1,1,1-TCA alone or concomitant with TCE catalytic co-reductions are unstudied. Here, we investigated 1,1,1-TCA and TCE co-reduction using palladium nanoparticle (PdNP) catalysts spontaneously deposited on H2-transfer membranes that allow efficient H2 supply on demand in a bubble-free form. The catalytic activities for 1,1,1-TCA and TCE reductions reached 9.9 and 11 L/g-Pd/min, values significantly greater than that reported for other immobilized-PdNP systems. During 90 day continuous operation, removals were up to 95% for 1,1,1-TCA and 99% for TCE. The highest steady-state removal fluxes were 1.5 g/m2/day for 1,1,1-TCA and 1.7 g/m2/day for TCE. The major product was nontoxic ethane (94% selectivity). Only 4% of the originally deposited PdNPs were lost over 90 days of continuous operation. Documenting long-term continuous Pd-catalyzed dechlorination at high surface loading with minimal loss of the catalyst mass or activity, this work expands understanding of and provides a foundation for sustainable catalytic removal of co-existing chlorinated solvents.
Collapse
Affiliation(s)
- Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe 85287-5701, Arizona, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe 85287-5701, Arizona, United States
| | - Yuqiang Bi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe 85287-5701, Arizona, United States
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe 85287-5701, Arizona, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe 85287-5701, Arizona, United States
| | - Boya Wang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee 32306-1058, Florida, United States
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee 32306-1058, Florida, United States
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe 85287-5701, Arizona, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe 85287-5701, Arizona, United States
| |
Collapse
|
38
|
Yu QY, Su H, Zhai GY, Zhang SN, Sun LH, Chen JS, Li XH. Designed electron-deficient gold nanoparticles for a room-temperature C sp3-C sp3 coupling reaction. Chem Commun (Camb) 2021; 57:741-744. [PMID: 33346273 DOI: 10.1039/d0cc06764d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stille cross-coupling reactions catalysed by an ideal catalyst combining the high activity of homogeneous catalysts and the reusability of heterogeneous catalysts are of great interest for C-C bond formation, which is a widely used reaction in fine chemistry. Despite great effort to increase the utilization ratio of surface metal atoms, the activity of heterogeneous catalysts under mild conditions remains unsatisfactory. Herein, we design a proof-of-concept strategy to trigger the room-temperature activity of heterogeneous Au catalysts by decreasing the electron density at the interface of a rationally designed Schottky heterojunction of Au metals and boron-doped carbons. The electron-deficient Au nanoparticles formed as a result of the rectifying contact with boron-doped carbons facilitate the autocleavage of C-Br bonds for highly efficient C-C coupling reactions of alkylbromides and allylstannanes with a TOF value of 5199 h-1 at room temperature, surpassing that of the state-of-the-art homogeneous catalyst.
Collapse
Affiliation(s)
- Qiu-Ying Yu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Hui Su
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Guang-Yao Zhai
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Shi-Nan Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Lu-Han Sun
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
39
|
Ultrasound and click chemistry lead to a new chitin chelator. Its Pd(II) complex is a recyclable catalyst for the Sonogashira reaction in water. Carbohydr Polym 2021; 252:117167. [PMID: 33183618 DOI: 10.1016/j.carbpol.2020.117167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022]
Abstract
For the first time the possibility of chitin use as an accessible and easily-modifiable support for an efficient Pd(II) catalyst has been demonstrated. The modification of chitin avoiding a noticeable chain scission or deacetylation, is achieved by sonochemical alkylation with 1-azido-3-chloropropan-2-ol followed by a convenient azido-alkyne click reaction. The obtained polymer represents an extremely rare case of the chitin derivative soluble both in water and organic solvents. The treatment of that derivative with imino-isonitrile Pd(II) complex solution yielded a chitin-supported Pd(II) complex. The latter could be obtained as a powder or as uniform nanoparticles in different size ranges. The nanoparticles with a hydrodynamic diameter of 30 nm were shown to be the most efficient form of catalyst for the copper- and phosphine-free Sonogashira cross-coupling in water.
Collapse
|
40
|
Shafie H, Niknam K. A magnetic palladium nickel carbon nanocomposite as a heterogeneous catalyst for the synthesis of distyrylbenzene and biphenyl derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj01762d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Distyrylbenzene and 9,10-distyrylanthracene derivatives were synthesized using an Fe3O4@Pd@Ni/C nanocomposite as a recyclable catalyst. The catalyst was recycled up to eight times.
Collapse
Affiliation(s)
- Habiballah Shafie
- Department of Chemistry
- Faculty of Nano and Bio Science and Technology
- Persian Gulf University
- Bushehr 75169
- Iran
| | - Khodabakhsh Niknam
- Department of Chemistry
- Faculty of Nano and Bio Science and Technology
- Persian Gulf University
- Bushehr 75169
- Iran
| |
Collapse
|
41
|
MCM-41-supported palladium (II) α-diimine complex: A recyclable catalyst for Suzuki-Miyaura coupling reaction. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
42
|
Kadu BS. Suzuki–Miyaura cross coupling reaction: recent advancements in catalysis and organic synthesis. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02059a] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Suzuki–Miyaura cross coupling reaction (SMCR) – A milestone in the synthesis of C–C coupled compounds.
Collapse
|
43
|
Velpula VRK, Peesapati S, Enumula SS, Burri DR, Ketike T, Narani A. Biomass waste rice husk derived silica supported palladium nanoparticles: an efficient catalyst for Suzuki–Miyaura and Heck–Mizoroki cross-coupling reactions. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03920-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Lacanau V, Bonneté F, Wagner P, Schmitt M, Meyer D, Bihel F, Contino-Pépin C, Bourgeois D. From Electronic Waste to Suzuki-Miyaura Cross-Coupling Reaction in Water: Direct Valuation of Recycled Palladium in Catalysis. CHEMSUSCHEM 2020; 13:5224-5230. [PMID: 32672412 DOI: 10.1002/cssc.202001155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/29/2020] [Indexed: 06/11/2023]
Abstract
From electronic waste to Pd-catalyzed reaction! The straightforward valuation of palladium recovered from electronic waste is reported here. Following a classical leaching stage, palladium is selectively extracted from a complex aqueous mixture of metallic cations into an organic phase. Afterwards, the judicious choice of a surfactant enables stabilization of palladium during back extraction cycles, and the direct preparation of an aqueous micellar solution, which can be employed in a model Suzuki-Miyaura cross-coupling reaction. Clean phase separation is observed, and distribution of all components between organic and aqueous phases is mastered. The proposed process avoids several waste generating steps dedicated to palladium isolation and ultimate purification, as well as the preparation of palladium pre-catalyst. This novel approach enables a better use of both natural resources and industrial wastes, through new cycles in circular economy.
Collapse
Affiliation(s)
- Valentin Lacanau
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Université de Montpellier, BP 17171, Marcoule, 30207, Bagnols-sur-Cèze, France
- Equipe Chimie Bioorganique et Systèmes Amphiphiles Institut des Biomolécules Max Mousseron, UMR 5247, Avignon Université, 84911, Avignon, France
| | - Françoise Bonneté
- Equipe Chimie Bioorganique et Systèmes Amphiphiles Institut des Biomolécules Max Mousseron, UMR 5247, Avignon Université, 84911, Avignon, France
- Université de Paris LBPC-PM, CNRS, 75005, Paris, France
- Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Patrick Wagner
- Laboratoire d'Innovation thérapeutique, UMR 7200 Labex Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch, France
| | - Martine Schmitt
- Laboratoire d'Innovation thérapeutique, UMR 7200 Labex Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch, France
| | - Daniel Meyer
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Université de Montpellier, BP 17171, Marcoule, 30207, Bagnols-sur-Cèze, France
| | - Frédéric Bihel
- Laboratoire d'Innovation thérapeutique, UMR 7200 Labex Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch, France
| | - Christiane Contino-Pépin
- Equipe Chimie Bioorganique et Systèmes Amphiphiles Institut des Biomolécules Max Mousseron, UMR 5247, Avignon Université, 84911, Avignon, France
| | - Damien Bourgeois
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Université de Montpellier, BP 17171, Marcoule, 30207, Bagnols-sur-Cèze, France
| |
Collapse
|
45
|
Bulky α-diimine palladium complexes supported graphene oxide as heterogeneous catalysts for Suzuki-Miyaura reaction. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Matsumoto H, Hoshino Y, Iwai T, Sawamura M, Miura Y. Polystyrene-Cross-Linking Triphenylphosphine on a Porous Monolith: Enhanced Catalytic Activity for Aryl Chloride Cross-Coupling in Biphasic Flow. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hikaru Matsumoto
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomohiro Iwai
- Department of Chemistry, Hokkaido University, Sapporo 060-0810, Japan
| | - Masaya Sawamura
- Department of Chemistry, Hokkaido University, Sapporo 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
47
|
Tuned Bis-Layered Supported Ionic Liquid Catalyst (SILCA) for Competitive Activity in the Heck Reaction of Iodobenzene and Butyl Acrylate. Catalysts 2020. [DOI: 10.3390/catal10090963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A thorough experimental optimization of supported ionic liquid catalyst (SILCA) was performed in order to obtain a stable and efficient catalyst for the Heck reaction. Out of fifteen proposed structures, propyl imidazolium bromide-tetramethylguanidinium pentanoate modified SiO2 loaded with PdCl2 appeared to be the most stable and to have a good activity in the reaction between butylacrylate and iodobezene, resulting in a complete conversion in 40 min at 100 °C, in four consecutive experiments. This study elucidated on the stability of the catalytic system with an ionic liquid layer during the catalyst synthesis but also under reaction conditions. In the bis-layered catalyst, the imidazolium moiety as a part of internal layer, brought rigidity to the structure, while in external layer pentanoic acid gave sufficiently acidic carboxylic group capable to coordinate 1,1,3,3-tetramethylguanidine (TMG) and thus, allow good dispersion of Pd nanoparticles. The catalyst was characterized by means of XPS, FT-IR, TEM, ICP-OES, ζ-potential, EDX, TGA, and 13C NMR. The release and catch mechanism was observed, whereas Pd re-deposition can be hindered by catalyst poisoning and eventual loss of palladium.
Collapse
|
48
|
Bulatov E, Lahtinen E, Kivijärvi L, Hey‐Hawkins E, Haukka M. 3D Printed Palladium Catalyst for Suzuki‐Miyaura Cross‐coupling Reactions. ChemCatChem 2020. [DOI: 10.1002/cctc.202000806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Evgeny Bulatov
- Department of Chemistry University of Jyväskylä P.O. Box 35 40014 Jyväskylä Finland
- Department of Chemistry University of Helsinki A.I. Virtasen aukio 1, P.O. Box 55 00014 Helsinki Finland
| | - Elmeri Lahtinen
- Department of Chemistry University of Jyväskylä P.O. Box 35 40014 Jyväskylä Finland
| | - Lauri Kivijärvi
- Department of Chemistry University of Jyväskylä P.O. Box 35 40014 Jyväskylä Finland
| | - Evamarie Hey‐Hawkins
- Faculty of Chemistry and Mineralogy Institute of Inorganic Chemistry Leipzig University Johannisallee 29 04103 Leipzig Germany
| | - Matti Haukka
- Department of Chemistry University of Jyväskylä P.O. Box 35 40014 Jyväskylä Finland
| |
Collapse
|
49
|
Li B, Zeng HC. Minimalization of Metallic Pd Formation in Suzuki Reaction with a Solid-State Organometallic Catalyst. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33827-33837. [PMID: 32627521 DOI: 10.1021/acsami.0c09739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Suzuki reaction usually uses palladium (Pd) complexes to accommodate a wide range of substrates. In pursuing greener synthesis, immobilization of Pd complexes with various support materials has shown promising potential. Although this approach can give stable conversion, initially immobilized Pd ions are largely reduced to Pd0 aggregates and turned essentially into supported nanoparticles after use, which departs from its original intention of complex immobilization and thus hampers its activity. Herein, we immobilize noble metal ions into a spherical thiolated organosilica. This new type of catalysts can catalyze Suzuki reaction homogeneously via leaching out Pd ions and shuttling them back after the reaction. The excellent reusability attained can be attributed to minimalization of forming metallic palladium. Thus, the developed catalysts can be viewed as a two-way device to release and to restore metal ions for homogeneous catalysis.
Collapse
Affiliation(s)
- Bowen Li
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| |
Collapse
|
50
|
Das MK, Bobb JA, Ibrahim AA, Lin A, AbouZeid KM, El-Shall MS. Green Synthesis of Oxide-Supported Pd Nanocatalysts by Laser Methods for Room-Temperature Carbon-Carbon Cross-Coupling Reactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23844-23852. [PMID: 32340457 DOI: 10.1021/acsami.0c03331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work reports the design and development of a new class of highly active Pd nanocatalysts supported on substoichiometric oxides. These novel catalysts are generated by green laser synthesis methods to generate high-surface-area substoichiometric oxide nanoparticles followed by photoreduction in aqueous solutions to deposit highly active Pd nanocatalysts within the surface defects of the oxides. The laser methods eliminate the use of toxic chemicals, including hazardous solvents and chemical reducing agents, and allow efficient reduction of the Pd ions in aqueous solutions aided by the photogenerated electrons from the semiconductor support. The Pd catalysts incorporated within these oxides exhibit high activity for carbon-carbon bond-forming reactions. The Pd/TiO2 catalyst with 0.3 mol % Pd achieves 100% conversion in the reaction between bromobenzene and benzeneboronic acid to the biphenyl product within 240 minutes at room temperature without any external heating. With a catalyst loading of 0.3 mol % Pd in the microwave-assisted reaction between bromobenzene and benzeneboronic acid at 60 °C, 92 and 83% conversions to the biphenyl product are achieved within 5 min of reaction time using the Pd/TiO2 and Pd/ZnO catalysts, respectively. The results demonstrate a remarkable catalytic activity of the substoichiometric oxide-supported Pd catalysts with turnover frequencies (TOF, h-1) of 24 000, 10 000, and 3200 achieved under mirowave-assisted reactions at 60 °C for the 0.03 mol% Pd of the Pd/TiO2, Pd/ZnO, and Pd/ZrO2 catalysts, respectively. The high activity and good reusability of these nanocatalysts are attributed to the optimum catalyst-support interaction between the small Pd nanoparticles and the surface defects of the substoichiometric oxide support prepared by the laser vaporization-controlled condensation method.
Collapse
Affiliation(s)
- Mrinmoy K Das
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Julian A Bobb
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Amr A Ibrahim
- Department of Chemistry, Faculty of Science, Mansoura University, Al-Mansoura 35516, Egypt
| | - Andrew Lin
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Khaled M AbouZeid
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - M Samy El-Shall
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| |
Collapse
|