1
|
Modak A. Recent Progress and Opportunity of Metal Single-Atom Catalysts for Biomass Conversion Reactions. Chem Asian J 2023:e202300671. [PMID: 37874179 DOI: 10.1002/asia.202300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/25/2023]
Abstract
The conversion of lignocellulosic biomass into platform chemicals and fuels by metal single atoms is a new domain in solid catalysis research. Unlike the conventional catalysis route, single-atom catalysts (SACs) proliferate maximum utilization efficiency, high catalytic activity, and good selectivity to the desired product with an ultralow loading of the active sites. More strikingly, SACs show a unique cost-effective pathway for the conversion of complex sugar molecules to value-added chemicals in high yield and selectivity, which may be hindered by conventional metal nanoparticles. Primarily, SACs having adjustable active sites could be easily modified using sophisticated synthetic techniques based on their intended reactions. This review covers current research on the use of SACs with a strong emphasis on the fundamentals of catalyst design, and their distinctive activities in each type of reaction (hydrogenation, hydrogenolysis, hydrodeoxygenation, oxidation, and dehydrogenation). Furthermore, the fundamental insights into the superior actions of SACs within the opportunity and prospects for the industrial-scale synthesis of value-added products from the lignocelluloses are covered.
Collapse
Affiliation(s)
- Arindam Modak
- Amity Institute of Applied Sciences (AIAS), Amity University-Noida, Amity Rd, Sector 125, Gautam Buddha, Nagar, Uttar Pradesh, 201301, India
| |
Collapse
|
2
|
Zhang L, Xing X, Liu Y, Shi W, Wang M. Directional methanolysis of kitchen waste for the co-production of methyl levulinate and fatty acid methyl esters: Catalytic strategy and machine learning modeling. BIORESOURCE TECHNOLOGY 2023; 367:128274. [PMID: 36351533 DOI: 10.1016/j.biortech.2022.128274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
To add value to ordinary kitchen waste, heterogeneous acid-base catalytic methanolysis was conducted to produce high-value liquid biofuels, methyl levulinate (ML) and fatty acid methyl esters (FAMEs). Yields of 53.3 % ML and 98.5 % FAME were achieved by methanolysis of kitchen waste under the co-catalysis of carbon-silica composite (C/Si-SO3H) and zirconium modified ultrastable Y zeolite (Zr/USY). These target products can be easily recovered from the methanolic phase and can be purified at the end of the reaction. The collaborative combination of C/Si-SO3H and Zr/USY exhibited higher activity than their commercial counterpart. This strategy can be applied to differently composed kitchen waste and kitchen waste with different water content. Product yields were predicted using an artificial neural network method, and the relative importance of the influencing factors was investigated by the random forest method. The systematic insight gained from this work supports the value-added utilization of kitchen waste.
Collapse
Affiliation(s)
- Luxin Zhang
- College of Environmental and Municipal Engineering, Shaanxi Key Laboratory of Environmental Engineering, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Xu Xing
- College of Environmental and Municipal Engineering, Shaanxi Key Laboratory of Environmental Engineering, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yuting Liu
- College of Environmental and Municipal Engineering, Shaanxi Key Laboratory of Environmental Engineering, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Weiwei Shi
- School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Mingzhe Wang
- School of Electrical and Data Engineering, University of Technology Sydney, 15 Broadway Ultimo, NSW 2007, Australia
| |
Collapse
|
3
|
Duan L, Hung C, Wang J, Wang C, Ma B, Zhang W, Ma Y, Zhao Z, Yang C, Zhao T, Peng L, Liu D, Zhao D, Li W. Synthesis of Fully Exposed Single‐Atom‐Layer Metal Clusters on 2D Ordered Mesoporous TiO
2
Nanosheets. Angew Chem Int Ed Engl 2022; 61:e202211307. [DOI: 10.1002/anie.202211307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Linlin Duan
- Laboratory of Advanced Materials Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymers iChEM College of Chemistry and Materials Science Fudan University Shanghai 200433 P. R. China
| | - Chin‐Te Hung
- Laboratory of Advanced Materials Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymers iChEM College of Chemistry and Materials Science Fudan University Shanghai 200433 P. R. China
| | - Jinxiu Wang
- Laboratory of Advanced Materials Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymers iChEM College of Chemistry and Materials Science Fudan University Shanghai 200433 P. R. China
| | - Changyao Wang
- Laboratory of Advanced Materials Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymers iChEM College of Chemistry and Materials Science Fudan University Shanghai 200433 P. R. China
| | - Bing Ma
- Laboratory of Advanced Materials Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymers iChEM College of Chemistry and Materials Science Fudan University Shanghai 200433 P. R. China
| | - Wei Zhang
- Laboratory of Advanced Materials Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymers iChEM College of Chemistry and Materials Science Fudan University Shanghai 200433 P. R. China
| | - Yuzhu Ma
- Laboratory of Advanced Materials Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymers iChEM College of Chemistry and Materials Science Fudan University Shanghai 200433 P. R. China
| | - Zaiwang Zhao
- Laboratory of Advanced Materials Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymers iChEM College of Chemistry and Materials Science Fudan University Shanghai 200433 P. R. China
| | - Chaochao Yang
- Laboratory of Advanced Materials Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymers iChEM College of Chemistry and Materials Science Fudan University Shanghai 200433 P. R. China
| | - Tiancong Zhao
- Laboratory of Advanced Materials Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymers iChEM College of Chemistry and Materials Science Fudan University Shanghai 200433 P. R. China
| | - Liang Peng
- Laboratory of Advanced Materials Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymers iChEM College of Chemistry and Materials Science Fudan University Shanghai 200433 P. R. China
| | - Di Liu
- Laboratory of Advanced Materials Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymers iChEM College of Chemistry and Materials Science Fudan University Shanghai 200433 P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymers iChEM College of Chemistry and Materials Science Fudan University Shanghai 200433 P. R. China
| | - Wei Li
- Laboratory of Advanced Materials Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymers iChEM College of Chemistry and Materials Science Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
4
|
Duan L, Hung CT, Wang J, Wang C, Ma B, Zhang W, Ma Y, Zhao Z, Yang C, Zhao T, Peng L, Liu D, Zhao D, Li W. Synthesis of Fully Exposed Single‐Atom‐Layer Metal Clusters on 2D Ordered Mesoporous TiO2 Nanosheets. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Linlin Duan
- Fudan University Laboratory of Advanced Materials songhu road 2205 shanghai 200433 Shanghai CHINA
| | - Chin-Te Hung
- Fudan University Laboratory of Advanced Materials CHINA
| | - Jinxiu Wang
- Fudan University Laboratory of Advanced Materials CHINA
| | - Changyao Wang
- Fudan University Laboratory of Advanced Materials CHINA
| | - Bing Ma
- Fudan University Laboratory of Advanced Materials CHINA
| | - Wei Zhang
- Fudan University Laboratory of Advanced Materials CHINA
| | - Yuzhu Ma
- Fudan University Laboratory of Advanced Materials CHINA
| | - Zaiwang Zhao
- Fudan University Laboratory of Advanced Materials CHINA
| | - Chaochao Yang
- Fudan University Laboratory of Advanced Materials CHINA
| | - Tiancong Zhao
- Fudan University Laboratory of Advanced Materials CHINA
| | - Liang Peng
- Fudan University Laboratory of Advanced Materials CHINA
| | - Di Liu
- Fudan University Laboratory of Advanced Materials CHINA
| | - Dongyuan Zhao
- Fudan University Laboratory of Advanced Materials CHINA
| | - Wei Li
- Fudan University Department of Chemistry Songhu Road 2205606 Advanced Materials Laboratory, Jiangwan Campus 200433 Shanghai CHINA
| |
Collapse
|
5
|
Liu J, Zhang Y, Ji H, Zhang J, Zhou P, Cao Y, Zhou J, Yan C, Qian T. Cationic Covalent Organic Framework with Ultralow HOMO Energy Used as Scaffolds for 5.2 V Solid Polycarbonate Electrolytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200390. [PMID: 35619330 PMCID: PMC9313477 DOI: 10.1002/advs.202200390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Solid polymer electrolytes (SPEs) have become promising candidate to replace common liquid electrolyte due to highly improved security. However, the practical use of SPEs is still restricted by their decomposition and breakage at the electrode interfacial layer especially at high voltage. Herein, a new cationic covalent organic framework (COF) is designed and synthesized as a reinforced skeleton to resist the constant oxidative decomposition of solid polycarbonate electrolyte, which can stabilize cathode electrolyte interphase layer to develop long-term cycle solid lithium metal battery. The ultralow HOMO energy (-12.55 eV according to density functional theory (DFT) calculations), reflecting its oxidation resistance at positive potential, would be responsible for the high decomposition voltage of 5.2 V versus Li+ /Li of solid polycarbonate electrolyte. Furthermore, the smooth surface of interfacial layer and inhibited decomposition reaction at cathode side is confirmed in solid LiCoO2 cell, which realizes high initial capacity up to 160.3 mAh g-1 at 0.1 C and greatly improved stability in 4.5 V class solid polymer lithium metal battery with high capacity retention over 200 cycles. This new type of high-voltage resistant solid polymer electrolyte promotes the realization of high-voltage cathode materials and higher energy density lithium metal battery.
Collapse
Affiliation(s)
- Jie Liu
- School of Chemistry and Chemical EngineeringNantong UniversityNantong226019China
| | - Yuhao Zhang
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical IndustryCollege of EnergySoochow UniversitySuzhou215006China
| | - Haoqing Ji
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical IndustryCollege of EnergySoochow UniversitySuzhou215006China
| | - Jing Zhang
- State Key Laboratory of Space Power‐sources TechnologyShanghai Institute of Space Power‐SourcesShanghai200245China
| | - Pinxin Zhou
- State Key Laboratory of Space Power‐sources TechnologyShanghai Institute of Space Power‐SourcesShanghai200245China
| | - Yufeng Cao
- School of Chemistry and Chemical EngineeringNantong UniversityNantong226019China
| | - Jinqiu Zhou
- School of Chemistry and Chemical EngineeringNantong UniversityNantong226019China
| | - Chenglin Yan
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical IndustryCollege of EnergySoochow UniversitySuzhou215006China
| | - Tao Qian
- School of Chemistry and Chemical EngineeringNantong UniversityNantong226019China
| |
Collapse
|
6
|
Chen X, Wang XB, Han S, Wang D, Li C, Guan W, Li WY, Liang C. Overcoming Limitations in the Strong Interaction between Pt and Irreducible SiO 2 Enables Efficient and Selective Hydrogenation of Anthracene. ACS APPLIED MATERIALS & INTERFACES 2022; 14:590-602. [PMID: 34905332 DOI: 10.1021/acsami.1c16965] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Interactions between metals and oxide supports are crucial in determining catalytic activity, selectivity, and stability. For reducible oxide supported noble metals, a strong metal-support interaction (SMSI) has been widely recognized. Herein we report the intermediate selectivity and stability over an irreducible SiO2 supported Pt catalyst in the hydrogenation of anthracene that are significantly boosted due to the SMSI-induced formation of intermetallic Pt silicide and Pt-SiO2 interface. The limitation in the strong interaction between Pt nanoparticles and irreducible SiO2 has been breached by combining the strong electrostatic adsorption method and following the high temperature reduction strategy. Due to the isolated Pt active sites by Si atoms, the activated H species produced over the Pt2Si/SiO2 catalyst with an initial catalytic activity of 2.49 μmol/(m2/g)/h as well as TOF of 0.95 s-1 preferentially transfer to the outer ring of anthracene to 87% yield of symmetric octahydroanthracene (sym-OHA) by subsequent hydrogenation. In addition, the Pt2Si/SiO2 catalyst presents an excellent stability after five cycles, which can be attributed to the fact that intermetallic Pt2Si nanoparticles are anchored firmly onto the surface of the SiO2 support. The discovery contributes to broaden the horizons on the SMSI effect in the irreducible oxide supported metal particle catalysts and provides guidance to design the metal-SiO2 interface and tune the surface chemical properties in diverse application conditions.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xing-Bao Wang
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shuhua Han
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Dong Wang
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chuang Li
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Weixiang Guan
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wen-Ying Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China
| | - Changhai Liang
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Sevim M, Bayrak C, Menzek A. Chemoselective reduction of α,β-unsaturated carbonyl compounds in the presence of CuPd alloy nanoparticles decorated on mesoporous graphitic carbon nitride as highly efficient catalyst. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Zhang H, Cai C, Hu T, Zhang Z, Dai L, Fei H, Bai H, Wu C, Gong X, Zheng X. Magnetically separable and efficient platinum catalyst: Amino ligand enhanced loading and Fe
2+
facilitated Pt
0
formation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haifeng Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Cheng Cai
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Tao Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Zhijie Zhang
- Key Laboratory of Science and Technology on High‐tech Polymer Materials Chinese Academy of Sciences Beijing China
| | - Lina Dai
- Key Laboratory of Science and Technology on High‐tech Polymer Materials Chinese Academy of Sciences Beijing China
| | - Huafeng Fei
- Key Laboratory of Science and Technology on High‐tech Polymer Materials Chinese Academy of Sciences Beijing China
| | - Hongli Bai
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Chonggang Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Xinghou Gong
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| | - Xuan Zheng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Wuhan China
- Collaborative Innovation Center of Green Light‐weight Materials and Processing Wuhan China
- School of Materials and Chemical Engineering Hubei University of Technology Wuhan China
| |
Collapse
|
9
|
Modak A, Mankar AR, Pant KK, Bhaumik A. Mesoporous Porphyrin-Silica Nanocomposite as Solid Acid Catalyst for High Yield Synthesis of HMF in Water. Molecules 2021; 26:2519. [PMID: 33925892 PMCID: PMC8123422 DOI: 10.3390/molecules26092519] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/29/2022] Open
Abstract
Solid acid catalysts occupy a special class in heterogeneous catalysis for their efficiency in eco-friendly conversion of biomass into demanding chemicals. We synthesized porphyrin containing porous organic polymers (PorPOPs) using colloidal silica as a support. Post-modification with chlorosulfonic acid enabled sulfonic acid functionalization, and the resulting material (PorPOPS) showed excellent activity and durability for the conversion of fructose to 5-hydroxymethyl furfural (HMF) in green solvent water. PorPOPS composite was characterized by N2 sorption, FTIR, TGA, CHNS, FESEM, TEM and XPS techniques, justifying the successful synthesis of organic networks and the grafting of sulfonic acid sites (5 wt%). Furthermore, a high surface area (260 m2/g) and the presence of distinct mesopores of ~15 nm were distinctly different from the porphyrin containing sulfonated porous organic polymer (FePOP-1S). Surprisingly the hybrid PorPOPS showed an excellent yield of HMF (85%) and high selectivity (>90%) in water as compared to microporous pristine-FePOP-1S (yield of HMF = 35%). This research demonstrates the requirement of organic modification on silica surfaces to tailor the activity and selectivity of the catalysts. We foresee that this research may inspire further applications of biomass conversion in water in future environmental research.
Collapse
Affiliation(s)
- Arindam Modak
- Catalytic Reaction Engineering Lab, Department of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India; (A.M.); (A.R.M.)
| | - Akshay R. Mankar
- Catalytic Reaction Engineering Lab, Department of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India; (A.M.); (A.R.M.)
| | - Kamal Kishore Pant
- Catalytic Reaction Engineering Lab, Department of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India; (A.M.); (A.R.M.)
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
10
|
Effect of Nanoparticle Size in Pt/SiO 2 Catalyzed Nitrate Reduction in Liquid Phase. NANOMATERIALS 2021; 11:nano11010195. [PMID: 33466654 PMCID: PMC7828658 DOI: 10.3390/nano11010195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/24/2022]
Abstract
Effect of platinum nanoparticle size on catalytic reduction of nitrate in liquid phase was examined under ambient conditions by using hydrogen as a reducing agent. For the size effect study, Pt nanoparticles with sizes of 2, 4 and 8 nm were loaded silica support. TEM images of Pt nanoparticles showed that homogeneous morphologies as well as narrow size distributions were achieved during the preparation. All three catalysts showed high activity and were able to reduce nitrate below the recommended limit of 50 mg/L in drinking water. The highest catalytic activity was seen with 8 nm platinum; however, the product selectivity for N2 was highest with 4 nm platinum. In addition, the possibility of PVP capping agent acting as a promoter in the reaction is highlighted.
Collapse
|
11
|
Lende AB, Bhattacharjee S, Tan CS. Production of Environmentally Friendly Polyester by Hydrogenation of Poly(butylene terephthalate) over Rh–Pt Catalysts Supported on Carbon Black and Recovery by a Compressed CO2 Antisolvent Technique. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Avinash B. Lende
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Saurav Bhattacharjee
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Chung-Sung Tan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| |
Collapse
|
12
|
Sun X, Meng F, Su Q, Luo K, Ju P, Liu Z, Li X, Li G, Wu Q. New catalytically active conjugated microporous polymer bearing ordered salen-Cu and porphyrin moieties for Henry reaction in aqueous solution. Dalton Trans 2020; 49:13582-13587. [PMID: 32970055 DOI: 10.1039/d0dt02686g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A catalytically active conjugated microporous polymer (SP-CMP-Cu) was facilely constructed with condensation polymerization of salen-Cu (salen = N,N'-bis(3-tertbutyl-5-formylsalicylidene) ethylenediamine) and pyrrole. The as-synthesized SP-CMP-Cu was completely characterized by powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray (EDX) analysis. The morphological features of SP-CMP-Cu were revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). According to the N2 adsorption/desorption isotherm, the Brunauer-Emmett-Teller (BET) surface area of SP-CMP-Cu was calculated to be 252 m2 g-1 with a total pore volume of 0.178 cm3 g-1. SP-CMP-Cu exhibited an outstanding catalytic performance for the Henry reaction in aqueous solutions with excellent conversion and good selectivity. Moreover, SP-CMP-Cu can be reused for up to five consecutive runs without any significant loss in its catalytic efficiency.
Collapse
Affiliation(s)
- Xiaoman Sun
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Fanyu Meng
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Qing Su
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Kexin Luo
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Pengyao Ju
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Ziqian Liu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Xiaodong Li
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Guanghua Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Qiaolin Wu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
13
|
Date NS, Hengne AM, Huang K, Chikate RC, Rode CV. One Pot Hydrogenation of Furfural to 2‐Methyl Tetrahydrofuran over Supported Mono‐ and Bi‐metallic Catalysts. ChemistrySelect 2020. [DOI: 10.1002/slct.202002322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nandan S. Date
- Chemical Engineering and process development DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008
- Department of ChemistryMES's Abasaheb Garware College Karve Road Pune 411004
| | - Amol M. Hengne
- Catalysis Centre and Division of Physical Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - K.‐W. Huang
- Catalysis Centre and Division of Physical Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rajeev C. Chikate
- Department of ChemistryMES's Abasaheb Garware College Karve Road Pune 411004
| | - Chandrashekhar V. Rode
- Chemical Engineering and process development DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008
| |
Collapse
|
14
|
She P, Rao H, Guan B, Qin JS, Yu J. Spatially Separated Bifunctional Cocatalysts Decorated on Hollow-Structured TiO 2 for Enhanced Photocatalytic Hydrogen Generation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23356-23362. [PMID: 32329595 DOI: 10.1021/acsami.0c04905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Efficient charge separation can promote photocatalysis of semiconductors. Herein, a hollow-structured TiO2 sphere decorated with spatially separated bifunctional cocatalysts was designed, which exhibited enhanced photocatalytic hydrogen generation. Ultrasmall-sized MOx (M = Pd, Co, Ni, or Cu) nanoparticles (NPs) were first introduced into a zeolite via confinement synthesis, and then, hollow TiO2 was fabricated by using the zeolite as a sacrificial template forming MOx@TiO2. Finally, Pt NPs were decorated on the outer shell, giving rise to MOx@TiO2@Pt, in which the MOx NPs and Pt NPs acted as hole capturers and electron sinks, respectively. Thanks to the enhanced light harvesting of the hollow structure and improved charge separation induced by the smaller-sized cocatalysts as well as spatially separated bifunctional cocatalysts, the as-prepared PdOx@TiO2@Pt catalyst exhibited a superior photocatalytic hydrogen-generation property (0.45 mmol h-1). This work demonstrates the advantage of the spatially separated bifunctional cocatalysts in enhancing the photocatalytic properties of semiconductors.
Collapse
Affiliation(s)
- Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Buyuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
15
|
Chen X, Cao H, Chen X, Du Y, Qi J, Luo J, Armbrüster M, Liang C. Synthesis of Intermetallic Pt-Based Catalysts by Lithium Naphthalenide-Driven Reduction for Selective Hydrogenation of Cinnamaldehyde. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18551-18561. [PMID: 32239903 DOI: 10.1021/acsami.0c01987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Intermetallic nanoparticles (NPs) with a well-defined atom binding environment and a long-range ordering structure can be used as ideal models to understand their physical and catalytic properties. In this work, several kinds of nanostructured and carbon nanotube (CNT)-supported Pt-based intermetallic compounds (IMCs) have been synthesized by one-step lithium naphthalenide-driven reduction at room temperature without the use of surfactants in light of the reduction potential of metals. In the chemoselective hydrogenation of cinnamaldehyde, the second metal in Pt-M IMCs significantly creates a suitable reaction environment through construction of a good geometric and electronic structure. The Pt3Sn/CNT catalyst presents highly efficient and good chemoselective hydrogenation of cinnamaldehyde to cinnamyl alcohol. This can be attributed to the fact that the incorporated Sn atoms effectively dilute large Pt ensembles and increase the electron density of Pt. The in situ-formed SnOx interfaces as Lewis acid sites facilitate the coordination of C═O bonds, enhancing the selectivity to cinnamyl alcohol. In addition, the SnOx interface as the joint between Pt3Sn IMCs NPs and CNTs significantly improves the stability of the catalyst in the reaction environment.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - He Cao
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaozhen Chen
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yan Du
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ji Qi
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jingjie Luo
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Marc Armbrüster
- Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, Chemnitz 09107, Germany
| | - Changhai Liang
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|