1
|
Hussein AA, Ariffin A. Remote Steric and Electronic Effects of N-Heterocyclic Carbene Ligands on Alkene Reactivity and Regioselectivity toward Hydrocupration Reactions: The Role of Expanded-Ring N-Heterocyclic Carbenes. J Org Chem 2023; 88:13009-13021. [PMID: 37649423 DOI: 10.1021/acs.joc.3c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The remote groups in N-heterocyclic carbene (NHC) ligands have a significant influence on metal-catalyzed reactions. We examine how remote bulkiness, electronic groups, and expanded-ring NHCs (ER-NHCs) influence alkene reactivity and regioselectivity toward hydrocupration using density functional theory calculations. The impact of remote steric bulkiness on the Cu-H insertion rate is analyzed, revealing a strong correlation between the steric substituent constant and rate ratio, where a bulky group increases the rate due to reduced steric effects in the transition state (TS). The steric properties of the examined catalysts (with a remote group R2 = CPh3, CHPh2, CH2Ph, CH3, and H) and their corresponding TSs are found to be modulated greatly by the remote steric substitution group and the ring size of the NHC ligand. Enhanced bulkiness enhances the nucleophilic Cu-H moiety. The remote electronic groups have a smaller impact on insertion barrier compared to that of steric hindrance. Furthermore, ER-NHC exploration indicates that NHCs with over five-membered rings have a significantly negative influence on the reaction rate. Finally, with a highly bulky group (R2 = CPh3), anti-Markovnikov insertion preference is attributed to high interaction energy and improved steric properties. Overall, our findings here provide valuable insights for the development of a more effective catalyst in metal-catalyzed reactions.
Collapse
Affiliation(s)
- Aqeel A Hussein
- Department of Medical Laboratory Science, College of Science, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region 46001, Iraq
- Department of Biology, College of Science, Al-Qasim Green University, Al-Qassim, Babylon 51013, Iraq
| | - Azhar Ariffin
- Department of Chemistry, Faculty of Science, University Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
2
|
Lapshin IV, Cherkasov AV, Trifonov AA. Heteroleptic Bis(amido) Ca(II) and Yb(II) NHC Pincer Complexes: Synthesis, Characterization, and Catalytic Activity in Intermolecular Hydrofunctionalization of C═C Bonds. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Ivan V. Lapshin
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina Str. 49, 603950 Nizhny Novgorod, GSP-445, Russia
| | - Anton V. Cherkasov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina Str. 49, 603950 Nizhny Novgorod, GSP-445, Russia
| | - Alexander A. Trifonov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina Str. 49, 603950 Nizhny Novgorod, GSP-445, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Str. 28, 119991 Moscow, GSP-1, Russia
| |
Collapse
|
3
|
Vilé G, Di Liberto G, Tosoni S, Sivo A, Ruta V, Nachtegaal M, Clark AH, Agnoli S, Zou Y, Savateev A, Antonietti M, Pacchioni G. Azide-Alkyne Click Chemistry over a Heterogeneous Copper-Based Single-Atom Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05610] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gianvito Vilé
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Giovanni Di Liberto
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Sergio Tosoni
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Alessandra Sivo
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Vincenzo Ruta
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Maarten Nachtegaal
- Paul Scherrer Institute, Forschingsstrasse 111, 5232 Villigen, Switzerland
| | - Adam H. Clark
- Paul Scherrer Institute, Forschingsstrasse 111, 5232 Villigen, Switzerland
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Yajun Zou
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam-Golm Science Park, Am Muehlenberg 1 OT, Golm, Potsdam 14476, Germany
| | - Aleksandr Savateev
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam-Golm Science Park, Am Muehlenberg 1 OT, Golm, Potsdam 14476, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam-Golm Science Park, Am Muehlenberg 1 OT, Golm, Potsdam 14476, Germany
| | - Gianfranco Pacchioni
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
4
|
Charman RSC, Mahon MF, Lowe JP, Liptrot DJ. The structures of ring-expanded NHC supported copper(I) triphenylstannyls and their phenyl transfer reactivity towards heterocumulenes. Dalton Trans 2022; 51:831-835. [PMID: 34994747 DOI: 10.1039/d1dt03109k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three ring-expanded N-heterocyclic carbene-supported copper(I) triphenylstannyls have been synthesised by the reaction of (RE-NHC)CuOtBu with triphenylstannane (RE-NHC = 6-Mes, 6-Dipp, 7-Dipp). The compounds were characterised by NMR spectroscopy and X-ray crystallography. Reaction of (6-Mes)CuSnPh3 with di-p-tolyl carbodiimide, phenyl isocyanate and phenylisothiocyanate gives access to a copper(I) benzamidinate, benzamide and benzothiamide respectively via phenyl transfer from the triphenylstannyl anion with concomitant formation of (Ph2Sn)n. Attempts to exploit this reactivity under a catalytic regime were hindered by rapid copper(I)-catalysed dismutation of Ph3SnH to Ph4Sn, various perphenylated tin oligomers, H2 and a metallic material thought to be Sn(0). Mechanistic insight was provided by reaction monitoring via NMR spectroscopy and mass spectrometry.
Collapse
Affiliation(s)
- Rex S C Charman
- Department of Chemistry, University of Bath. Claverton Down, Bath, BA2 7AY UK.
| | - Mary F Mahon
- Department of Chemistry, University of Bath. Claverton Down, Bath, BA2 7AY UK.
| | - John P Lowe
- Department of Chemistry, University of Bath. Claverton Down, Bath, BA2 7AY UK.
| | - David J Liptrot
- Department of Chemistry, University of Bath. Claverton Down, Bath, BA2 7AY UK.
| |
Collapse
|
5
|
Ma Y, Ali HS, Hussein AA. A mechanistic study on the gold(i)-catalyzed cyclization of propargylic amide: revealing the impact of expanded-ring N-heterocyclic carbenes. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01617b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory (DFT) was applied to understand the mechanistic pathway of the gold(i)-catalyzed cyclization of propargylic amide, and to reveal the impact of expanded-ring N-heterocyclic carbenes.
Collapse
Affiliation(s)
- Yumiao Ma
- BSJ Institute, Haidian, Beijing, 100084, People's Republic of China
- Hangzhou Yanqu Information Technology Co., Ltd., Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou City, Zhejiang Province, 310003, People's Republic of China
| | - Hafiz Saqib Ali
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Kings Buildings, EH9 3FJ Edinburgh, UK
| | - Aqeel A. Hussein
- Department of Pharmacy, College of Medicine, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region, Iraq
| |
Collapse
|
6
|
Mishra K, Datta Khanal H, Rok Lee Y. Facile
N
‐Formylation of Amines on Magnetic Fe
3
O
4
−CuO Nanocomposites. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kanchan Mishra
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Hari Datta Khanal
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|
7
|
Hall JW, Bouchet D, Mahon MF, Whittlesey MK, Cazin CSJ. Synthetic Access to Ring-Expanded N-Heterocyclic Carbene (RE-NHC) Copper Complexes and Their Performance in Click Chemistry. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jonathan W. Hall
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Damien Bouchet
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 283 (S3), Ghent 9000, Belgium
| | - Mary F. Mahon
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | | | - Catherine S. J. Cazin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 283 (S3), Ghent 9000, Belgium
| |
Collapse
|
8
|
|
9
|
Copper-azide nanoparticle: a 'catalyst-cum-reagent' for the designing of 5-alkynyl 1,4-disubstituted triazoles. Sci Rep 2020; 10:16720. [PMID: 33028925 PMCID: PMC7542177 DOI: 10.1038/s41598-020-74018-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/22/2020] [Indexed: 11/08/2022] Open
Abstract
A single pot, wet chemical route has been applied for the synthesis of polymer supported copper azide, CuN3, nanoparticles (CANP). The hybrid system was used as 'catalyst-cum-reagent' for the azide-alkyne cyclo-addition reaction to construct triazole molecules using substituted benzyl bromide and terminal alkyne. The electron donating group containing terminal alkyne produced 5-alkynyl 1,4-disubstituded triazole product whereas for alkyne molecule with terminal electron withdrawing group facilitate the formation of 1,4-disubstituted triazole molecule.
Collapse
|
10
|
Cervantes‐Reyes A, Rominger F, Hashmi ASK. Sterically Demanding Ag I and Cu I N-Heterocyclic Carbene Complexes: Synthesis, Structures, Steric Parameters, and Catalytic Activity. Chemistry 2020; 26:5530-5540. [PMID: 32104933 PMCID: PMC7216994 DOI: 10.1002/chem.202000600] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/27/2020] [Indexed: 12/13/2022]
Abstract
The synthesis and full characterization of new air-stable AgI and CuI complexes bearing structurally bulky expanded-ring N-heterocyclic carbene (erNHC) ligands is presented. The condensation of protonated NHC salts with Ag2 O afforded a collection of AgI complexes, and their first use as ligand transfer reagents led to novel isostructural CuI or AuI complexes. In situ deprotonation of the NHC salts in the presence of a copper(I) source, provides a library of new CuI complexes. The solid-state structures feature large N-CNHC -N angles (118-128°) and almost identical angles between the aryl groups on the nitrogen atoms and the plane of the N-C-N unit of the carbene (i.e. torsion angles close to 0°). Among the steric parameters, the percent buried volume (%Vbur ) values span easily in the 50-57 % range, and that one of (9-Dipp)CuBr complex (%Vbur =57.5) overcomes to other known erNHC-metal complexes reported to date. Preliminary catalytic experiments in the copper-catalyzed coupling between N-tosylhydrazone and phenylacetylene, afforded 76-93 % product at the 0.5-2.5 mol % catalyst loading, proving the stability of CuI erNHC complexes at elevated temperatures (100 °C).
Collapse
Affiliation(s)
| | - Frank Rominger
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| |
Collapse
|
11
|
Carsch KM, DiMucci IM, Iovan DA, Li A, Zheng SL, Titus CJ, Lee SJ, Irwin KD, Nordlund D, Lancaster KM, Betley TA. Synthesis of a copper-supported triplet nitrene complex pertinent to copper-catalyzed amination. Science 2020; 365:1138-1143. [PMID: 31515388 DOI: 10.1126/science.aax4423] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/29/2019] [Accepted: 08/13/2019] [Indexed: 01/17/2023]
Abstract
Terminal copper-nitrenoid complexes have inspired interest in their fundamental bonding structures as well as their putative intermediacy in catalytic nitrene-transfer reactions. Here, we report that aryl azides react with a copper(I) dinitrogen complex bearing a sterically encumbered dipyrrin ligand to produce terminal copper nitrene complexes with near-linear, short copper-nitrenoid bonds [1.745(2) to 1.759(2) angstroms]. X-ray absorption spectroscopy and quantum chemistry calculations reveal a predominantly triplet nitrene adduct bound to copper(I), as opposed to copper(II) or copper(III) assignments, indicating the absence of a copper-nitrogen multiple-bond character. Employing electron-deficient aryl azides renders the copper nitrene species competent for alkane amination and alkene aziridination, lending further credence to the intermediacy of this species in proposed nitrene-transfer mechanisms.
Collapse
Affiliation(s)
- Kurtis M Carsch
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Diana A Iovan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Alex Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Charles J Titus
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Sang Jun Lee
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Kent D Irwin
- Department of Physics, Stanford University, Stanford, CA, USA.,SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
12
|
Horsley Downie TM, Hall JW, Collier Finn TP, Liptrot DJ, Lowe JP, Mahon MF, McMullin CL, Whittlesey MK. The first ring-expanded NHC–copper(i) phosphides as catalysts in the highly selective hydrophosphination of isocyanates. Chem Commun (Camb) 2020; 56:13359-13362. [DOI: 10.1039/d0cc05694d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first copper(i) phosphides supported by ring-expanded N-heterocyclic carbenes have been synthesised and react readily with heterocumulenes. These copper(i) phosphides are highly active and selective in the hydrophosphination of isocyanates.
Collapse
Affiliation(s)
| | | | | | | | - John P. Lowe
- Department of Chemistry
- University of Bath
- Claverton Down
- Bath
- UK
| | - Mary F. Mahon
- X-Ray Crystallography Suite
- University of Bath
- Claverton Down
- Bath
- UK
| | | | | |
Collapse
|
13
|
Kumar A, Singh C, Tinnermann H, Huynh HV. Gold(I) and Gold(III) Complexes of Expanded-Ring N-Heterocyclic Carbenes: Structure, Reactivity, and Catalytic Applications. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anuj Kumar
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore 117543
| | - Chandan Singh
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore 117543
| | - Hendrik Tinnermann
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore 117543
| | - Han Vinh Huynh
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore 117543
| |
Collapse
|
14
|
Cervantes‐Reyes A, Rominger F, Rudolph M, Hashmi ASK. Gold(I) Complexes Stabilized by Nine- and Ten-Membered N-Heterocyclic Carbene Ligands. Chemistry 2019; 25:11745-11757. [PMID: 31310385 PMCID: PMC6852534 DOI: 10.1002/chem.201902458] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 02/02/2023]
Abstract
Nine- and ten-membered N-heterocyclic carbene (NHC) ligands have been developed and for the first time their gold(I) complexes were synthesized. The protonated NHC pro-ligands 2 a-h were prepared by the reaction of readily available N,N'-diarylformamidines with bis-electrophilic building blocks, followed by anion exchange. In situ deprotonation of the tetrafluoroborates 2 a-h with tBuOK in the presence of AuCl(SMe2 ) provided fast access to NHC-gold(I) complexes 3-10. These new NHC-gold(I) complexes show very good catalytic activity in a cycloisomerization reaction (0.1 mol % catalyst loading, up to 100 % conversion) and their solid-state structures reveal high steric hindrance around the metal atom (%Vbur up to 53.0) which is caused by their expanded-ring architecture.
Collapse
Affiliation(s)
| | - Frank Rominger
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Matthias Rudolph
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| |
Collapse
|
15
|
Aflak N, El Ayouchia HB, Bahsis L, Anane H, Laamari R, Pascual-Alvarez A, Armentano D, Stiriba SE. Facile immobilization of copper(I) acetate on silica: A recyclable and reusable heterogeneous catalyst for azide–alkyne clickable cycloaddition reactions. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Topchiy MA, Ageshina AA, Chesnokov GA, Sterligov GK, Rzhevskiy SA, Gribanov PS, Osipov SN, Nechaev MS, Asachenko AF. Alkynyl‐ or Azido‐Functionalized 1,2,3‐Triazoles: Selective MonoCuAAC Promoted by Physical Factors. ChemistrySelect 2019. [DOI: 10.1002/slct.201902135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Maxim A. Topchiy
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| | - Alexandra A. Ageshina
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
| | - Gleb A. Chesnokov
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
| | - Grigorii K. Sterligov
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| | - Sergey A. Rzhevskiy
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
| | - Pavel S. Gribanov
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences 28 Vavilov str. 119991 Moscow Russian Federation
| | - Sergey N. Osipov
- A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences 28 Vavilov str. 119991 Moscow Russian Federation
| | - Mikhail S. Nechaev
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| | - Andrey F. Asachenko
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| |
Collapse
|
17
|
Trujillo M, Hull-Crew C, Outlaw A, Stewart K, Taylor L, George L, Duensing A, Tracey B, Schoffstall A. Green Methodologies for Copper(I)-Catalyzed Azide-Alkyne Cycloadditions: A Comparative Study. Molecules 2019; 24:E973. [PMID: 30857343 PMCID: PMC6429464 DOI: 10.3390/molecules24050973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 01/23/2023] Open
Abstract
Successful copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reactions may be achieved by several methods. In this paper, four synthetic protocols were performed for direct comparison of time required for the synthesis, yield, and purity of the 1H-1,2,3-triazole products. The methods with Cu(I) catalysts were conventional, microwave heating, solvent-free, and a method using glycerol solvent. The compounds synthesized in this paper were known non-fluorinated triazoles and new fluorinated triazoles. The results lead to the conclusion that the microwave method should be strongly considered for CuAAC syntheses.
Collapse
Affiliation(s)
- Marissa Trujillo
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
| | - Clayton Hull-Crew
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
| | - Andrew Outlaw
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
| | - Kevin Stewart
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
| | - Loren Taylor
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
| | - Laura George
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
| | - Allison Duensing
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
| | - Breanna Tracey
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
| | - Allen Schoffstall
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
| |
Collapse
|
18
|
Danopoulos AA, Simler T, Braunstein P. N-Heterocyclic Carbene Complexes of Copper, Nickel, and Cobalt. Chem Rev 2019; 119:3730-3961. [PMID: 30843688 DOI: 10.1021/acs.chemrev.8b00505] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The emergence of N-heterocyclic carbenes as ligands across the Periodic Table had an impact on various aspects of the coordination, organometallic, and catalytic chemistry of the 3d metals, including Cu, Ni, and Co, both from the fundamental viewpoint but also in applications, including catalysis, photophysics, bioorganometallic chemistry, materials, etc. In this review, the emergence, development, and state of the art in these three areas are described in detail.
Collapse
Affiliation(s)
- Andreas A Danopoulos
- Laboratory of Inorganic Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis Zografou , Athens GR 15771 , Greece.,Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| | - Thomas Simler
- Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| | - Pierre Braunstein
- Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| |
Collapse
|
19
|
Sampford KR, Carden JL, Kidner EB, Berry A, Cavell KJ, Murphy DM, Kariuki BM, Newman PD. Twisting the arm: structural constraints in bicyclic expanded-ring N-heterocyclic carbenes. Dalton Trans 2019; 48:1850-1858. [PMID: 30652174 DOI: 10.1039/c8dt04462g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A series of diaryl, mono-aryl/alkyl and dialkyl mono- and bicyclic expanded-ring N-heterocyclic carbenes (ER-NHCs) have been prepared and their complexation to Au(i) investigated through the structural analysis of fifteen Au(NHC)X and/or [Au(NHC)2]X complexes. The substituted diaryl 7-NHCs are the most sterically encumbered with large buried volume (%VB) values of 40-50% with the less flexible six-membered analogues having %VB values at least 5% smaller. Although the bicyclic systems containing fused 6- and 7-membered rings (6,7-NHCs) are constrained with relatively acute NCN bond angles, they have the largest %VB values of the dialkyl derivatives reported here, a feature related to the fixed conformation of the heterocyclic rings and the compressional effect of a pre-set methyl substituent.
Collapse
Affiliation(s)
| | - Jamie L Carden
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Edward B Kidner
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Abigail Berry
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | | | - Damien M Murphy
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | | | - Paul D Newman
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK and Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
20
|
|
21
|
Topchiy MA, Ageshina AA, Gribanov PS, Masoud SM, Akmalov TR, Nefedov SE, Osipov SN, Nechaev MS, Asachenko AF. Azide-Alkyne Cycloaddition (CuAAC) in Alkane Solvents Catalyzed by Fluorinated NHC Copper(I) Complex. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801538] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Maxim A. Topchiy
- A. V. Topchiev Institute of Petrochemical Synthesis; Russian Academy of Sciences; Leninsky Prospect 29 119991 Moscow Russian Federation
| | - Alexandra A. Ageshina
- A. V. Topchiev Institute of Petrochemical Synthesis; Russian Academy of Sciences; Leninsky Prospect 29 119991 Moscow Russian Federation
| | - Pavel S. Gribanov
- A. V. Topchiev Institute of Petrochemical Synthesis; Russian Academy of Sciences; Leninsky Prospect 29 119991 Moscow Russian Federation
| | - Salekh M. Masoud
- A.N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov str. 28 119991 Moscow Russian Federation
| | - Timur R. Akmalov
- A.N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov str. 28 119991 Moscow Russian Federation
| | - Sergey E. Nefedov
- N.S. Kurnakov Institute of General and Inorganic Chemistry; Russian Academy of Sciences; Leninsky pr. 31 119991 Moscow Russian Federation
| | - Sergey N. Osipov
- A.N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov str. 28 119991 Moscow Russian Federation
| | - Mikhail S. Nechaev
- A. V. Topchiev Institute of Petrochemical Synthesis; Russian Academy of Sciences; Leninsky Prospect 29 119991 Moscow Russian Federation
| | - Andrey F. Asachenko
- A. V. Topchiev Institute of Petrochemical Synthesis; Russian Academy of Sciences; Leninsky Prospect 29 119991 Moscow Russian Federation
- A.N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov str. 28 119991 Moscow Russian Federation
| |
Collapse
|
22
|
Hall JW, Unson DML, Brunel P, Collins LR, Cybulski MK, Mahon MF, Whittlesey MK. Copper-NHC-Mediated Semihydrogenation and Hydroboration of Alkynes: Enhanced Catalytic Activity Using Ring-Expanded Carbenes. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00467] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonathan W. Hall
- Department of Chemistry, University of Bath, Claverton
Down, Bath BA2 7AY, United Kingdom
| | - Darcy M. L. Unson
- Department of Chemistry, University of Bath, Claverton
Down, Bath BA2 7AY, United Kingdom
| | - Paul Brunel
- Department of Chemistry, University of Bath, Claverton
Down, Bath BA2 7AY, United Kingdom
| | - Lee R. Collins
- Department of Chemistry, University of Bath, Claverton
Down, Bath BA2 7AY, United Kingdom
| | - Mateusz K. Cybulski
- Department of Chemistry, University of Bath, Claverton
Down, Bath BA2 7AY, United Kingdom
| | - Mary F. Mahon
- Department of Chemistry, University of Bath, Claverton
Down, Bath BA2 7AY, United Kingdom
| | - Michael K. Whittlesey
- Department of Chemistry, University of Bath, Claverton
Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|