1
|
Li S, Li Z, Yue J, Wang H, Wang Y, Su W, Waterhouse GIN, Liu L, Zhang W, Zhao Y. Photocatalytic CO 2 Reduction by Near-Infrared-Light (1200 nm) Irradiation and a Ruthenium-Intercalated NiAl-Layered Double Hydroxide. Angew Chem Int Ed Engl 2024; 63:e202407638. [PMID: 38941107 DOI: 10.1002/anie.202407638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
Near-infrared light-driven photocatalytic CO2 reduction (NIR-CO2PR) holds tremendous promise for the production of valuable commodity chemicals and fuels. However, designing photocatalysts capable of reducing CO2 with low energy NIR photons remains challenging. Herein, a novel NIR-driven photocatalyst comprising an anionic Ru complex intercalated between NiAl-layered double hydroxide nanosheets (NiAl-Ru-LDH) is shown to deliver efficient CO2 photoreduction (0.887 μmol h-1) with CO selectivity of 84.81 % under 1200 nm illumination and excellent stability over 50 testing cycles. This remarkable performance results from the intercalated Ru complex lowering the LDH band gap (0.98 eV) via a compression-related charge redistribution phenomenon. Furthermore, transient absorption spectroscopy data verified light-induced electron transfer from the Ru complex towards the LDH sheets, increasing the availability of electrons to drive CO2PR. The presence of hydroxyl defects in the LDH sheets promotes the adsorption of CO2 molecules and lowers the energy barriers for NIR-CO2PR to CO. To our knowledge, this is one of the first reports of NIR-CO2PR at wavelengths up to 1200 nm in LDH-based photocatalyst systems.
Collapse
Affiliation(s)
- Shaoquan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zixian Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianing Yue
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Huijuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yujun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenli Su
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | | | - Lihong Liu
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 323000, China
| |
Collapse
|
2
|
Routh K, Pradeep CP. Multifunctional Aryl Sulfonium Decavanadates: Tuning the Photochromic and Heterogeneous Oxidative Desulfurization Catalytic Properties Using Salicylaldehyde-type Functional Moieties on Counterions. Inorg Chem 2023; 62:13775-13792. [PMID: 37575023 DOI: 10.1021/acs.inorgchem.3c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Multifunctional materials based on polyoxovanadates (POVs) have rarely been reported. Herein, we used aryl sulfonium counterions (ASCIs) bearing a salicylaldehyde-type functionality to tune the properties of decavanadate ([V10O28]6-)-based hybrids for their application in photochromism and heterogeneous oxidative desulfurization (ODS) catalysis. The counterions FHPDS ((3-formyl-4-hydroxyphenyl)dimethylsulfonium), DFHPDS ((3,5-diformyl-4-hydroxyphenyl)dimethylsulfonium), and EFPDS ((4-ethoxy-3-formylphenyl)dimethylsulfonium) were clubbed with the decavanadate cluster to generate the hybrids (FHPDS)4[H2V10O28](H2O)4 (HY1), (DFHPDS)4[H2V10O28](H2O)3 (HY2), and (EFPDS)4[H2V10O28](H2O)6 (HY3). The photochromic properties of these hybrids were tested under 365 nm irradiation, which showed a color change from yellow to green. Different hybrids exhibited different photocoloration half-life (t1/2) values in the range of 0.77-28.38 min, suggesting the dependence of the photocoloration properties upon functional groups on the counterions. The hybrid HY2, having a 2,6-diformyl phenol moiety on the ASCI, exhibited an impressive t1/2 of 0.77 min. UP to 70% reversibility of photocoloration was achieved for the best photochromic hybrid HY2 in 48 h at 70 °C under an oxygen atmosphere. Theoretical and experimental data suggested that some of these aryl sulfonium POVs follow a different e--h+ stabilization mechanism than traditional sulfonium POM hybrids. Further, the salicylaldehyde-type ASCIs control the solubility of the decavanadate hybrids, which enables their application as heterogeneous catalysts for the selective oxidation of various sulfides. The nature of the substituents on the ASCIs also affected their catalytic activities; the counterion that facilitates the reversible V4+/V5+ switching enhances the catalytic ODS efficiency of the hybrids. Using HY2 as the catalyst, up to 99% conversion and 96% selectivity toward sulfones were achieved in dibenzothiophene (DBT) oxidation. The present study suggests a new promising approach for controlling POVs' photoresponsive and catalytic properties by using ASCIs bearing salicylaldehyde-type functional moieties.
Collapse
Affiliation(s)
- Kousik Routh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand 175005, Himachal Pradesh, India
| | - Chullikkattil P Pradeep
- School of Chemical Sciences, Indian Institute of Technology Mandi, Kamand 175005, Himachal Pradesh, India
| |
Collapse
|
3
|
Wu Y, Chen Z, Wang Y, Xu J. Kinetic Studies and Reaction Network in the Epoxidation of Styrene Catalyzed by the Temperature-Controlled Phase-Transfer Catalyst [(C 18H 37) 2(CH 3) 2N] 7[PW 11O 39]. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuxin Wu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yundong Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Liu M, Zhang G. Amorphous Goethite as a Catalyst of Chemoselectivity Epoxidation of Alkenes by Hydrogen Peroxide. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222080230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Liu XB, Rong Q, Tan J, Chen C, Hu YL. Recent Advances in Catalytic Oxidation of Organic Sulfides: Applications of Metal–Ionic Liquid Catalytic Systems. Front Chem 2022; 9:798603. [PMID: 35296037 PMCID: PMC8918828 DOI: 10.3389/fchem.2021.798603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Catalytic oxidation of organic sulfides is of considerable significance in industrial chemistry and fuel industry. Therefore, numerous methods have been developed for the oxidation. Metal-containing ionic liquid-based catalysts can catalyze the selective oxidation reactions and are highly used in chemical processes, which have also been used as effective solvents, reaction media, extractants, and catalysts for the oxidation of organic sulfides including oxidative desulfurization of fuel oil. Recently, much attention is being drawn to the preparation of heterogenous catalysts based on the immobilization of metal- or nonmetal-containing ILs on diverse solid supports, which can be easily separated after the completion reaction and recycled. Therefore, there is still an increasing interest in developing new and efficient catalytic procedures for the oxidation of organic sulfides. In this review, we have outlined the recent advances in catalytic oxidation of organic sulfides including oxidative desulfurization of fuel oil. The versatilities and adaptabilities of metal–ionic liquid catalytic systems in the selective oxidation of sulfides are considered a powerful research field in these transformations.
Collapse
Affiliation(s)
- Xiao Bing Liu
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, China
| | - Qi Rong
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, China
| | - Jin Tan
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, China
| | - Chen Chen
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yu Lin Hu
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, China
- *Correspondence: Yu Lin Hu,
| |
Collapse
|
6
|
Zou X, Shi R, Zhang Z, Fu G, Li L, Yu L, Tian Y, Luo F. Calcined ZnTi-Layered Double Hydroxide Intercalated with H 3 PW 12 O 40 with Efficiently Photocatalytic and Adsorption Performances. Chemistry 2021; 27:16670-16681. [PMID: 34519381 DOI: 10.1002/chem.202102762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 12/30/2022]
Abstract
Wastewater treatment is of great significance to environmental remediation. The exploration of efficient and stable methods for wastewater treatment is still a challenging issue. Herein, a heterojunction material with photocatalysis and adsorption properties has been designed to remove the complex pollutants from wastewater. The heterojunction material (ZnO/TiO2 -PW12 , PW12 =[PW12 O40 ]3- ) was synthesized by calcining the ZnTi-layered double hydroxide (ZnTi-LDH) intercalated with the Keggin-type polyoxometalate H3 PW12 O40 . In the construction of ZnO/TiO2 -PW12 it was found that the polyanionic PW12 remained unchanged in the process of forming the proposed heterojunction. The photochemical properties verify that heterojunction synergistic with PW12 facilitated the separation of photoproduced electron-hole pairs and thus suppressed the recombination. Therefore, ZnO/TiO2 -PW12 exhibits excellent photocatalytic property, and the efficiency of Cr(VI) photoreduction reached more than 90 % in the first 3 min. Furthermore, the electrostatic force between the PW12 and cationic dyes makes ZnO/TiO2 -PW12 having an outstanding adsorption performance for cationic dyes, such as rhodamine B, crystal violet and methyl blue. Such heterojunction material combined with polyoxometalate puts forward new insights for the design of functional materials for water treatment with low cost and high efficiency.
Collapse
Affiliation(s)
- Xinyu Zou
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Rui Shi
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Zhijuan Zhang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guoyuan Fu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Lei Li
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Li Yu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yurun Tian
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Fang Luo
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
7
|
Xu Q, Liang X, Xu B, Wang J, He P, Ma P, Feng J, Wang J, Niu J. 36-Nuclearity Organophosphonate-Functionalized Polyoxomolybdates: Synthesis, Characterization and Selective Catalytic Oxidation of Sulfides. Chemistry 2020; 26:14896-14902. [PMID: 32543759 DOI: 10.1002/chem.202001468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 01/02/2023]
Abstract
The crown-shaped 36-molybdate cluster organophosphonate-functionalized polyoxomolybdates with the highest nuclearity in organophosphonate-based polyoxometalate chemistry, (NH4 )19 Na7 H10 [Cu(H2 O)TeMo6 O21 {N(CH2 PO3 )3 }]6 ⋅31 H2 O, has been reported for the first time. The synthesized 36-molybdate cluster was characterized by routine techniques and tested as a heterogeneous catalyst for selective oxidation of sulfides with impressive catalytic and selective performances after heat treatment. High efficiency (TON=15333) was achieved in the selective oxidation of sulfides to sulfoxides, caused by the synergic effect between copper and polyoxomolybdates and the generation of the cuprous species during the heat treatment.
Collapse
Affiliation(s)
- Qiaofei Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Xinmiao Liang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Baijie Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jiawei Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Peipei He
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jiwen Feng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| |
Collapse
|
8
|
Synthesis and X-ray crystal structure of a Molybdenum(VI) Schiff base complex: Design of a new catalytic system for sustainable olefin epoxidation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Liu JC, Qi B, Song YF. Engineering polyoxometalate-intercalated layered double hydroxides for catalytic applications. Dalton Trans 2020; 49:3934-3941. [PMID: 31755490 DOI: 10.1039/c9dt03911b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polyoxometalate-intercalated layered double hydroxide (POM-LDH) nanocomposites have received considerable attention in recent years because such nanocomposites not only inherit the intrinsic properties of POMs and LDHs but also exert significant synergistic effects during the catalytic process. In this frontier article, we present the latest advances on the POM-LDH nanocomposites ranging from new synthetic methods to catalytic applications. By making use of the host layer modification method and exfoliation assembly method, the as-prepared POM-LDH nanocomposites show a wide range of catalytic applications. The challenges and future opportunities are also discussed by highlighting some creative work on related POM- or LDH-based materials.
Collapse
Affiliation(s)
- Jian-Cai Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | | | | |
Collapse
|
10
|
Bai S, Wang Z, Tan L, Waterhouse GIN, Zhao Y, Song YF. 600 nm Irradiation-Induced Efficient Photocatalytic CO2 Reduction by Ultrathin Layered Double Hydroxide Nanosheets. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00522] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sha Bai
- State Key Laboratory of Chemical Resource Engineering and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Zelin Wang
- State Key Laboratory of Chemical Resource Engineering and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Ling Tan
- State Key Laboratory of Chemical Resource Engineering and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | | | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
11
|
Abstract
Epoxides are important industrial intermediates applied in a variety of industrial processes. During the production of epoxides, catalysts have played an irreplaceable and unique role. In this review, the historic progress of molybdenum-based catalysts in alkene epoxidation are covered and an outlook on future challenge discussed. Efficient catalysts are demonstrated including soluble molybdenum complexes, polyoxometalates catalysts, molybdenum-containing metal organic frameworks, silica supported molybdenum-based catalysts, polymer supported molybdenum-based catalysts, magnetic molybdenum-based catalysts, hierarchical molybdenum-based catalysts, graphene-based molybdenum containing catalysts, photocatalyzed epoxidation catalysts, and some other systems. The effects of different solvents and oxidants are discussed and the mechanisms of epoxidation are summarized. The challenges and perspectives to further enhance the catalytic performances in alkenes epoxidation are presented.
Collapse
|
12
|
Ma X, He P, Xu B, Lu J, Wan R, Wu H, Wang Y, Ma P, Niu J, Wang J. Pyrazine dicarboxylate-bridged arsenotungstate: synthesis, characterization, and catalytic activities in epoxidation of olefins and oxidation of alcohols. Dalton Trans 2019; 48:12956-12963. [DOI: 10.1039/c9dt02436k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic properties and polyanionic structure of pyrazine dicarboxylate-bridged arsenotungstate are reported.
Collapse
|
13
|
Ötvös SB, Pálinkó I, Fülöp F. Catalytic use of layered materials for fine chemical syntheses. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02156b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work reviews the catalytic use of layered solid materials for fine chemical syntheses with focus on layered double hydroxides, but including other classes of layered compounds of catalytic relevance.
Collapse
Affiliation(s)
- Sándor B. Ötvös
- Institute of Pharmaceutical Chemistry
- University of Szeged
- H-6720 Szeged
- Hungary
- MTA-SZTE Stereochemistry Research Group
| | - István Pálinkó
- Department of Organic Chemistry
- University of Szeged
- H-6720 Szeged
- Hungary
- Material and Solution Structure Research Group
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry
- University of Szeged
- H-6720 Szeged
- Hungary
- MTA-SZTE Stereochemistry Research Group
| |
Collapse
|
14
|
Sun X, Dong J, Li Z, Liu H, Jing X, Chi Y, Hu C. Mono-transition-metal-substituted polyoxometalate intercalated layered double hydroxides for the catalytic decontamination of sulfur mustard simulant. Dalton Trans 2019; 48:5285-5291. [DOI: 10.1039/c9dt00395a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The mono-transition-metal-substituted polyoxometalate intercalated layered double hydroxides Zn2Cr-LDH-PW11M can effectively catalyze the oxidative decontamination of a sulfur mustard simulant.
Collapse
Affiliation(s)
- Xiangrong Sun
- Key Laboratory of Cluster Science Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Jing Dong
- Key Laboratory of Cluster Science Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Zhen Li
- Key Laboratory of Cluster Science Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Huifang Liu
- Key Laboratory of Cluster Science Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Xiaoting Jing
- Key Laboratory of Cluster Science Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Yingnan Chi
- Key Laboratory of Cluster Science Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
| |
Collapse
|
15
|
Li T, Jin L, Zhang W, Miras HN, Song YF. Robust and Environmentally Benign Solid Acid Intercalation Catalysts for the Aminolysis of Epoxides. ChemCatChem 2018. [DOI: 10.1002/cctc.201801119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tengfei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | - Lin Jin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | - Wei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| | | | - Yu-Fei Song
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 P. R. China
| |
Collapse
|
16
|
Lu J, Ma X, Singh V, Zhang Y, Ma P, Zhang C, Niu J, Wang J. An isotetramolybdate-supported rhenium carbonyl derivative: synthesis, characterization, and use as a catalyst for sulfoxidation. Dalton Trans 2018; 47:5279-5285. [DOI: 10.1039/c8dt00429c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We successfully synthesized an isotetramolybdate-supported rhenium carbonyl derivative, [(CH3)4N]4[{Re(CO)3}4(Mo4O16)]·H2O, which showed excellent catalytic activity in the selective oxidation of sulfides under comparatively mild reaction conditions.
Collapse
Affiliation(s)
- Jingkun Lu
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Xinyi Ma
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Vikram Singh
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Yujiao Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Chao Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| |
Collapse
|
17
|
Zerrouki M, Boudjema S, Choukchou-Braham A, Rekkab-Hammoumraoui I. Synthesis, characterization and optimization of heterogeneous catalytic cyclohexene oxidation by tungstophospho(aqua)ruthenate via the fractional factorial design methodology. NEW J CHEM 2018. [DOI: 10.1039/c8nj02690d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Keggin-type tungstophospho(aqua)ruthenate (PRuW) was synthesized and supported on acid activated montmorillonite under mild conditions.
Collapse
Affiliation(s)
- Mostapha Zerrouki
- Laboratoire de Catalyse et Synthèse en Chimie Organique
- Faculté des Sciences
- Université de Tlemcen
- Algeria
| | - Souheyla Boudjema
- Laboratoire de Catalyse et Synthèse en Chimie Organique
- Faculté des Sciences
- Université de Tlemcen
- Algeria
- Département de Forage et Mécanique des Chantiers Pétroliers
| | | | - Ilhem Rekkab-Hammoumraoui
- Laboratoire de Catalyse et Synthèse en Chimie Organique
- Faculté des Sciences
- Université de Tlemcen
- Algeria
| |
Collapse
|
18
|
Enferadi-Kerenkan A, Do TO, Kaliaguine S. Heterogeneous catalysis by tungsten-based heteropoly compounds. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00281a] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, the recent works on heterogeneous catalytic applications of polyoxotungstates in liquid-phase organic reactions are reviewed.
Collapse
Affiliation(s)
| | - Trong-On Do
- Department of Chemical Engineering
- Université Laval
- Québec
- Canada
| | | |
Collapse
|
19
|
Lu J, Wang Y, Ma X, Niu Y, Singh V, Ma P, Zhang C, Niu J, Wang J. Synthesis and characterization of a Sb(v)-containing polyoxomolybdate serving as a catalyst for sulfoxidation. Dalton Trans 2018; 47:8070-8077. [DOI: 10.1039/c8dt01273c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A Sb-containing Anderson-based polyoxomolybdate cluster, [(CH3)4N]4H8[Na5Sb3(Sb2Mo12O57)]·17H2O [1; (CH3)4N+ = TMA+], has been successfully synthesized by using an aqueous solution method and structurally characterized.
Collapse
Affiliation(s)
- Jingkun Lu
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Yaping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Xinyi Ma
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Yanjun Niu
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Vikram Singh
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Chao Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry
- Institute of Molecular and Crystal Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
| |
Collapse
|