1
|
Chammingkwan P, Khoshsefat M, Terano M, Taniike T. Parallel Catalyst Synthesis Protocol for Accelerating Heterogeneous Olefin Polymerization Research. Polymers (Basel) 2023; 15:4729. [PMID: 38139980 PMCID: PMC10747057 DOI: 10.3390/polym15244729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The data scientific approach has become an indispensable tool for capturing structure-performance relationships in complex systems, where the quantity and quality of data play a crucial role. In heterogeneous olefin polymerization research, the exhaustive and multi-step nature of Ziegler-Natta catalyst synthesis has long posed a bottleneck in synthetic throughput and data generation. In this contribution, a custom-designed 12-parallel reactor system and a catalyst synthesis protocol were developed to achieve the parallel synthesis of a magnesium ethoxide-based Ziegler-Natta catalyst. The established system, featuring a miniature reaction vessel with magnetically suspended stirring, allows for over a tenfold reduction in synthetic scale while ensuring the consistency and reliability of the synthesis. We demonstrate that the established protocol is highly efficient for the generation of a catalyst library with diverse compositions and physical features, holding promise as a foundation for the data-driven establishment of the structure-performance relationship in heterogeneous olefin polymerization catalysis.
Collapse
Affiliation(s)
- Patchanee Chammingkwan
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Japan; (M.K.); (M.T.)
| | | | | | | |
Collapse
|
2
|
Cutsail III GE, DeBeer S. Challenges and Opportunities for Applications of Advanced X-ray Spectroscopy in Catalysis Research. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- George E. Cutsail III
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Piovano A, Signorile M, Braglia L, Torelli P, Martini A, Wada T, Takasao G, Taniike T, Groppo E. Electronic Properties of Ti Sites in Ziegler–Natta Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01735] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alessandro Piovano
- Department of Chemistry, INSTM and NIS Centre, University of Torino, Via Giuria 7, 10125 Torino, Italy
- DPI, P.O.
Box 902, 5600 AX Eindhoven, The Netherlands
| | - Matteo Signorile
- Department of Chemistry, INSTM and NIS Centre, University of Torino, Via Giuria 7, 10125 Torino, Italy
| | | | | | - Andrea Martini
- Department of Chemistry, INSTM and NIS Centre, University of Torino, Via Giuria 7, 10125 Torino, Italy
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| | - Toru Wada
- DPI, P.O.
Box 902, 5600 AX Eindhoven, The Netherlands
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Gentoku Takasao
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Toshiaki Taniike
- DPI, P.O.
Box 902, 5600 AX Eindhoven, The Netherlands
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Elena Groppo
- Department of Chemistry, INSTM and NIS Centre, University of Torino, Via Giuria 7, 10125 Torino, Italy
- DPI, P.O.
Box 902, 5600 AX Eindhoven, The Netherlands
| |
Collapse
|
4
|
Zhou Y, He X, Liu B. Kinetics and Mechanism Comparison between Cr/Ti‐Based Bimetallic and Ti‐Based Monometallic Catalysts for Ethylene Polymerization. MACROMOL REACT ENG 2020. [DOI: 10.1002/mren.202000041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yi Zhou
- Shanghai Key Laboratory of Multiphase Material Chemical Engineering East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| | - Xuelian He
- Shanghai Key Laboratory of Multiphase Material Chemical Engineering East China University of Science and Technology Meilong Road 130 Shanghai 200237 China
| | - Boping Liu
- College of Materials and Energy South China Agricultural University Wushan Road 483 Guangzhou 510642 China
| |
Collapse
|
5
|
Yu Y, McKenna TFL, Boisson C, Lacerda Miranda MS, Martins O. Engineering Poly(ethylene-co-1-butene) through Modulating the Active Species by Alkylaluminum. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yue Yu
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire Chimie, Catalyse, Polymères et Procédés (C2P2), Bat 308F, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Timothy F. L. McKenna
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire Chimie, Catalyse, Polymères et Procédés (C2P2), Bat 308F, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Christophe Boisson
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire Chimie, Catalyse, Polymères et Procédés (C2P2), Bat 308F, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | | | - Olavo Martins
- Braskem SA, Global Catalysis, I&T E&P, 95853-000 Triunfo, Brazil
| |
Collapse
|
6
|
Samantaray MK, D'Elia V, Pump E, Falivene L, Harb M, Ould Chikh S, Cavallo L, Basset JM. The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chem Rev 2019; 120:734-813. [PMID: 31613601 DOI: 10.1021/acs.chemrev.9b00238] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Single atom catalysis (SAC) is a recent discipline of heterogeneous catalysis for which a single atom on a surface is able to carry out various catalytic reactions. A kind of revolution in heterogeneous catalysis by metals for which it was assumed that specific sites or defects of a nanoparticle were necessary to activate substrates in catalytic reactions. In another extreme of the spectrum, surface organometallic chemistry (SOMC), and, by extension, surface organometallic catalysis (SOMCat), have demonstrated that single atoms on a surface, but this time with specific ligands, could lead to a more predictive approach in heterogeneous catalysis. The predictive character of SOMCat was just the result of intuitive mechanisms derived from the elementary steps of molecular chemistry. This review article will compare the aspects of single atom catalysis and surface organometallic catalysis by considering several specific catalytic reactions, some of which exist for both fields, whereas others might see mutual overlap in the future. After a definition of both domains, a detailed approach of the methods, mostly modeling and spectroscopy, will be followed by a detailed analysis of catalytic reactions: hydrogenation, dehydrogenation, hydrogenolysis, oxidative dehydrogenation, alkane and cycloalkane metathesis, methane activation, metathetic oxidation, CO2 activation to cyclic carbonates, imine metathesis, and selective catalytic reduction (SCR) reactions. A prospective resulting from present knowledge is showing the emergence of a new discipline from the overlap between the two areas.
Collapse
Affiliation(s)
- Manoja K Samantaray
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Valerio D'Elia
- School of Molecular Science and Engineering (MSE) , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Wang Chan, Payupnai , 21210 Rayong , Thailand
| | - Eva Pump
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Laura Falivene
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Moussab Harb
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Samy Ould Chikh
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Jean-Marie Basset
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
7
|
Mino L, Signorile M, Crocellà V, Lamberti C. Ti-Based Catalysts and Photocatalysts: Characterization and Modeling. CHEM REC 2018; 19:1319-1336. [PMID: 30570210 DOI: 10.1002/tcr.201800108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/14/2018] [Indexed: 11/09/2022]
Abstract
This perspective article aims to underline how cutting-edge synchrotron radiation spectroscopies such as extended X-ray absorption spectroscopy (EXAFS), X-ray absorption near edge structure (XANES), high resolution fluorescence detected (HRFD) XANES, X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS) have played a key role in the structural and electronic characterization of Ti-based catalysts and photocatalysts, representing an important additional value to the outcomes of conventional laboratory spectroscopies (UV-Vis, IR, Raman, EPR, NMR etc.). Selected examples are taken from the authors research activity in the last two decades, covering both band-gap and shape engineered TiO2 materials and microporous titanosilicates (ETS-10, TS-1 and Ti-AlPO-5). The relevance of the state of the art simulation techniques as a support for experiments interpretation is underlined for all the reported examples.
Collapse
Affiliation(s)
- Lorenzo Mino
- Department of Chemistry, INSTM Reference Center and NIS Interdepartmental Center, University of Turin, via Giuria 7, I-10135, Turin, Italy
| | - Matteo Signorile
- Department of Chemistry, INSTM Reference Center and NIS Interdepartmental Center, University of Turin, via Giuria 7, I-10135, Turin, Italy
| | - Valentina Crocellà
- Department of Chemistry, INSTM Reference Center and NIS Interdepartmental Center, University of Turin, via Giuria 7, I-10135, Turin, Italy
| | - Carlo Lamberti
- Department of Physics, INSTM Reference Center and CrisDi Interdepartmental Center for crystallography, University of Turin, via Giuria 1, I-10135, Turin, Italy.,The Smart Materials Research Institute, Southern Federal University, Sladkova Street 174/28, 344090, Rostov-on-Don, Russia
| |
Collapse
|
8
|
Soldatov MA, Martini A, Bugaev AL, Pankin I, Medvedev PV, Guda AA, Aboraia AM, Podkovyrina YS, Budnyk AP, Soldatov AA, Lamberti C. The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of Metal–organic frameworks. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Piovano A, Pletcher P, Velthoen MEZ, Zanoni S, Chung SH, Bossers K, Jongkind MK, Fiore G, Groppo E, Weckhuysen BM. Genesis of MgCl2
-based Ziegler-Natta Catalysts as Probed with Operando Spectroscopy. Chemphyschem 2018; 19:2662-2671. [DOI: 10.1002/cphc.201800592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Alessandro Piovano
- Department of Chemistry, INSTM and NIS Centre; University of Torino; Via Quarello 15A 10135 Torino Italy
| | - Paul Pletcher
- Inorganic Chemistry and Catalysis Group; Debye Institute for Nanomaterials Science; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Marjolein E. Z. Velthoen
- Inorganic Chemistry and Catalysis Group; Debye Institute for Nanomaterials Science; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Silvia Zanoni
- Inorganic Chemistry and Catalysis Group; Debye Institute for Nanomaterials Science; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Sang-Ho Chung
- Inorganic Chemistry and Catalysis Group; Debye Institute for Nanomaterials Science; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
- Van 't Hoff Institute for Molecular Sciences (HIMS); University of Amsterdam; PO Box 94157 1090 GD Amsterdam The Netherlands
| | - Koen Bossers
- Inorganic Chemistry and Catalysis Group; Debye Institute for Nanomaterials Science; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Maarten K. Jongkind
- Inorganic Chemistry and Catalysis Group; Debye Institute for Nanomaterials Science; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Gianluca Fiore
- Department of Chemistry, INSTM and NIS Centre; University of Torino; Via Quarello 15A 10135 Torino Italy
| | - Elena Groppo
- Department of Chemistry, INSTM and NIS Centre; University of Torino; Via Quarello 15A 10135 Torino Italy
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis Group; Debye Institute for Nanomaterials Science; Utrecht University; Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
10
|
Blaakmeer ES, Antinucci G, Correa A, Busico V, van Eck ERH, Kentgens APM. Structural Characterization of Electron Donors in Ziegler-Natta Catalysts. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:5525-5536. [PMID: 29568341 PMCID: PMC5857925 DOI: 10.1021/acs.jpcc.7b12667] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Ziegler-Natta catalysis is a very important industrial process for the production of polyolefins. However, the catalysts are not well-understood at the molecular level. Yet, atomic-scale structural information is of pivotal importance for rational catalyst development. We applied a solid-state NMR/density functional theory tandem approach to gain detailed insight into the interactions between the catalysts' support, MgCl2, and organic electron donors. Because of the heterogeneity of the samples, large line widths are observed in the carbon spectra. Despite this, good agreement between experimental and computational values was reached, and this shows that 1,3-diether based donors coordinate at (110) surface sites, while phthalates are less selective and coordinate at both (104) and (110) surface sites.
Collapse
Affiliation(s)
- E. S.
Merijn Blaakmeer
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Dutch
Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Giuseppe Antinucci
- Dutch
Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
- Laboratory
of Stereoselective Polymerizations, Federico
II University of Naples, Via Cintia, 80126 Naples, Italy
| | - Andrea Correa
- Dutch
Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
- Laboratory
of Stereoselective Polymerizations, Federico
II University of Naples, Via Cintia, 80126 Naples, Italy
| | - Vincenzo Busico
- Dutch
Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
- Laboratory
of Stereoselective Polymerizations, Federico
II University of Naples, Via Cintia, 80126 Naples, Italy
| | - Ernst R. H. van Eck
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Arno P. M. Kentgens
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
11
|
Gallo E, Gorelov E, Guda AA, Bugaev AL, Bonino F, Borfecchia E, Ricchiardi G, Gianolio D, Chavan S, Lamberti C. Effect of Molecular Guest Binding on the d–d Transitions of Ni2+ of CPO-27-Ni: A Combined UV–Vis, Resonant-Valence-to-Core X-ray Emission Spectroscopy, and Theoretical Study. Inorg Chem 2017; 56:14408-14425. [DOI: 10.1021/acs.inorgchem.7b01471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Erik Gallo
- NIS and INSTM Reference
Center, Department of Chemistry, University of Turin, Via Quarello
15, I-10135 Torino, Italy
- European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz, BP 220, 38043, Grenoble Cedex
9, France
| | - Evgeny Gorelov
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Alexander A. Guda
- International Research Center “Smart Materials”, Southern Federal University, Zorge Street 5, 344090 Rostov-on-Don, Russia
| | - Aram L. Bugaev
- NIS and INSTM Reference
Center, Department of Chemistry, University of Turin, Via Quarello
15, I-10135 Torino, Italy
- International Research Center “Smart Materials”, Southern Federal University, Zorge Street 5, 344090 Rostov-on-Don, Russia
| | - Francesca Bonino
- NIS and INSTM Reference
Center, Department of Chemistry, University of Turin, Via Quarello
15, I-10135 Torino, Italy
| | - Elisa Borfecchia
- NIS and INSTM Reference
Center, Department of Chemistry, University of Turin, Via Quarello
15, I-10135 Torino, Italy
| | - Gabriele Ricchiardi
- NIS and INSTM Reference
Center, Department of Chemistry, University of Turin, Via Quarello
15, I-10135 Torino, Italy
| | - Diego Gianolio
- Harwell
Science and Innovation Campus, Diamond Light Source Ltd., OX11 0DE Didcot, United Kingdom
| | - Sachin Chavan
- Department of
Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Carlo Lamberti
- International Research Center “Smart Materials”, Southern Federal University, Zorge Street 5, 344090 Rostov-on-Don, Russia
- CrisDi and INSTM Reference Center, Department of Chemistry, University of Turin, Via P. Giuria 7, I-10125 Torino, Italy
| |
Collapse
|
12
|
Chammingkwan P, Terano M, Taniike T. High-Throughput Synthesis of Support Materials for Olefin Polymerization Catalyst. ACS COMBINATORIAL SCIENCE 2017; 19:331-342. [PMID: 28371578 DOI: 10.1021/acscombsci.7b00010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rational catalyst design necessitates fundamental knowledge on the structure-performance relationship, while the synthetic throughput for heterogeneous Ziegler-Natta olefin polymerization catalysts has long prevented the acquisition of a statistical database. In this contribution, an in-house reactor system was developed to realize the parallel synthesis of support materials for Ziegler-Natta catalysts for the first time. The developed system enabled parallel synthesis of 24 magnesium ethoxide samples with excellent reproducibility and morphological control comparable to a conventional experiment. Our demonstration revealed that the generation of diverse particle characteristics could be achieved through the addition of a third component as a structural modulator, in which the in-house parallel reactor system combined with the first principle component analysis enabled fast screening of effective modulators.
Collapse
Affiliation(s)
- Patchanee Chammingkwan
- Graduate School of Advanced
Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Minoru Terano
- Graduate School of Advanced
Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Toshiaki Taniike
- Graduate School of Advanced
Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
13
|
Spectroscopic Methods in Catalysis and Their Application in Well-Defined Nanocatalysts. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/b978-0-12-805090-3.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Yu Y, Busico V, Budzelaar PHM, Vittoria A, Cipullo R. Of Poisons and Antidotes in Polypropylene Catalysis. Angew Chem Int Ed Engl 2016; 55:8590-4. [DOI: 10.1002/anie.201602485] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Yue Yu
- Department of Chemical Sciences; Federico II University of Naples; Complesso di Monte S. Angelo, Via Cintia 80126 Napoli Italy
| | - Vincenzo Busico
- Department of Chemical Sciences; Federico II University of Naples; Complesso di Monte S. Angelo, Via Cintia 80126 Napoli Italy
| | - Peter H. M. Budzelaar
- Department of Chemistry; University of Manitoba; 144 Dysart Road- Winnipeg Manitoba R3T 2N2 Canada
| | - Antonio Vittoria
- Department of Chemical Sciences; Federico II University of Naples; Complesso di Monte S. Angelo, Via Cintia 80126 Napoli Italy
| | - Roberta Cipullo
- Department of Chemical Sciences; Federico II University of Naples; Complesso di Monte S. Angelo, Via Cintia 80126 Napoli Italy
| |
Collapse
|
15
|
Yu Y, Busico V, Budzelaar PHM, Vittoria A, Cipullo R. Of Poisons and Antidotes in Polypropylene Catalysis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yue Yu
- Department of Chemical Sciences; Federico II University of Naples; Complesso di Monte S. Angelo, Via Cintia 80126 Napoli Italy
| | - Vincenzo Busico
- Department of Chemical Sciences; Federico II University of Naples; Complesso di Monte S. Angelo, Via Cintia 80126 Napoli Italy
| | - Peter H. M. Budzelaar
- Department of Chemistry; University of Manitoba; 144 Dysart Road- Winnipeg Manitoba R3T 2N2 Canada
| | - Antonio Vittoria
- Department of Chemical Sciences; Federico II University of Naples; Complesso di Monte S. Angelo, Via Cintia 80126 Napoli Italy
| | - Roberta Cipullo
- Department of Chemical Sciences; Federico II University of Naples; Complesso di Monte S. Angelo, Via Cintia 80126 Napoli Italy
| |
Collapse
|
16
|
Busico V, Cipullo R, Mingione A, Rongo L. Accelerating the Research Approach to Ziegler–Natta Catalysts. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00092] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vincenzo Busico
- Department
of Chemical Sciences, Federico II University of Naples, Via Cintia, 80126 Naples, Italy
- HTExplore s.r.l., Via R. Morandi
12, 80124 Naples, Italy
| | - Roberta Cipullo
- Department
of Chemical Sciences, Federico II University of Naples, Via Cintia, 80126 Naples, Italy
- HTExplore s.r.l., Via R. Morandi
12, 80124 Naples, Italy
| | | | - Luca Rongo
- Department
of Chemical Sciences, Federico II University of Naples, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
17
|
Médaille Lavoisier: J. Livage / New Members of the Academia Europaea Science Award Electrochemistry: B. D. McCloskey / Ernst Haage Prize: I. Siewert / Einstein Visiting Fellowship: D. W. Stephan. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/anie.201510268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Médaille Lavoisier: J. Livage / Neue Mitglieder der Academia Europaea Science Award Electrochemistry: B. D. McCloskey / Ernst-Haage-Preis: I. Siewert / Einstein-Stipendium: D. W. Stephan. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Copéret C, Comas-Vives A, Conley MP, Estes DP, Fedorov A, Mougel V, Nagae H, Núñez-Zarur F, Zhizhko PA. Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities. Chem Rev 2016; 116:323-421. [PMID: 26741024 DOI: 10.1021/acs.chemrev.5b00373] [Citation(s) in RCA: 497] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Aleix Comas-Vives
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Matthew P Conley
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Deven P Estes
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Alexey Fedorov
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Haruki Nagae
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland.,Department of Chemistry, Graduate School of Engineering Science, Osaka University, CREST , Toyonaka, Osaka 560-8531, Japan
| | - Francisco Núñez-Zarur
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland
| | - Pavel A Zhizhko
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir Prelog Weg 1-5, CH-8093 Zürich, Switzerland.,A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov str. 28, 119991 Moscow, Russia
| |
Collapse
|
20
|
Bordiga S, Lamberti C, Bonino F, Travert A, Thibault-Starzyk F. Probing zeolites by vibrational spectroscopies. Chem Soc Rev 2015; 44:7262-341. [PMID: 26435467 DOI: 10.1039/c5cs00396b] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review addresses the most relevant aspects of vibrational spectroscopies (IR, Raman and INS) applied to zeolites and zeotype materials. Surface Brønsted and Lewis acidity and surface basicity are treated in detail. The role of probe molecules and the relevance of tuning both the proton affinity and the steric hindrance of the probe to fully understand and map the complex site population present inside microporous materials are critically discussed. A detailed description of the methods needed to precisely determine the IR absorption coefficients is given, making IR a quantitative technique. The thermodynamic parameters of the adsorption process that can be extracted from a variable-temperature IR study are described. Finally, cutting-edge space- and time-resolved experiments are reviewed. All aspects are discussed by reporting relevant examples. When available, the theoretical literature related to the reviewed experimental results is reported to support the interpretation of the vibrational spectra on an atomic level.
Collapse
Affiliation(s)
- Silvia Bordiga
- Department of Chemistry, NIS and INSTM Reference Centers, University of Torino, Via Quarello 15, I-10135 Torino, Italy
| | | | | | | | | |
Collapse
|
21
|
Groppo E, Seenivasan K, Gallo E, Sommazzi A, Lamberti C, Bordiga S. Activation and In Situ Ethylene Polymerization on Silica-Supported Ziegler–Natta Catalysts. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elena Groppo
- Department of Chemistry, INSTM and NIS Centre, University of Torino, Via Quarello 15, 10135 Torino, Italy
| | - Kalaivani Seenivasan
- Department of Chemistry, INSTM and NIS Centre, University of Torino, Via Quarello 15, 10135 Torino, Italy
| | - Erik Gallo
- Department of Chemistry, INSTM and NIS Centre, University of Torino, Via Quarello 15, 10135 Torino, Italy
- European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble, France
| | - Anna Sommazzi
- Versalis − Novara Research Center, Istituto Eni Donegani, Via Fauser, 4, 28100 Novara, Italy
| | - Carlo Lamberti
- Department of Chemistry, INSTM and CrisDi Centre, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Southern Federal University, Zorge Street 5, 344090 Rostov-on-Don, Russia
| | - Silvia Bordiga
- Department of Chemistry, INSTM and NIS Centre, University of Torino, Via Quarello 15, 10135 Torino, Italy
| |
Collapse
|