• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4624939)   Today's Articles (71)   Subscriber (49451)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Quo Vadis Dry Reforming of Methane?—A Review on Its Chemical, Environmental, and Industrial Prospects. Catalysts 2022. [DOI: 10.3390/catal12050465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
2
Torrez-Herrera JJ, Korili SA, Gil A. Recent progress in the application of Ni-based catalysts for the dry reforming of methane. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.2006891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
3
Franz R, Pinto D, Uslamin EA, Urakawa A, Pidko EA. Impact of Promoter Addition on the Regeneration of Ni/Al 2 O 3 Dry Reforming Catalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202101080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
4
Kurlov A, Deeva EB, Abdala PM, Lebedev D, Tsoukalou A, Comas-Vives A, Fedorov A, Müller CR. Exploiting two-dimensional morphology of molybdenum oxycarbide to enable efficient catalytic dry reforming of methane. Nat Commun 2020;11:4920. [PMID: 33009379 PMCID: PMC7532431 DOI: 10.1038/s41467-020-18721-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/31/2020] [Indexed: 11/16/2022]  Open
5
Chen S, Zhang J, Song F, Zhang Q, Yang G, Zhang M, Wang X, Xie H, Tan Y. Induced high selectivity methanol formation during CO2 hydrogenation over a CuBr2-modified CuZnZr catalyst. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
6
Song Y, Ozdemir E, Ramesh S, Adishev A, Subramanian S, Harale A, Albuali M, Fadhel BA, Jamal A, Moon D, Choi SH, Yavuz CT. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Science 2020;367:777-781. [PMID: 32054760 DOI: 10.1126/science.aav2412] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/07/2019] [Accepted: 12/18/2019] [Indexed: 01/20/2023]
7
Wittich K, Krämer M, Bottke N, Schunk SA. Catalytic Dry Reforming of Methane: Insights from Model Systems. ChemCatChem 2020. [DOI: 10.1002/cctc.201902142] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
8
Pino L, Italiano C, Laganà M, Vita A, Recupero V. Kinetic study of the methane dry (CO2) reforming reaction over the Ce0.70La0.20Ni0.10O2−δ catalyst. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02192b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
9
Franz R, Kühlewind T, Shterk G, Abou-Hamad E, Parastaev A, Uslamin E, Hensen EJM, Kapteijn F, Gascon J, Pidko EA. Impact of small promoter amounts on coke structure in dry reforming of methane over Ni/ZrO2. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00817f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
10
Gili A, Schlicker L, Bekheet MF, Görke O, Penner S, Grünbacher M, Götsch T, Littlewood P, Marks TJ, Stair PC, Schomäcker R, Doran A, Selve S, Simon U, Gurlo A. Surface Carbon as a Reactive Intermediate in Dry Reforming of Methane to Syngas on a 5% Ni/MnO Catalyst. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01820] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
11
Lam E, Larmier K, Wolf P, Tada S, Safonova OV, Copéret C. Isolated Zr Surface Sites on Silica Promote Hydrogenation of CO2 to CH3OH in Supported Cu Catalysts. J Am Chem Soc 2018;140:10530-10535. [PMID: 30028948 DOI: 10.1021/jacs.8b05595] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
12
Design of stable Ni/ZrO2 catalysts for dry reforming of methane. J Catal 2017. [DOI: 10.1016/j.jcat.2017.10.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
13
Margossian T, Larmier K, Kim SM, Krumeich F, Müller C, Copéret C. Supported Bimetallic NiFe Nanoparticles through Colloid Synthesis for Improved Dry Reforming Performance. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02091] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA