1
|
Nguyen DK, Vargheese V, Liao V, Dimitrakellis P, Sourav S, Zheng W, Vlachos DG. Plasma-Enabled Ligand Removal for Improved Catalysis: Furfural Conversion on Pd/SiO 2. ACS NANO 2023; 17:21480-21492. [PMID: 37906709 DOI: 10.1021/acsnano.3c06310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
A nonthermal, atmospheric He/O2 plasma (NTAP) successfully removed polyvinylpyrrolidone (PVP) from Pd cubic nanoparticles supported on SiO2 quickly and controllably. Transmission electron microscopy (TEM) revealed that the shape and size of Pd nanoparticles remain intact during plasma treatment, unlike mild calcination, which causes sintering and polycrystallinity. Using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS), we demonstrate the quantitative estimation of the PVP plasma removal rate and control of the nanoparticle synthesis. First-principles calculations of the XPS and CO FTIR spectra elucidate electron transfer from the ligand to the metal and allow for estimates of ligand coverages. Reactivity testing indicated that PVP surface crowding inhibits furfural conversion but does not alter furfural selectivity. Overall, the data demonstrate NTAP as a more efficient method than traditional calcination for organic ligand removal in nanoparticle synthesis.
Collapse
Affiliation(s)
- Darien K Nguyen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), Newark, Delaware 19716, United States
| | - Vibin Vargheese
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), Newark, Delaware 19716, United States
| | - Vinson Liao
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), Newark, Delaware 19716, United States
| | - Panagiotis Dimitrakellis
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), Newark, Delaware 19716, United States
| | - Sagar Sourav
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), Newark, Delaware 19716, United States
| | - Weiqing Zheng
- Catalysis Center for Energy Innovation, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), Newark, Delaware 19716, United States
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- RAPID Manufacturing Institute, Delaware Energy Institute (DEI), Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Quinson J, Kunz S, Arenz M. Surfactant-Free Colloidal Syntheses of Precious Metal Nanoparticles for Improved Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Affiliation(s)
- Linfang Lu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shihui Zou
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Baizeng Fang
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Schumann M, Nielsen MR, Smitshuysen TEL, Hansen TW, Damsgaard CD, Yang ACA, Cargnello M, Grunwaldt JD, Jensen AD, Christensen JM. Rationalizing an Unexpected Structure Sensitivity in Heterogeneous Catalysis—CO Hydrogenation over Rh as a Case Study. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Max Schumann
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Monia R. Nielsen
- National Centre for Nano Fabrication and Characterization (Nanolab), Technical University of Denmark, Lyngby 2800, Denmark
| | | | - Thomas W. Hansen
- National Centre for Nano Fabrication and Characterization (Nanolab), Technical University of Denmark, Lyngby 2800, Denmark
| | - Christian D. Damsgaard
- National Centre for Nano Fabrication and Characterization (Nanolab), Technical University of Denmark, Lyngby 2800, Denmark
- Department of Physics, Technical University of Denmark, Lyngby 2800, Denmark
| | - An-Chih A. Yang
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Matteo Cargnello
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Anker D. Jensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Jakob M. Christensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| |
Collapse
|
5
|
De Coster V, Poelman H, Dendooven J, Detavernier C, Galvita VV. Designing Nanoparticles and Nanoalloys for Gas-Phase Catalysis with Controlled Surface Reactivity Using Colloidal Synthesis and Atomic Layer Deposition. Molecules 2020; 25:E3735. [PMID: 32824236 PMCID: PMC7464189 DOI: 10.3390/molecules25163735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 11/17/2022] Open
Abstract
Supported nanoparticles are commonly applied in heterogeneous catalysis. The catalytic performance of these solid catalysts is, for a given support, dependent on the nanoparticle size, shape, and composition, thus necessitating synthesis techniques that allow for preparing these materials with fine control over those properties. Such control can be exploited to deconvolute their effects on the catalyst's performance, which is the basis for knowledge-driven catalyst design. In this regard, bottom-up synthesis procedures based on colloidal chemistry or atomic layer deposition (ALD) have proven successful in achieving the desired level of control for a variety of fundamental studies. This review aims to give an account of recent progress made in the two aforementioned synthesis techniques for the application of controlled catalytic materials in gas-phase catalysis. For each technique, the focus goes to mono- and bimetallic materials, as well as to recent efforts in enhancing their performance by embedding colloidal templates in porous oxide phases or by the deposition of oxide overlayers via ALD. As a recent extension to the latter, the concept of area-selective ALD for advanced atomic-scale catalyst design is discussed.
Collapse
Affiliation(s)
- Valentijn De Coster
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium; (V.D.C.); (H.P.)
| | - Hilde Poelman
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium; (V.D.C.); (H.P.)
| | - Jolien Dendooven
- Department of Solid State Sciences, CoCooN, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium; (J.D.); (C.D.)
| | - Christophe Detavernier
- Department of Solid State Sciences, CoCooN, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium; (J.D.); (C.D.)
| | - Vladimir V. Galvita
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, 9052 Ghent, Belgium; (V.D.C.); (H.P.)
| |
Collapse
|
6
|
Vrijburg WL, van Helden JWA, van Hoof AJF, Friedrich H, Groeneveld E, Pidko EA, Hensen EJM. Tunable colloidal Ni nanoparticles confined and redistributed in mesoporous silica for CO2 methanation. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00532c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Colloidal Ni nanoparticles were prepared using seed-mediated strategies and encapsulated in mesoporous silica to yield stable and sinter-resistant hydrogenation catalysts.
Collapse
Affiliation(s)
- Wilbert L. Vrijburg
- Laboratory of Inorganic Materials and Catalysis
- Schuit Institute of Catalysis
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Jolanda W. A. van Helden
- Laboratory of Inorganic Materials and Catalysis
- Schuit Institute of Catalysis
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Arno J. F. van Hoof
- Laboratory of Inorganic Materials and Catalysis
- Schuit Institute of Catalysis
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Heiner Friedrich
- Laboratory of Inorganic Materials and Catalysis
- Schuit Institute of Catalysis
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | | | - Evgeny A. Pidko
- Laboratory of Inorganic Materials and Catalysis
- Schuit Institute of Catalysis
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and Catalysis
- Schuit Institute of Catalysis
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| |
Collapse
|