1
|
Zhu FY, Wu BD, Du MH, Yao JL, Abrahams BF, Gu H, Braunstein P, Lang JP. Tandem Protocol for Diversified Deuteration of Secondary Aliphatic Amines under Mild Conditions. J Org Chem 2024; 89:11414-11420. [PMID: 39102497 DOI: 10.1021/acs.joc.4c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Deuteration of amine compounds has been widely of concern because of its practical role in organic reaction mechanisms and drug research; however, only limited deuteration label methods are accessible with D2O as a deuterium source. Herein, we propose a convenient deuteration protocol, including preparing D2 by the AlGa activation method, using PtRu nanowires as catalysts, and utilizing the elementary step in the couple reaction involving an imine unit, to realize the rapid preparation of a secondary amine with a diversified deuteration label. The self-coupling between nitriles not only provides a symmetric secondary amine with four α-D atoms but also produces high-valued ND3 in an atomic-economic way.
Collapse
Affiliation(s)
- Feng-Yuan Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Bao-De Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | - Ming-Hao Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | - Jian-Lin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | | | - Hongwei Gu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
| | - Pierre Braunstein
- Université de Strasbourg─CNRS, Institut de Chimie (UMR 7177 CNRS), 4 rue Blaise Pascal-CS 90032, Strasbourg 67081, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
2
|
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem Rev 2022; 122:6634-6718. [PMID: 35179363 DOI: 10.1021/acs.chemrev.1c00795] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Wu Li
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | |
Collapse
|
3
|
Ruiz‐Castañeda M, Santos L, Manzano BR, Espino G, Jalón FA. A Water/Toluene Biphasic Medium Improves Yields and Deuterium Incorporation into Alcohols in the Transfer Hydrogenation of Aldehydes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Margarita Ruiz‐Castañeda
- Facultad de Ciencias y Tecnologías Químicas-IRICA University of Castilla-La Mancha Avda. C. J. Cela, 10 13071 Ciudad Real Spain
| | - Lucía Santos
- Facultad de Ciencias y Tecnologías Químicas-IRICA University of Castilla-La Mancha Avda. C. J. Cela, 10 13071 Ciudad Real Spain
| | - Blanca R. Manzano
- Facultad de Ciencias y Tecnologías Químicas-IRICA University of Castilla-La Mancha Avda. C. J. Cela, 10 13071 Ciudad Real Spain
| | - Gustavo Espino
- Departamento de Química Facultad de Ciencias University of Burgos Plaza Misael Bañuelos s/n 09001 Burgos Spain
| | - Félix A. Jalón
- Facultad de Ciencias y Tecnologías Químicas-IRICA University of Castilla-La Mancha Avda. C. J. Cela, 10 13071 Ciudad Real Spain
| |
Collapse
|
4
|
Li L, Chen X, Pei C, Li J, Zou D, Wu Y, Wu Y. Transition Metal-Free Deuteride Reduction of N- tert-Butanesulfinyl Ketimines Derivatives via B 2pin 2/D 2O System. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Yun XJ, Ling C, Deng W, Liu ZJ, Yao ZJ. Half-Sandwich Ru(II) Complexes with N,O-Chelate Ligands: Diverse Catalytic Activity for Amine Synthesis in Water. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xue-Jing Yun
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Chun Ling
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Zhen-Jiang Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Zi-Jian Yao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
- Key Lab of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
6
|
Liu X, Liu R, Qiu J, Cheng X, Li G. Chemical‐Reductant‐Free Electrochemical Deuteration Reaction using Deuterium Oxide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xu Liu
- Institute of Chemistry and Biomedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering National Demonstration Center for, Experimental Chemistry Education Nanjing University Nanjing 210023 China
| | - Ruoyu Liu
- Institute of Chemistry and Biomedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering National Demonstration Center for, Experimental Chemistry Education Nanjing University Nanjing 210023 China
| | - Jiaxing Qiu
- Institute of Chemistry and Biomedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering National Demonstration Center for, Experimental Chemistry Education Nanjing University Nanjing 210023 China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering National Demonstration Center for, Experimental Chemistry Education Nanjing University Nanjing 210023 China
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Zhejiang University of Technology Hangzhou 310032 China
| | - Guigen Li
- Institute of Chemistry and Biomedical Sciences Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering National Demonstration Center for, Experimental Chemistry Education Nanjing University Nanjing 210023 China
- Department of Chemistry and Biochemistry Texas Tech University Lubbock TX USA
| |
Collapse
|
7
|
Liu X, Liu R, Qiu J, Cheng X, Li G. Chemical-Reductant-Free Electrochemical Deuteration Reaction using Deuterium Oxide. Angew Chem Int Ed Engl 2020; 59:13962-13967. [PMID: 32394494 DOI: 10.1002/anie.202005765] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Indexed: 12/20/2022]
Abstract
We report a method for the electrochemical deuteration of α,β-unsaturated carbonyl compounds under catalyst- and external-reductant-free conditions, with deuteration rates as high as 99 % and yields up to 91 % in 2 h. The use of graphite felt for both the cathode and the anode was key to ensuring chemoselectivity and high deuterium incorporation under neutral conditions without the need for an external reductant. This method has a number of advantages over previously reported deuteration reactions that use stoichiometric metallic reductants. Mechanistic experiments showed that O2 evolution at the anode not only eliminates the need for an external reductant but also regulates the pH of the reaction mixture, keeping it approximately neutral.
Collapse
Affiliation(s)
- Xu Liu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for, Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China
| | - Ruoyu Liu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for, Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China
| | - Jiaxing Qiu
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for, Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for, Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China.,State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Guigen Li
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for, Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
8
|
Zhang S, Cheng G, Guo L, Wang N, Tan B, Jin S. Strong‐Base‐Assisted Synthesis of a Crystalline Covalent Triazine Framework with High Hydrophilicity via Benzylamine Monomer for Photocatalytic Water Splitting. Angew Chem Int Ed Engl 2020; 59:6007-6014. [DOI: 10.1002/anie.201914424] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Siquan Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Guang Cheng
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Liping Guo
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Ning Wang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Shangbin Jin
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| |
Collapse
|
9
|
Zhang S, Cheng G, Guo L, Wang N, Tan B, Jin S. Strong‐Base‐Assisted Synthesis of a Crystalline Covalent Triazine Framework with High Hydrophilicity via Benzylamine Monomer for Photocatalytic Water Splitting. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914424] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Siquan Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Guang Cheng
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Liping Guo
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Ning Wang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Shangbin Jin
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| |
Collapse
|
10
|
Mészáros R, Peng BJ, Ötvös SB, Yang SC, Fülöp F. Continuous-Flow Hydrogenation and Reductive Deuteration of Nitriles: a Simple Access to α,α-Dideutero Amines. Chempluschem 2020; 84:1508-1511. [PMID: 31943939 DOI: 10.1002/cplu.201900526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/03/2019] [Indexed: 11/11/2022]
Abstract
A simple and efficient continuous flow methodology has been developed for hydrogenation and reductive deuteration of nitriles to yield primary amines and also valuable α,α-dideutero analogues. Raney nickel proved to be a useful catalyst for the transformation of a wide range of nitriles under reasonably mild conditions with excellent deuterium incorporation (>90 %) and quantitative conversion. Among known model compounds, three new deuterated primary amines were prepared. The large-scale synthesis of deuterated tryptamine was also carried out to deliver 1.1 g product under flow conditions.
Collapse
Affiliation(s)
- Rebeka Mészáros
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, 6720, Szeged, Hungary
| | - Bai-Jing Peng
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, 6720, Szeged, Hungary.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Sándor B Ötvös
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, 6720, Szeged, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Eötvös u. 6, 6720, Szeged, Hungary.,Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Shyh-Chyun Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.,Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, 6720, Szeged, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Eötvös u. 6, 6720, Szeged, Hungary
| |
Collapse
|