1
|
Navaneetha N, Maurya S, Behera P, Jadhav SB, Magham LR, Nanubolu JB, Roy L, Chegondi R. BINAP-CuH-catalysed enantioselective allylation using alkoxyallenes to access 1,2- syn-tert, sec-diols. Chem Sci 2024; 15:20379-20387. [PMID: 39583558 PMCID: PMC11579900 DOI: 10.1039/d4sc07002j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
Herein, we present an economical method for highly enantioselective and diastereoselective Cu-BINAP-catalysed reductive coupling of alkoxyallenes with a range of electronically and structurally diverse ketones to afford 1,2-syn-tert,sec-diols, using PMHS as the hydride source. This reductive coupling has also been efficiently employed in the enantioselective desymmetrization of prochiral cyclic ketones harboring quaternary centres, in high yields with exclusive diastereoselectivity. Density Functional Theory (DFT) calculations are used to elucidate that the reaction is facilitated by a kinetically favourable "open" Z-enolate copper-alkoxyallene conformer, occurring at a lower Gibbs free energy barrier (by 3.9 kcal mol-1) than its E-enolate counterpart, dictating the stereoselectivity. Subsequently, this Z-enolate conformer synchronizes with appropriate nucleophilic faces to achieve the targeted syn-diastereoselectivity in the product through six-membered chair-like transition states during ketone addition.
Collapse
Affiliation(s)
- N Navaneetha
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India https://cramhcu.wixsite.com/rambabu-chegondi
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Sundaram Maurya
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India https://cramhcu.wixsite.com/rambabu-chegondi
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Prativa Behera
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar Bhubaneswar 751013 India
| | - Sandip B Jadhav
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India https://cramhcu.wixsite.com/rambabu-chegondi
| | - Lakshmi Revati Magham
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India https://cramhcu.wixsite.com/rambabu-chegondi
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Jagadeesh Babu Nanubolu
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar Bhubaneswar 751013 India
- Department of Education, Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India https://cramhcu.wixsite.com/rambabu-chegondi
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
2
|
Yoon S, Lim S, Cho S, Lee Y. Cu-Catalyzed Hydrodechlorination of Unactivated Alkyl Chlorides Using Diisobutylaluminum Hydride. Org Lett 2024. [PMID: 39531678 DOI: 10.1021/acs.orglett.4c03774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A copper-catalyzed hydrodechlorination of primary, secondary, and tertiary alkyl chlorides using diisobutylaluminum hydride is reported. This catalytic system offers a broad substrate scope, high yields, and good functional group tolerance. Mechanistic investigations indicated that the reaction predominantly proceeds via a radical pathway, as supported by radical clock experiments. Importantly, this study provides a new approach for the selective hydrodechlorination of unactivated alkyl chlorides and expands the utility of Cu-hydride catalysis in sustainable chemical synthesis.
Collapse
Affiliation(s)
- Subin Yoon
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Seeun Lim
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Soohong Cho
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Yunmi Lee
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
3
|
Wang Z, Shen C, Dong K. Palladium-Catalyzed Enantioselective Migratory Hydroamidocarbonylation of Amide-Linked Alkenes to Access Chiral α-Alkyl Succinimides. Angew Chem Int Ed Engl 2024; 63:e202410967. [PMID: 39007709 DOI: 10.1002/anie.202410967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024]
Abstract
A Pd-catalyzed asymmetric isomerization-hydroamidocarbonylation of amide-containing alkenes was developed, affording a variety of chiral α-alkyl succinimides in moderate to good yields with high enantioselectivities. The key to success was introducing bulky 1-adamentyl P-substitution and 2,3,5,6-tetramethoxyphenyl group into the rigid P-chirogenic bisphosphine ligand to create stronger steric hinderance and deeper catalytic pocket. By this approach, regio- or stereo-convergent synthesis of enantiomeric succinimides from the mixture of olefin isomers was achieved.
Collapse
Affiliation(s)
- Zhen Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chaoren Shen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Kaiwu Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
4
|
Mei P, Ma Z, Chen Y, Wu Y, Hao W, Fan QH, Zhang WX. Chiral bisphosphine Ph-BPE ligand: a rising star in asymmetric synthesis. Chem Soc Rev 2024; 53:6735-6778. [PMID: 38826108 DOI: 10.1039/d3cs00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Chiral 1,2-bis(2,5-diphenylphospholano)ethane (Ph-BPE) is a class of optimal organic bisphosphine ligands with C2-symmetry. Ph-BPE with its excellent catalytic performance in asymmetric synthesis has attracted much attention of chemists with increasing popularity and is growing into one of the most commonly used organophosphorus ligands, especially in asymmetric catalysis. Over two hundred examples have been reported since 2012. This review presents how Ph-BPE is utilized in asymmetric synthesis and how powerful it is as a chiral ligand or even a catalyst in a wide range of reactions including applications in the total synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Peifeng Mei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zibin Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Wei Hao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Yoon S, Lee K, Kamranifard T, Lee Y. Synthesis of β,
γ‐unsaturated
ketones with quaternary centers through regioselective hydroacylation of allenes with acyl chlorides. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Subin Yoon
- Department of Chemistry Kwangwoon University Seoul Republic of Korea
| | - Kyeongmin Lee
- Department of Chemistry Kwangwoon University Seoul Republic of Korea
| | - Telma Kamranifard
- Department of Chemistry Kwangwoon University Seoul Republic of Korea
| | - Yunmi Lee
- Department of Chemistry Kwangwoon University Seoul Republic of Korea
| |
Collapse
|
6
|
Zhou J, Yang Q, Lee CS, Wang J(J. Enantio‐ and Regioselective Construction of 1,4‐Diamines via Cascade Hydroamination of Methylene Cyclopropanes. Angew Chem Int Ed Engl 2022; 61:e202202160. [DOI: 10.1002/anie.202202160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Jian Zhou
- Department of Chemistry Hong Kong Baptist University Kowloon, Hong Kong China
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong, 518055 China
| | - Qingjing Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong, 518055 China
| | - Chi Sing Lee
- Department of Chemistry Hong Kong Baptist University Kowloon, Hong Kong China
| | - Jun (Joelle) Wang
- Department of Chemistry Hong Kong Baptist University Kowloon, Hong Kong China
| |
Collapse
|
7
|
Zhou J, Yang Q, Lee CS, WANG J. Enantio‐ and Regioselective Construction of 1,4‐diamines via Cascade Hydroamination of Methylene Cyclopropanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jian Zhou
- Hong Kong Baptist University Department of Chemistry HONG KONG
| | - Qingjing Yang
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Chi Sing Lee
- Hong Kong Baptist University Department of Chemistry HONG KONG
| | - Jun WANG
- Hong Kong Baptist University Department of Chemistry Ho Sin Hang Campus 000000 Hong Kong HONG KONG
| |
Collapse
|
8
|
Li YB, Tian H, Zhang S, Xiao JZ, Yin L. Copper(I)-Catalyzed Asymmetric Synthesis of P-Chiral Aminophosphinites. Angew Chem Int Ed Engl 2022; 61:e202117760. [PMID: 35076164 DOI: 10.1002/anie.202117760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 01/04/2023]
Abstract
Herein, a copper(I)-catalyzed reaction of diarylphosphines and O-benzoyl hydroxylamines is developed. In the cases of symmetrical diarylphosphines, a series of aminophosphinites is prepared in high yields. In the cases of unsymmetrical diarylphosphines, an array of P-chiral aminophosphinites is synthesized in high yields with high enantioselectivity by using a copper(I)-(R,RP )-Ph-FOXAP complex as a chiral catalyst. Based on several control experiments and 31 P NMR studies, a two-electron redox mechanism involving the dynamic kinetic asymmetric transformation of unsymmetrical diarylphosphines is proposed for the copper(I)-catalyzed asymmetric reaction. Finally, one representative P-chiral phosphoric amide generated through the oxidation with H2 O2 is transformed to a chiral diarylphosphinate in high yield with retained enantioselectivity, which allows further transformations towards various P-chiral tertiary phosphines.
Collapse
Affiliation(s)
- Yan-Bo Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hu Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Shuai Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jun-Zhao Xiao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
9
|
Li Y, Tian H, Zhang S, Xiao J, Yin L. Copper(I)‐Catalyzed Asymmetric Synthesis of
P
‐Chiral Aminophosphinites. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yan‐Bo Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hu Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Shuai Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jun‐Zhao Xiao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
10
|
Hirano K, Miura M. Hydroamination, Aminoboration, and Carboamination with Electrophilic Amination Reagents: Umpolung-Enabled Regio- and Stereoselective Synthesis of N-Containing Molecules from Alkenes and Alkynes. J Am Chem Soc 2022; 144:648-661. [PMID: 34986637 DOI: 10.1021/jacs.1c12663] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitrogen (N) is ubiquitously found in bioactive molecules, pharmaceutical agents, and organic functional materials. Accordingly, development of new C-N bond-forming catalysis has been one of the long-standing research subjects in synthetic organic chemistry. In this Perspective, recent advances in highly selective amination reactions with electrophilic amination reagents are described: by taking advantage of the concept of nitrogen umpolung, otherwise challenging aminofunctionalizations, such as hydroamination, aminoboration, and carboamination, of readily available feedstock-like alkenes and alkynes are possible, giving densely functionalized complex and often chiral alkylamines with high selectivity. The scope, limitations, and reaction mechanism are briefly summarized.
Collapse
Affiliation(s)
- Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Heravi MM, Abedian‐Dehaghani N, Zadsirjan V, Rangraz Y. Catalytic Function of Cu (I) and Cu (II) in Total Synthesis of Alkaloids. ChemistrySelect 2021. [DOI: 10.1002/slct.202101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Neda Abedian‐Dehaghani
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Yalda Rangraz
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
12
|
Vang ZP, Reyes A, Sonstrom RE, Holdren MS, Sloane SE, Alansari IY, Neill JL, Pate BH, Clark JR. Copper-Catalyzed Transfer Hydrodeuteration of Aryl Alkenes with Quantitative Isotopomer Purity Analysis by Molecular Rotational Resonance Spectroscopy. J Am Chem Soc 2021; 143:7707-7718. [PMID: 34000182 DOI: 10.1021/jacs.1c00884] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A copper-catalyzed alkene transfer hydrodeuteration reaction that selectively incorporates one hydrogen and one deuterium atom across an aryl alkene is described. The transfer hydrodeuteration protocol is selective across a variety of internal and terminal alkenes and is also demonstrated on an alkene-containing complex natural product analog. Beyond using 1H, 2H, and 13C NMR analysis to measure reaction selectivity, six transfer hydrodeuteration products were analyzed by molecular rotational resonance (MRR) spectroscopy. The application of MRR spectroscopy to the analysis of isotopic impurities in deuteration chemistry is further explored through a measurement methodology that is compatible with high-throughput sample analysis. In the first step, the MRR spectroscopy signatures of all isotopic variants accessible in the reaction chemistry are analyzed using a broadband chirped-pulse Fourier transform microwave spectrometer. With the signatures in hand, measurement scripts are created to quantitatively analyze the sample composition using a commercial cavity enhanced MRR spectrometer. The sample consumption is below 10 mg with analysis times on the order of 10 min using this instrument-both representing order-of-magnitude reduction compared to broadband MRR spectroscopy. To date, these measurements represent the most precise spectroscopic determination of selectivity in a transfer hydrodeuteration reaction and confirm that product regioselectivity ratios of >140:1 are achievable under this mild protocol.
Collapse
Affiliation(s)
- Zoua Pa Vang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233-1881, United States
| | - Albert Reyes
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233-1881, United States
| | - Reilly E Sonstrom
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Martin S Holdren
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Samantha E Sloane
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233-1881, United States
| | - Isabella Y Alansari
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233-1881, United States
| | - Justin L Neill
- BrightSpec, Inc., Charlottesville, Virginia 22903, United States
| | - Brooks H Pate
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States
| | - Joseph R Clark
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233-1881, United States
| |
Collapse
|
13
|
He YT, Mao YJ, Hao HY, Xu ZY, Lou SJ, Xu DQ. Cu-Catalyzed Regioselective C-H Alkylation of Benzimidazoles with Aromatic Alkenes. Org Lett 2020; 22:8250-8255. [PMID: 33075228 DOI: 10.1021/acs.orglett.0c02864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Herein we report a novel Cu-catalyzed regioselective C2-H alkylation of benzimidazoles with aromatic alkenes. The reaction features exclusive regioselectivity and broad substrate scope in the intermolecular alkylation of benzimidazoles with terminal and internal aromatic alkenes, constituting a modular access toward benzimidazole-containing 1,1-di(hetero)aryl alkanes. The intramolecular C2-H alkylation of benzimidazoles with aromatic alkenes has been achieved in an endo-selective manner. The enantioselective C2 alkylation of benzimidazoles has also been realized with moderate to good stereocontrol.
Collapse
Affiliation(s)
- Yu-Ting He
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yang-Jie Mao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Hong-Yan Hao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
14
|
Gao K, Xu M, Cai C, Ding Y, Chen J, Liu B, Xia Y. Cobalt-Catalyzed Reductive C-O Bond Cleavage of Lignin β-O-4 Ketone Models via In Situ Generation of the Cobalt-Boryl Species. Org Lett 2020; 22:6055-6060. [PMID: 32697919 DOI: 10.1021/acs.orglett.0c02117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient and mild method for reductive C-O bond cleavage of lignin β-O-4 ketone models was developed to afford the corresponding ketones and phenols with PDI-CoCl2 as the precatalyst and diboron reagent as the reductant. The synthetic utility of the methodology was demonstrated by depolymerization of a polymeric model and gram-scale transformation. Mechanistic studies suggested that this transformation involves steps of carbonyl insertion, 1,2-Brook type rearrangement, β-oxygen elimination, and rate-limiting regeneration of the catalytic active Co-B species.
Collapse
Affiliation(s)
- Kecheng Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Man Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Cheng Cai
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yanghao Ding
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Bosheng Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
15
|
Affiliation(s)
- Yun‐Cheng Luo
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
16
|
Liu RY, Buchwald SL. CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition. Acc Chem Res 2020; 53:1229-1243. [PMID: 32401530 DOI: 10.1021/acs.accounts.0c00164] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In organic synthesis, ligand-modified copper(I) hydride (CuH) complexes have become well-known reagents and catalysts for selective reduction, particularly toward Michael acceptors and carbonyl compounds. Recently, our group and others have found that these hydride complexes undergo migratory insertion (hydrocupration) with relatively unactivated and electronically unpolarized olefins, producing alkylcopper intermediates that can be leveraged to forge a variety of useful bonds. The resulting formal hydrofunctionalization reactions have formed the basis for a resurgence of research in CuH catalysis. This Account chronicles the development of this concept in our research group, highlighting its origin in the context of asymmetric hydroamination, evolution to more general C-X bond-forming reactions, and applications in the addition of olefin-derived nucleophiles to carbonyl derivatives.Hydroamination, the formal insertion of an olefin into the N-H bond of an amine, is a process of significant academic and industrial interest, due to its potential to transform widely available alkenes and alkynes into valuable complex amines. We developed a polarity-reversed strategy for catalytic enantioselective hydroamination relying on the reaction of olefins with CuH to generate chiral organocopper intermediates, which are intercepted by electrophilic amine reagents. By engineering the auxiliary ligand, amine electrophile, and reaction conditions, the scope of this method has since been extended to include many types of olefins, including challenging internal olefins. Further, the scope of amine reagents has been expanded to enable the synthesis of primary, secondary, and tertiary amines as well as amides, N-alkylated heterocycles, and anilines. All of these reactions exhibit high regio- and stereoselectivity and, due to the mild conditions required, excellent tolerance for heterocycles and polar functional groups.Though the generation of alkylcopper species from olefins was originally devised as a means to solve the hydroamination problem, we soon found that these intermediates could react efficiently with an unexpectedly broad range of electrophiles, including alkyl halides, silicon reagents, arylpalladium species, heterocycles, and carbonyl derivatives. The general ability of olefins to function as precursors for nucleophilic intermediates has proved particularly advantageous in carbonyl addition reactions because it overcomes many of the disadvantages associated with traditional organometallic reagents. By removing the need for pregeneration of the nucleophile in a separate operation, CuH-catalyzed addition reactions of olefin-derived nucleophiles feature improved step economy, enhanced functional group tolerance, and the potential for catalyst control over regio- and stereoselectivity. Following this paradigm, feedstock olefins such as allene, butadiene, and styrene have been employed as reagents for asymmetric alkylation of ketones, imines, and aldehydes.
Collapse
Affiliation(s)
- Richard Y. Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Stephen L. Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Yang Q, Li S, Wang J(J. Asymmetric Synthesis of Chiral Chromanes by Copper‐Catalyzed Hydroamination of 2
H
‐Chromenes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qingjing Yang
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150080 P. R. China
- Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Sifeng Li
- Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Jun (Joelle) Wang
- Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
18
|
Romano C, Fiorito D, Mazet C. Remote Functionalization of α,β-Unsaturated Carbonyls by Multimetallic Sequential Catalysis. J Am Chem Soc 2019; 141:16983-16990. [DOI: 10.1021/jacs.9b09373] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ciro Romano
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Daniele Fiorito
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
19
|
Xu-Xu QF, Zhang X, You SL. Enantioselective Synthesis of 4-Aminotetrahydroquinolines via 1,2-Reductive Dearomatization of Quinolines and Copper(I) Hydride-Catalyzed Asymmetric Hydroamination. Org Lett 2019; 21:5357-5362. [PMID: 31247783 DOI: 10.1021/acs.orglett.9b02034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 1,2-reductive dearomatization of quinolines and copper(II) acetate monohydrate/( R, R)-Ph-BPE/P( p-tolyl)3-catalyzed enantioselective hydroamination sequence was developed, affording diverse 4-amino-1,2,3,4-tetrahydroquinolines with high levels of enantioselectivity in either a stepwise or one-pot fashion. Pleasingly, internal cis-cyclic alkenes, which are challenging substrates in copper hydride-catalyzed enantioselective hydroamination reactions, were transformed efficiently under mild conditions.
Collapse
Affiliation(s)
- Qing-Feng Xu-Xu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China.,Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072 , China
| |
Collapse
|
20
|
|
21
|
Xu‐Xu Q, Liu Q, Zhang X, You S. Copper‐Catalyzed Ring Opening of Benzofurans and an Enantioselective Hydroamination Cascade. Angew Chem Int Ed Engl 2018; 57:15204-15208. [DOI: 10.1002/anie.201809003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/06/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Qing‐Feng Xu‐Xu
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qiang‐Qiang Liu
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiao Zhang
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Collaborative Innovation Center of, Chemical Science and Engineering Tianjin 300072 China
| |
Collapse
|
22
|
Xu‐Xu Q, Liu Q, Zhang X, You S. Copper‐Catalyzed Ring Opening of Benzofurans and an Enantioselective Hydroamination Cascade. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Qing‐Feng Xu‐Xu
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qiang‐Qiang Liu
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiao Zhang
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Collaborative Innovation Center of, Chemical Science and Engineering Tianjin 300072 China
| |
Collapse
|
23
|
Chen J, Guo J, Lu Z. Recent Advances in Hydrometallation of Alkenes and Alkynes via the First Row Transition Metal Catalysis. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800314] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianhui Chen
- College of Chemistry and Materials Engineering; Wenzhou University; Wenzhou, Zhejiang 325035 China
- Department of chemistry; Zhejiang University; Hangzhou Zhejiang 310027 China
| | - Jun Guo
- Department of chemistry; Zhejiang University; Hangzhou Zhejiang 310027 China
| | - Zhan Lu
- Department of chemistry; Zhejiang University; Hangzhou Zhejiang 310027 China
| |
Collapse
|
24
|
Kim Y, Lee H, Park S, Lee Y. Copper-Catalyzed Propargylic Reduction with Diisobutylaluminum Hydride. Org Lett 2018; 20:5478-5481. [PMID: 30113848 DOI: 10.1021/acs.orglett.8b02413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mild and efficient method for the synthesis of allenes through selective copper-catalyzed hydride addition to propargylic chlorides using commercially available diisobutylaluminum hydride has been developed. This transformation, which is promoted by a readily accessible N-heterocyclic carbene-copper complex, provides a wide range of new and versatile functionalized allenes in good to excellent yields with high regio- and stereoselectivities.
Collapse
Affiliation(s)
- Yuna Kim
- Department of Chemistry , Kwangwoon University , Seoul 01897 , Republic of Korea
| | - Hanseul Lee
- Department of Chemistry , Kwangwoon University , Seoul 01897 , Republic of Korea
| | - Sunga Park
- Department of Chemistry , Kwangwoon University , Seoul 01897 , Republic of Korea
| | - Yunmi Lee
- Department of Chemistry , Kwangwoon University , Seoul 01897 , Republic of Korea
| |
Collapse
|
25
|
Kärkäs MD. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem Soc Rev 2018; 47:5786-5865. [PMID: 29911724 DOI: 10.1039/c7cs00619e] [Citation(s) in RCA: 605] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods for carrying out carbon-hydrogen functionalization and carbon-nitrogen bond formation are typically conducted at elevated temperatures, and rely on expensive catalysts as well as the use of stoichiometric, and perhaps toxic, oxidants. In this regard, electrochemical synthesis has recently been recognized as a sustainable and scalable strategy for the construction of challenging carbon-carbon and carbon-heteroatom bonds. Here, electrosynthesis has proven to be an environmentally benign, highly effective and versatile platform for achieving a wide range of nonclassical bond disconnections via generation of radical intermediates under mild reaction conditions. This review provides an overview on the use of anodic electrochemical methods for expediting the development of carbon-hydrogen functionalization and carbon-nitrogen bond formation strategies. Emphasis is placed on methodology development and mechanistic insight and aims to provide inspiration for future synthetic applications in the field of electrosynthesis.
Collapse
Affiliation(s)
- Markus D Kärkäs
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
26
|
Zhang G, Cang A, Wang Y, Li Y, Xu G, Zhang Q, Xiong T, Zhang Q. Copper-Catalyzed Diastereo- and Enantioselective Borylative Cyclization: Synthesis of Enantioenriched 2,3-Disubstituted Indolines. Org Lett 2018. [DOI: 10.1021/acs.orglett.8b00246] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ge Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Aijie Cang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ying Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yanfei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Guoxing Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
27
|
Némethová I, Bilka S, Šebesta R. Enantioselective copper-catalyzed conjugate additions of in situ generated organozirconium reagents to N -heterocyclic Michael acceptors. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.12.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Chen J, Lu Z. Asymmetric hydrofunctionalization of minimally functionalized alkenes via earth abundant transition metal catalysis. Org Chem Front 2018. [DOI: 10.1039/c7qo00613f] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of earth-abundant transition metal-catalysed highly enantioselective hydrofunctionalization of minimally functionalized alkenes was summarized.
Collapse
Affiliation(s)
- Jianhui Chen
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhan Lu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
29
|
Tan YX, Tang XQ, Liu P, Kong DS, Chen YL, Tian P, Lin GQ. CuH-Catalyzed Asymmetric Intramolecular Reductive Coupling of Allenes to Enones. Org Lett 2017; 20:248-251. [DOI: 10.1021/acs.orglett.7b03608] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yun-Xuan Tan
- Laboratory
of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiao-Qi Tang
- Laboratory
of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Department
of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Ping Liu
- Laboratory
of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - De-Shen Kong
- Laboratory
of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Institute
of Innovative Chinese Medicine (ICM), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ya-Li Chen
- Department
of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Ping Tian
- Laboratory
of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Institute
of Innovative Chinese Medicine (ICM), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Guo-Qiang Lin
- Laboratory
of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Institute
of Innovative Chinese Medicine (ICM), Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| |
Collapse
|
30
|
Yu S, Sang HL, Ge S. Enantioselective Copper-Catalyzed Alkylation of Quinoline N-Oxides with Vinylarenes. Angew Chem Int Ed Engl 2017; 56:15896-15900. [PMID: 29044900 DOI: 10.1002/anie.201709411] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/14/2017] [Indexed: 11/06/2022]
Abstract
An asymmetric copper-catalyzed alkylation of quinoline N-oxides with chiral Cu-alkyl species, generated by migratory insertion of a vinylarene into a chiral Cu-H complex, is reported. A variety of quinoline N-oxides and vinylarenes underwent this Cu-catalyzed enantioselective alkylation reaction, affording the corresponding chiral alkylated N-heteroarenes in high yield with high-to-excellent enantioselectivity. This enantioselective protocol represents the first general and practical approach to access a wide range of chiral alkylated quinolines.
Collapse
Affiliation(s)
- Songjie Yu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hui Leng Sang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
31
|
Yu S, Sang HL, Ge S. Enantioselective Copper-Catalyzed Alkylation of Quinoline N
-Oxides with Vinylarenes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709411] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Songjie Yu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Hui Leng Sang
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| | - Shaozhong Ge
- Department of Chemistry; National University of Singapore; 3 Science Drive 3, Singapore 117543 Singapore
| |
Collapse
|
32
|
Kärkäs MD. Photochemical Generation of Nitrogen-Centered Amidyl, Hydrazonyl, and Imidyl Radicals: Methodology Developments and Catalytic Applications. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01385] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Markus D. Kärkäs
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|