1
|
Budnikov AS, Krylov IB, Shevchenko MI, Sokova LL, Liu Y, Yu B, Terent'ev AO. Synthesis of ω-functionalized ketones from strained cyclic alcohols by ring-opening and cross-recombination between alkyl and N-oxyl radicals. Org Biomol Chem 2024; 22:8755-8763. [PMID: 39385714 DOI: 10.1039/d4ob01490a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Radical ring-opening oxyimidation of cyclobutanols and cyclopropanols with the formation of ω-functionalized ketones was discovered. The oxidative C-O coupling proceeds via the interception of a primary alkyl radical generated from a cyclic alcohol with a reactive radical generated in situ, which is an electron-deficient N-oxyl radical. The developed conditions allow for the balanced generation rates of carbon- and N-oxyl radicals, which are necessary for their selective cross-recombination. Thus, typical competitive dimerization processes of carbon-centered radicals, their intermolecular cyclization, and N-oxyl radical self-decay are suppressed. The method is applicable to a wide range of cyclobutanols and results in oxyimidated ketones in yields of up to 82%.
Collapse
Affiliation(s)
- Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Mikhail I Shevchenko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Lyubov' L Sokova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Yan Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
2
|
Mantry L, Gandeepan P. Photochemical direct alkylation of heteroarenes with alkanes, alcohols, amides, and ethers. Org Biomol Chem 2024; 22:7643-7648. [PMID: 39195903 DOI: 10.1039/d4ob01119h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Direct functionalization of heteroarenes with simple alkanes utilizing anthracene as a photoredox catalyst has been established. This approach provides a sustainable alternative, avoiding costly reagents or peroxides. The method demonstrates a broad substrate scope, enabling regioselective alkylation of various heteroarenes, including azoles, pyridines, quinolines, isoquinolones, and quinoxalinones under mild conditions. A range of alkyl sources, such as alkanes, ethers, dioxane, trioxane, alcohol, and alkylamides were viable substrates. A plausible catalytic cycle was proposed based on the preliminary mechanistic evidence.
Collapse
Affiliation(s)
- Lusina Mantry
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu-Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh, India - 517619.
| | - Parthasarathy Gandeepan
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu-Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh, India - 517619.
| |
Collapse
|
3
|
Liu X, Xie D, Yang Q, Song Z, Fu Y, Peng Y. Ag-Catalyzed cross-dehydrogenative-coupling for the synthesis of 1,4-dioxan-2-yl substituted quinazoline hybrids in an aqueous medium. Org Biomol Chem 2024; 22:7725-7735. [PMID: 39229654 DOI: 10.1039/d4ob01188k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We herein developed an effective approach for the construction of 2- or 4-(1,4-dioxan-2-yl) substituted quinazolines under mild conditions. A silver-K2S2O8 catalyzed direct CDC reaction between quinazolines and 1,4-dioxane for the synthesis of a series of 2- or 4-(1,4-dioxan-2-yl) substituted quinazoline hybrids is reported. The reaction proceeded well in water under mild conditions and showed a broad substrate scope and good functional group compatibility.
Collapse
Affiliation(s)
- Xixian Liu
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China.
| | - Dayu Xie
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China.
| | - Qin Yang
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China.
| | - Zhibin Song
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yang Fu
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yiyuan Peng
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
4
|
Mantry L, Gandeepan P. Visible-Light-Induced PhI(OAc) 2-Mediated Alkylation of Heteroarenes with Simple Alkanes and Ethers. J Org Chem 2024; 89:6539-6544. [PMID: 38642055 DOI: 10.1021/acs.joc.4c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
The direct alkylation of heteroarenes with alkanes has been successfully achieved through visible-light-induced hypervalent iodine-mediated C-H functionalization of both coupling partners at ambient temperatures. This reaction proceeds via the in situ generation of nucleophilic alkyl radicals from alkanes through hydrogen atom transfer (HAT), followed by a Minisci-type reaction with heteroarenes. These mild reaction conditions have demonstrated their suitability for the alkylation of a wide range of heterocycles, including azoles, pyridines, quinolines, isoquinolines, and quinoxalinones.
Collapse
Affiliation(s)
- Lusina Mantry
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu - Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh, India - 517619
| | - Parthasarathy Gandeepan
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu - Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh, India - 517619
| |
Collapse
|
5
|
Seling N, Atobe M, Kasten K, Firth JD, Karadakov PB, Goldberg FW, O'Brien P. α-Functionalisation of Cyclic Sulfides Enabled by Lithiation Trapping. Angew Chem Int Ed Engl 2024; 63:e202314423. [PMID: 37984884 PMCID: PMC10952194 DOI: 10.1002/anie.202314423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
A general and straightforward procedure for the lithiation trapping of cyclic sulfides such as tetrahydrothiophene, tetrahydrothiopyran and a thiomorpholine is described. Trapping with a wide range of electrophiles is demonstrated, leading to more than 50 diverse α-substituted saturated sulfur heterocycles. The methodology provides access to a range of α-substituted cyclic sulfides that are not easily synthesised by the currently available methods.
Collapse
Affiliation(s)
- Nico Seling
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
| | - Masakazu Atobe
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
- Modulus Discovery, Inc.Daiichi Hibiya Building 7th Floor1-18-21 Shimbashi Minato-kuTokyo105-0004Japan
| | - Kevin Kasten
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
| | | | | | | | - Peter O'Brien
- Department of ChemistryUniversity of YorkYorkYO10 5DDUK
| |
Collapse
|
6
|
Yang ML, Guan Z, He YH. Photoredox-Catalyzed Radical-Radical Cross-Coupling of α-Ketoesters with Ethers: Access to Sterically Hindered α-Hydroxy Esters. Org Lett 2023. [PMID: 38012813 DOI: 10.1021/acs.orglett.3c03403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
We describe a photoredox catalysis method for synthesizing sterically hindered α-hydroxy esters from α-ketoesters and ethers through a radical-radical cross-coupling reaction. This approach utilizes commercially available Ir[dF(CF3)ppy]2(dtbbpy)PF6 as a photocatalyst and inexpensive and readily available nBu4NBr as a hydrogen atom transfer catalyst. Unactivated tetrahydrofuran and other ethers effectively react with various α-ketoesters to yield the desired products. The efficiency of this reaction is highlighted by its broad substrate scope, good functional group tolerance, and mild reaction conditions.
Collapse
Affiliation(s)
- Ming-Lin Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Ki Au Y, Ma Q, Zhang J, Xie Z. Ir-Catalyzed B(3)-Amination of o-Carboranes with Amines via Acceptorless Dehydrogenative BH/NH Cross-Coupling. Chem Asian J 2023; 18:e202300611. [PMID: 37694997 DOI: 10.1002/asia.202300611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
An efficient and convenient strategy for Ir-catalyzed selective B(3)-amination of o-carboranes with amines via acceptorless BH/NH dehydrocoupling was developed, affording a series of B(3)-aminated-o-carboranes in moderate to high isolated yields with H2 gas as a sole by-product. Such an oxidant-free system endues the protocol sustainability, atom-economy and environmental friendliness. A reaction mechanism via an Ir(I)-Ir(III)-Ir(I) catalytic cycle involving oxidative addition, dehydrogenation and reductive elimination was proposed.
Collapse
Affiliation(s)
- Yik Ki Au
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, P.R. China
| | - Qiangqiang Ma
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, P.R. China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, P.R. China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, P.R. China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P.R.China
| |
Collapse
|
8
|
Yu H, Xu F. Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp 3)-H to construct C-C bonds. Beilstein J Org Chem 2023; 19:1259-1288. [PMID: 37701303 PMCID: PMC10494247 DOI: 10.3762/bjoc.19.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
Ether derivatives are widespread as essential building blocks in various drugs, natural products, agrochemicals, and materials. Modern economy requires developing green strategies with improved efficiency and reduction of waste. Due to its atom and step-economy, the cross-dehydrogenative coupling (CDC) reaction has become a major strategy for ether functionalization. This review covers C-H/C-H cross-coupling reactions of ether derivatives with various C-H bond substrates via non-noble metal catalysts (Fe, Cu, Co, Mn, Ni, Zn, Y, Sc, In, Ag). We discuss advances achieved in these CDC reactions and hope to attract interest in developing novel methodologies in this field of organic chemistry.
Collapse
Affiliation(s)
- Hui Yu
- Department of Pharmacy, Shi zhen College of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550200, P. R. China
| | - Feng Xu
- School of Mathematics and Information Science, Guiyang University, Guiyang, Guizhou 550005, P. R. China
| |
Collapse
|
9
|
Singh T, Upreti GC, Arora S, Chauhan H, Singh A. Visible-light mediated, oxygen-promoted regioselective cross-dehydrogenative coupling of coumarins and dimethylanilines. Org Biomol Chem 2023; 21:6671-6674. [PMID: 37540040 DOI: 10.1039/d3ob00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Herein, we report a regioselective, photocatalytic C3 α-aminoalkylation of coumarins via a cross-dehydrogenative coupling of dimethylanilines and coumarins. Molecular oxygen was utilized as the oxidizing agent in this transformation, which exhibits a wide substrate scope and affords the products in good yields. It was established that 4-amino-substituted coumarin reacts via a different mechanism compared to coumarin derivatives that are unsubstituted at the 4-position.
Collapse
Affiliation(s)
- Tavinder Singh
- Department of Chemistry, Indian Institute of technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Ganesh Chandra Upreti
- Department of Chemistry, Indian Institute of technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Shivani Arora
- Department of Chemistry, Indian Institute of technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Himanshu Chauhan
- Department of Chemistry, Indian Institute of technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Anand Singh
- Department of Chemistry, Indian Institute of technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
| |
Collapse
|
10
|
Govada GV, Rajasekhara Reddy S. Synthesis and in Silico Study of Novel Benzisoxazole-Chromene Derivatives as Potent Inhibitors of Acetylcholinesterase: Metal-Free Site-Selective C-N Bond Formation via Aza-Michael Reaction. Chem Biodivers 2023; 20:e202300573. [PMID: 37415329 DOI: 10.1002/cbdv.202300573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
An efficient metal-free approach for site selective C-N coupling reaction of benzo[d]isoxazole and 2H-chromene derivatives has been designed and developed against AchE. This nitrogen containing organo-base promoted methodology, which is both practical and environmentally friendly, provides an easy and suitable pathway for synthesizing Benzisoxazole-Chromene (BC) possessing poly heteroaryl moieties. The synthesized BC derivatives 4 a-n was docked into the active sites of AChE to obtain more perception into the binding modes of the compounds. Out of them, compound 4 a and 4 l displayed potent activity and high selectivity against the AChE inhibition. Final docking results indicates that compound 4 l showed the lowest binding energy of -11.2260 kcal/mol with AChE. The synthesized BC analogs would be potential candidates for promoting suitable studies in medicinal chemistry research.
Collapse
Affiliation(s)
- Grace Victoria Govada
- Advanced Catalysis laboratory, Vellore Institute of Technology (VIT), 632014, Vellore, India
| | | |
Collapse
|
11
|
Li S, Fang L, Dou Q, Wang T, Cheng B. Recent advances in phosphorylation of hetero-nucleophilic reagents via P–H bond cleavage. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
12
|
Si L, Xiong B, Xu S, Zhu L, Liu Y, Xu W, Tang KW. Copper-Catalyzed Cross-Dehydrogenative Coupling of P(O)−H Compounds with O-/S-nucleophiles. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
13
|
Zheng YN, Cai XE, Wu HL, Zhou Y, Tian WC, Ruan Y, Liu H, Wei WT. Metal- and Base-Free Radical Cascade Cyclization/Hydrolysis of CN-Containing 1,6-Enynes with Ethers to Access Polyheterocycles. Chem Asian J 2023; 18:e202201149. [PMID: 36550634 DOI: 10.1002/asia.202201149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
A convenient and straightforward approach for the radical cascade cyclization/hydrolysis of CN-containing 1,6-enynes with simple ethers under metal- and base-free conditions is described. This strategy provides a variety of valuable ethers-substituted polyheterocycles via the construction of three C-C bonds, one C=O bond, and two new six-membered rings within a single procedure. The resulting products can smoothly undergo follow-up conversions to various useful scaffolds. The methodology shows excellent functional group tolerance, high step- and atom- economy, and mild reaction conditions, which can be further scaled up to gram quantity in a satisfactory yield.
Collapse
Affiliation(s)
- Yan-Nan Zheng
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| | - Xue-Er Cai
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| | - Hong-Li Wu
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| | - Yu Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| | - Wen-Chan Tian
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| | - Yiping Ruan
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| | - Hongxin Liu
- College of Chemistry and Materials Engineering, Wenzhou University, 325035, Wenzhou, P. R. China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
14
|
Shen YB, Hu F, Li SS. Advances in α-C(sp3)–H functionalization of ethers via cascade [1,n]-hydride transfer/cyclization. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Mu Y, Jiang R, Hong Y, Hou J, Yang Z, Tang D. Acid-catalyzed synthesis of pyrazolo[4,3-c]quinolines from (1H-pyrazol-5-yl)anilines and ethers via the cleavage of C–O bond. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Roy S, Chatterjee I. Visible-Light-Mediated ( sp 3)Cα-H Functionalization of Ethers Enabled by Electron Donor-Acceptor Complex. ACS ORGANIC & INORGANIC AU 2022; 2:306-311. [PMID: 36855592 PMCID: PMC9955270 DOI: 10.1021/acsorginorgau.2c00008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A synthetically beneficial visible-light-mediated protocol has been disclosed to achieve C-H amination of readily available feedstocks cyclic and acyclic ethers. A rarely identified N-bromosuccinamide-tetrahydrofuran electron donor-acceptor complex served as an initiator to functionalize both α-diazoketones and dialkyl azodicarboxylates. This developed methodology gives an alternative and milder way to construct the C-N bond and can be explored for the formation of C-C bond to perform arylation and allylation reactions.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| |
Collapse
|
17
|
Wang P, Gong Y, Wang X, Ren Y, Wang L, Zhai L, Li H, She X. Solvent-free, B(C 6 F 5 ) 3 -Catalyzed S-H Insertion of Thiophenols and Thiols with α-Diazoesters. Chem Asian J 2022; 17:e202200465. [PMID: 35678551 DOI: 10.1002/asia.202200465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Indexed: 11/11/2022]
Abstract
Described herein is a B(C6 F5 )3 -catalyzed S-H insertion reaction of thiophenols and thiols with α-diazoesters to access valuable α-thioesters. With the established protocol, an array of α-thioester products are generated in moderate to good yields with broad scope and functional group tolerance. In addition, this reaction maintains its high efficiency on gram scale and the product can be easily transformed into other useful motifs. This reaction proceeds under solvent-free conditions at room temperature, and generally finishes in twenty minutes upon magnet stirring, which offers an expedient way for synthesis of thioether-containing compounds.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yulin Gong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yangqing Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Lei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Lele Zhai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
18
|
Feng XQ, Wang HC, Li Z, Tang L, Sun X, Yang K. Transition-metal-catalyzed remote C-H functionalization of thioethers. RSC Adv 2022; 12:10835-10845. [PMID: 35424975 PMCID: PMC8988276 DOI: 10.1039/d2ra01268e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/30/2022] [Indexed: 12/20/2022] Open
Abstract
In the last decade, transition-metal-catalyzed direct C-H bond functionalization has been recognized as one of most efficient approaches for the derivatization of thioethers. Within this category, both mono- and bidentate-directing group strategies achieved the remote C(sp2)-H and C(sp3)-H functionalization of thioethers, respectively. This review systematically introduces the major advances and their mechanisms in the field of transition-metal-catalyzed remote C-H functionalization of thioethers from 2010 to 2021.
Collapse
Affiliation(s)
- Xiao-Qing Feng
- School of Pharmacy & School of Medicine, Changzhou University Changzhou Jiangsu 213164 China
| | - He-Cheng Wang
- School of Pharmacy & School of Medicine, Changzhou University Changzhou Jiangsu 213164 China
| | - Zhi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou Jiangsu 213164 China
| | - Long Tang
- School of Pharmacy & School of Medicine, Changzhou University Changzhou Jiangsu 213164 China
| | - Xiaoqiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou Jiangsu 213164 China
| | - Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Changzhou Jiangsu 213164 China
| |
Collapse
|
19
|
Tang L, Hu Q, Yang K, Elsaid M, Liu C, Ge H. Recent advances in direct α-C(sp3)-H bond functionalization of thioethers. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
20
|
Zhao X, Yang F, Wang LL, Guo J, Xu YQ, Chen ZS, Ji K. Cu( ii)-Catalyzed C2-site functionalization of p-aminophenols: an approach for selective cross-dehydrogenative aminations. Org Chem Front 2022. [DOI: 10.1039/d1qo01675j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Site selective cross dehydrogenative aminations from precursors without preactivated C–H and N–H bonds have been challenging.
Collapse
Affiliation(s)
- Xin Zhao
- College of Chemistry and Pharmacy, Northwest A&F University; Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
- School of Pharmacy, Baotou Medical College, Baotou 014060, Inner Mongolia, P. R. China
| | - Fang Yang
- College of Chemistry and Pharmacy, Northwest A&F University; Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Lin-Lin Wang
- College of Chemistry and Pharmacy, Northwest A&F University; Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Jing Guo
- College of Chemistry and Pharmacy, Northwest A&F University; Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Yu-Qin Xu
- College of Chemistry and Pharmacy, Northwest A&F University; Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Zi-Sheng Chen
- College of Chemistry and Pharmacy, Northwest A&F University; Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Kegong Ji
- College of Chemistry and Pharmacy, Northwest A&F University; Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
21
|
Dai S, Yang K, Luo Y, Xu Z, Li Z, Li Z, Li B, Sun X. Metal-free and Selectfluor-mediated diverse transformations of 2-alkylthiobenzamides to access 2,3-dihydrobenzothiazin-4-ones, benzoisothiazol-3-ones and 2-alkylthiobenzonitriles. Org Chem Front 2022. [DOI: 10.1039/d2qo00663d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diverse transformations of 2-alkylthiobenzamides have been established to synthesize 2,3-dihydrobenzothiazin-4-ones, benzoisothiazol-3-ones and 2-alkylthiobenzonitriles in the presence of Selectfluor.
Collapse
Affiliation(s)
- Shengfei Dai
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yanqi Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Ziyuan Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhengyi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xiaoqiang Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
22
|
Wang Y, He Q, Cao Z, Wang P, Chen G, Beller M. Hypervalent-iodine promoted selective cleavage of C(sp 3)–C(sp 3) bonds in ethers. Org Chem Front 2022. [DOI: 10.1039/d2qo01114j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-promoted and radical-mediated strategy for the site-specific cleavage of C(sp3)–C(sp3) bonds in ethers is reported.
Collapse
Affiliation(s)
- Yaxin Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock 18059, Germany
| | - Qin He
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zehui Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Wang
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock 18059, Germany
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Matthias Beller
- Leibniz-Institute for Catalysis, Albert-Einstein-Str. 29a, Rostock 18059, Germany
| |
Collapse
|
23
|
Sebastian D, Willoughby PH, Lakshman MK. Cross-dehydrogenative coupling of ethers and amides with the tautomerizable quinazolinones, and mechanistic studies. Org Biomol Chem 2022; 20:5735-5746. [DOI: 10.1039/d2ob00874b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cross-dehydrogenative coupling reactions have been utilized to alkylate 4(3H)-quinazolinones with ethers and amides, using catalytic n-Bu4NI and t-BuOOH as oxidant. Reactions with amides represent the first examples under such conditions....
Collapse
|
24
|
Bora P, Konwar D, Dewan A, Das MR, Bora U. Bio-carbon-layered CuO-catalyzed decarboxylative alkenylation of cyclic ethers. NEW J CHEM 2022. [DOI: 10.1039/d2nj01213h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient methodology for the direct decarboxylative functionalization of cinnamic acid derivatives with cyclic ethers has been developed by using biogenic CuO/C nanoparticles. This protocol is compatible with broad range of substrates.
Collapse
Affiliation(s)
- Porag Bora
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India
| | - Dipika Konwar
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India
| | - Anindita Dewan
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India
| | - Manash R. Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East, Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Utpal Bora
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India
| |
Collapse
|
25
|
Zhao Y, Wang JL, Zhang Z, Li XS, Niu ZJ, Liu XY. Copper-Catalyzed Direct Allenylation of Inactive Cyclic Ethers. J Org Chem 2021; 86:18056-18066. [PMID: 34842425 DOI: 10.1021/acs.joc.1c02339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here a direct allenylation reaction of inactive cyclic ethers. The reaction proceeds through a copper-catalyzed 1,4-difunctionalization of 1,3-enynes, with cyano group installed at the allenes simultaneously. This methodology shows a broad functional group compatibility to 1,3-enynes. Diversified allene-modified cyclic ether derivatives were synthesized with high regioselectivity under mild conditions.
Collapse
Affiliation(s)
- Yichuan Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jin-Lin Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
26
|
Combustion-Synthesized Porous CuO-CeO2-SiO2 Composites as Solid Catalysts for the Alkenylation of C(sp3)-H Bonds Adjacent to a Heteroatom via Cross-Dehydrogenative Coupling. Catalysts 2021. [DOI: 10.3390/catal11101252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A series of mixed oxides of CuO, CeO2, and SiO2 were prepared by gel combustion and employed for the first time as efficient solid catalysts in a solvent-less liquid-phase cross-dehydrogenative coupling. The facile one-pot catalyst synthesis resulted in highly porous materials presenting large specific surface areas and strong metal–support interactions. The interaction with highly dispersed CeO2 enhanced the redox properties of the CuO species. The CuO-CeO2-SiO2 composites exhibited excellent catalytic performance for the selective coupling between 1,1-diphenylethylene and tetrahydrofuran with a yield up to 85% of 2-(2,2-diphenylvinyl)-tetrahydrofuran in the presence of di-tert-butyl peroxide (DTPB) and KI. Albeit both CuO and CeO2 species are proved to be responsible for the catalytic conversion, a great synergistic improvement in the catalytic activity was obtained by extended contact between the oxide phases by high porosity in comparison with the reactions using individual Cu or Ce catalysts. The activity of the composite catalyst was shown to be highly stable after five successive reaction cycles. Furthermore, the study scope was extended to the synthesis of different derivatives via composite-catalyzed coupling of C(sp2)-H with C(sp3-H) adjacent to a heteroatom. The good yields recorded proved the general validity of this composite for the cross-dehydrogenative coupling reaction rarely performed on solid catalysts.
Collapse
|
27
|
Nicoli F, Baroncini M, Silvi S, Groppi J, Credi A. Direct synthetic routes to functionalised crown ethers. Org Chem Front 2021; 8:5531-5549. [PMID: 34603737 PMCID: PMC8477657 DOI: 10.1039/d1qo00699a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022]
Abstract
Crown ethers are macrocyclic hosts that can complex a wide range of inorganic and organic cations as well as neutral guest species. Their widespread utilization in several areas of fundamental and applied chemistry strongly relies on strategies for their functionalisation, in order to obtain compounds that could carry out multiple functions and could be incorporated in sophisticated systems. Although functionalised crown ethers are normally synthesised by templated macrocyclisation using appropriately substituted starting materials, the direct addition of functional groups onto a pre-formed macrocyclic framework is a valuable yet underexplored alternative. Here we review the methodologies for the direct functionalisation of aliphatic and aromatic crown ethers sporadically reported in the literature over a period of four decades. The general approach for the introduction of moieties on aliphatic crown ethers involves a radical mediated cross dehydrogenative coupling initiated either by photochemical or thermal/chemical activation, while aromatic crown ethers are commonly derivatised via electrophilic aromatic substitution. Direct functionalization routes can reduce synthetic effort, allow the later modification of crown ether-based architectures, and disclose new ways to exploit these versatile macrocycles in contemporary supramolecular science and technology.
Collapse
Affiliation(s)
- Federico Nicoli
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna viale Fanin 44 40127 Bologna Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica "G. Ciamician", Università di Bologna via Selmi 2 40126 Bologna Italy
| | - Jessica Groppi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures Istituto ISOF-CNR via Gobetti 101 40129 Bologna Italy
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna viale del Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
28
|
Han DY, Liu XP, Li RP, Xu DZ. Aerobic Cross-Dehydrogenative Coupling Reactions for Selective Mono- and Dithiolation of Phenols. J Org Chem 2021; 86:10166-10176. [PMID: 34252273 DOI: 10.1021/acs.joc.1c00898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient strategy for the direct thiolation of phenols under transition metal-free and solvent-free conditions has been developed. These reactions are operationally simple with employing air (molecular oxygen) as an ideal oxidant and can selectively provide mono- and dithiolation products in good to excellent yields under basic conditions. The reaction tolerates a broad range of aryl thiols and arenes and is especially applicable for large-scale synthesis.
Collapse
Affiliation(s)
- Dong-Yang Han
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Peng Liu
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ruo-Pu Li
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Da-Zhen Xu
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
29
|
Mitsudo K, Kobashi Y, Nakata K, Kurimoto Y, Sato E, Mandai H, Suga S. Cu-Catalyzed Dehydrogenative C-O Cyclization for the Synthesis of Furan-Fused Thienoacenes. Org Lett 2021; 23:4322-4326. [PMID: 34029106 DOI: 10.1021/acs.orglett.1c01256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first Cu-catalyzed dehydrogenative C-O cyclization for the synthesis of furan-fused thienoacenes is described. A variety of heteroacenes including a thieno[3,2-b]furan or a thieno[2,3-b]furan skeleton were synthesized by intramolecular C-H/O-H coupling. The use of a mixed solvent of N-methyl-2-pyrrolidone, ethylene glycol monomethyl ether, and toluene was essential for suppressing side reactions and efficiently promoting the reaction. Double C-O cyclization was also conducted to afford highly π-expanded furan-fused thienoacenes.
Collapse
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yoshiaki Kobashi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kaito Nakata
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuji Kurimoto
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Eisuke Sato
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Mandai
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0293, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
30
|
Iodine(III) promotes cross-dehydrogenative coupling of N-hydroxyphthalimide and unactivated C(sp 3)-H bonds. Commun Chem 2021; 4:46. [PMID: 36697770 PMCID: PMC9814821 DOI: 10.1038/s42004-021-00480-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/26/2021] [Indexed: 01/28/2023] Open
Abstract
Cross-dehydrogenative coupling reactions provide a method to construct new chemical bonds by direct C-H activation without any pre-functionalization. Compared to functionalization of a C-H bond α- to ether oxygen, α- to carbonyl, or at a benzylic position, functionalization of unactivated hydrocarbons is difficult and often requires high temperatures, a transition-metal catalyst, or a superstoichiometric quantity of volatile, toxic, and explosive tert-butylhydroperoxide. Here, a cross-dehydrogenative C-O coupling reaction of N-hydroxyphthalimide with unactivated alkanes, nitriles, ethers, and thioethers has been realized by using iodobenzene diacetate as the radical initiator. The current protocol enables efficient functionalization of unactivated hydrocarbons and nitriles through inert C(sp3)-H bond activation under mild reaction conditions. O-substituted NHPI derivatives are generated in good yields under metal-free conditions.
Collapse
|
31
|
Singh P, Mritunjay. Progress of Dialkyl Azodicarboxylates in Organic Transformations. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Pushpinder Singh
- Department of Chemistry DAV University, Jalandhar Jalandhar-Pathankot National highway, Sarmastpur Jalandhar Punjab 144012 India
| | - Mritunjay
- Department of Chemistry DAV University, Jalandhar Jalandhar-Pathankot National highway, Sarmastpur Jalandhar Punjab 144012 India
| |
Collapse
|
32
|
Zhou Z, Wu Y, Yang P, Deng S, Zhang Q, Li D. Silver‐Catalyzed Cross Dehydrogenative Coupling between Heteroarenes and Cyclic Ethers under Mild Conditions. ChemistrySelect 2021. [DOI: 10.1002/slct.202100339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhong Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Yunli Wu
- Ecology and Environment Monitoring and Scientific Research Center Changjiang River Basin Ecology and Environment Administration Ministry of Ecology and Environment Wuhan 430010 China
| | - Peng Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Shijun Deng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Qian Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Dong Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
33
|
Li M, Zheng L, Ma L, Chen Y. Transition Metal-Free Oxidative Cross-Coupling Reaction of Activated Olefins with N-Alkyl Amides. J Org Chem 2021; 86:3989-3998. [PMID: 33573381 DOI: 10.1021/acs.joc.0c02837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The K2S2O8-mediated transition metal-free oxidative cross-coupling reaction of activated olefins with N-alkyl amides was developed, and the reaction gave N-allylic amides in moderate to good yield. This reaction protocol was suitable for different kinds of activated olefins.
Collapse
Affiliation(s)
- Miaomiao Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Lei Zheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Li Ma
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yunfeng Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| |
Collapse
|
34
|
|
35
|
Wang H, Ying P, Yu J, Su W. Alternative Strategies Enabling Cross-Dehydrogenative Coupling: Access to C—C Bonds. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202009053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Tian W, Li M, Yang S, Zhang H, Liu H, Xiao X. Copper Corrole as an Efficient Catalyst for Esterification of Allylic sp 3-C—H Bonds with Carboxylic Acids. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Kumar S, Shah TA, Punniyamurthy T. Recent advances in the application of tetrabromomethane in organic synthesis. Org Chem Front 2021. [DOI: 10.1039/d0qo01369b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review article covers the use of tetrabromomethane as mediator, catalyst and reagents for organic synthesis for the period from 2007 to 2020.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry
- DAV University
- Jalandhar-144012
- India
| | - Tariq A. Shah
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
- Department of Chemistry
| | | |
Collapse
|
38
|
Liang J, Wang B, Huang C, Ye X, Wen Y. Synthesis of Symmetrical ( E, E)-1,4-Diaryl-1,3-butadienes by One-Pot Method. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Yang J, Wang G, Chen S, Ma B, Zhou H, Song M, Liu C, Huo C. Catalyst-free, visible-light-promoted S-H insertion reaction between thiols and α-diazoesters. Org Biomol Chem 2020; 18:9494-9498. [PMID: 33180081 DOI: 10.1039/d0ob02006k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible-light-promoted S-H insertion reaction between thiols and α-diazoesters was developed. The reaction proceeded smoothly at room temperature with a broad substrate scope, affording various thioethers in moderate to excellent yields. The catalyst- and additive-free nature, sustainable energy source and mild reaction conditions make this strategy more eco-friendly.
Collapse
Affiliation(s)
- Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Ganggang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Shuwen Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Ben Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Hongyan Zhou
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China. and College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Menghui Song
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Cai Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Congde Huo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
40
|
Construction of C–O bond via cross-dehydrogenative coupling of sp [ ] C–H bond with phenols catalyzed by copper porphyrin. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Choi S, Oh H, Sim J, Yu E, Shin S, Park CM. Metal-Free Synthesis of Indolopyrans and 2,3-Dihydrofurans Based on Tandem Oxidative Cycloaddition. Org Lett 2020; 22:5528-5534. [PMID: 32628496 DOI: 10.1021/acs.orglett.0c01896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The synthesis of versatile scaffold indolopyrans based on C-C radical-radical cross-coupling under metal-free conditions is described. The reaction involving single electron transfer between coupling partners followed by cage collapse allows highly selective cross-coupling while employing only equimolar amounts of coupling partners. Moreover, the mechanistic manifold was expanded for the functionalization of enamines to give the stereoselective synthesis of 2,3-dihydrofurans. This iodine-mediated oxidative coupling features mild conditions and fast reaction kinetics.
Collapse
Affiliation(s)
- Subin Choi
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan 44919, Korea
| | - Hyeonji Oh
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan 44919, Korea
| | - Jeongwoo Sim
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan 44919, Korea
| | - Eunsoo Yu
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan 44919, Korea
| | - Seunghoon Shin
- Department of Chemistry, Hanyang University, Seoul 04763, Korea
| | - Cheol-Min Park
- Department of Chemistry, UNIST (Ulsan National Institute of Science & Technology), Ulsan 44919, Korea
| |
Collapse
|
42
|
Abstract
The development of cross-dehydrogenative coupling in recent years has simplified the synthesis of many materials, as a result of facile C–H activation, which, together with its greater atom economy and environmental friendliness, has made an impact on modern organic chemistry. Indeed, many C–C and C–X (X = N, O, P, S, B, or Si) coupling reactions can now be performed directly between two C–H bonds or a C–H and an X–H bond, simply by adding catalytic amounts of a metal salt to a mixture of the two and an oxidant to accept the two hydrogen atoms released. Chiral organocatalysts or chiral ligands have been joined to promote enantioselective processes, resulting in the development of efficient reaction cascades that provide products in high yields and high levels of asymmetric induction through cooperative catalysis. In recent years, photochemical oxidation and electrochemistry have widened even more the scope of cross-dehydrogenative coupling (CDC). In this review, we summarized the recent literature in this subject, hoping that it will inspire many new synthetic strategies.
Collapse
|
43
|
Hu R, Han D, Li N, Huang J, Feng Y, Xu D. Iron‐Catalyzed Direct Oxidative Alkylation and Hydroxylation of Indolin‐2‐ones with Alkyl‐Substituted N‐Heteroarenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ren‐Ming Hu
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Yang Han
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ning Li
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jie Huang
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yu Feng
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Da‐Zhen Xu
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
44
|
Hu R, Han D, Li N, Huang J, Feng Y, Xu D. Iron‐Catalyzed Direct Oxidative Alkylation and Hydroxylation of Indolin‐2‐ones with Alkyl‐Substituted N‐Heteroarenes. Angew Chem Int Ed Engl 2020; 59:3876-3880. [DOI: 10.1002/anie.201913400] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/11/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Ren‐Ming Hu
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Yang Han
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ning Li
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jie Huang
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yu Feng
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Da‐Zhen Xu
- National Engineering Research Center of Pesticide (Tianjin) State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
45
|
Yan X, Tang YD, Jiang CS, Liu X, Zhang H. Oxidative Dearomative Cross-Dehydrogenative Coupling of Indoles with Diverse C-H Nucleophiles: Efficient Approach to 2,2-Disubstituted Indolin-3-ones. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25020419. [PMID: 31968572 PMCID: PMC7024378 DOI: 10.3390/molecules25020419] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 11/16/2022]
Abstract
The oxidative, dearomative cross-dehydrogenative coupling of indoles with various C-H nucleophiles is developed. This process features a broad substrate scope with respect to both indoles and nucleophiles, affording structurally diverse 2,2-disubstituted indolin-3-ones in high yields (up to 99%). The oxidative dimerization and trimerization of indoles has also been demonstrated under the same conditions.
Collapse
Affiliation(s)
- Xue Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ying-De Tang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xigong Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Correspondence: (X.L.); (H.Z.)
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
- Correspondence: (X.L.); (H.Z.)
| |
Collapse
|
46
|
Kshirsagar UA, Waghmare DS, Tambe SD. The regioselective coupling of 2-arylquinazolinone C–H with aldehydes and benzyl alcohols under oxidative conditions. NEW J CHEM 2020. [DOI: 10.1039/d0nj03721d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Palladium catalyzed direct and regioselective cross dehydrogenative coupling (CDC) of 2-arylquinazoline-4-one endowed with a quinazolinone nucleus as an inherent directing group with aldehyde and oxidative coupling with benzyl alcohol was developed.
Collapse
Affiliation(s)
- Umesh A. Kshirsagar
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Indore
- India
- Department of Chemistry
| | | | | |
Collapse
|
47
|
Gandhi S. Catalytic enantioselective cross dehydrogenative coupling of sp 3 C-H of heterocycles. Org Biomol Chem 2019; 17:9683-9692. [PMID: 31710329 DOI: 10.1039/c9ob02113b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C-C bond formation in heterocycles via the direct coupling of C-H bonds, under oxidative conditions, classified as cross dehydrogenative coupling (CDC), is without doubt one of the most atom efficient methods for the functionalization of these molecules. The most common is the coupling at the position alpha to the heteroatom, owing to the stabilization of forming carbocation by the heteroatom. The corresponding asymmetric versions, except for a few isolated reports, have been rather evasive for several years. Optically active heterocycles with the chiral center alpha to the heteroatom are widely present in natural products and pharmaceuticals, thus making them an attractive synthetic target. Persistent efforts towards the asymmetric CDC of heterocycles since the beginning of this decade have led to several developments in this challenging area. Particularly, in the last few years, considerable progress has been witnessed in this field. This review summarizes the progress made in the area of asymmetric cross dehydrogenative coupling of heterocycles in recent years. The review covers the catalytic asymmetric CDC of sp3 C-H bonds of the heterocycles with various coupling partners and illustrates the different catalytic systems employed.
Collapse
Affiliation(s)
- Shikha Gandhi
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur 760 010, India.
| |
Collapse
|
48
|
Toda Y, Tanaka K, Matsuda R, Suga H. Visible-light-triggered Catalytic Halohydrin Synthesis from Epoxides and Trichloroacetonitrile by Copper and Iron Salts. CHEM LETT 2019. [DOI: 10.1246/cl.190679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yasunori Toda
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Katsumi Tanaka
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Riki Matsuda
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Hiroyuki Suga
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
49
|
Cobalt‐Catalyzed Oxyalkylation of Styrenes via α‐C(Sp
3
)−H Bond Activation of Ethers Without Organic Peroxides. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
Huang CY, Kang H, Li J, Li CJ. En Route to Intermolecular Cross-Dehydrogenative Coupling Reactions. J Org Chem 2019; 84:12705-12721. [DOI: 10.1021/acs.joc.9b01704] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chia-Yu Huang
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Hyotaik Kang
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Jianbin Li
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|