1
|
Staar M, Ahlborn L, Estévez-Gay M, Pallasch K, Osuna S, Schallmey A. A Dynamic Loop in Halohydrin Dehalogenase HheG Regulates Activity and Enantioselectivity in Epoxide Ring Opening. ACS Catal 2024; 14:15976-15987. [PMID: 39507489 PMCID: PMC11536340 DOI: 10.1021/acscatal.4c04815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
Halohydrin dehalogenase HheG and its homologues are remarkable enzymes for the efficient ring opening of sterically demanding internal epoxides using a variety of nucleophiles. The enantioselectivity of the respective wild-type enzymes, however, is usually insufficient for application and frequently requires improvement by protein engineering. We herein demonstrate that the highly flexible N-terminal loop of HheG, comprising residues 39 to 47, has a tremendous impact on the activity as well as enantioselectivity of this enzyme in the ring opening of structurally diverse epoxide substrates. Thus, highly active and enantioselective HheG variants could be accessed through targeted engineering of this loop. In this regard, variant M45F displayed almost 10-fold higher specific activity than wild type in the azidolysis of cyclohexene oxide, yielding the corresponding product (1S,2S)-2-azidocyclohexan-1-ol in 96%eeP (in comparison to 49%eeP for HheG wild type). Moreover, this variant was also improved regarding activity and enantioselectivity in the ring opening of cyclohexene oxide with other nucleophiles, demonstrating even inverted enantioselectivity with cyanide and cyanate. In contrast, a complete loop deletion yielded an inactive enzyme. Concomitant computational analyses of HheG M45F in comparison to wild type enzyme revealed that mutation M45F promotes the productive binding of cyclohexene oxide and azide in the active site by establishing noncovalent C-H ··π interactions between epoxide and F45. These interactions further position one of the two carbon atoms of the epoxide ring closer to the azide, resulting in higher enantioselectivity. Additionally, stable and enantioselective cross-linked enzyme crystals of HheG M45F were successfully generated after combination with mutation D114C. Overall, our study highlights that a highly flexible loop in HheG governs the enzyme's activity and selectivity in epoxide ring opening and should thus be considered in future protein engineering campaigns of HheG.
Collapse
Affiliation(s)
- Marcel Staar
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Lina Ahlborn
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Miquel Estévez-Gay
- CompBioLab
Group, Institut de Química Computacional i Catàlisi
(IQCC), Departament de Química, Universitat
de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Katharina Pallasch
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Sílvia Osuna
- CompBioLab
Group, Institut de Química Computacional i Catàlisi
(IQCC), Departament de Química, Universitat
de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Anett Schallmey
- Institute
for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
- Zentrum
für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany
- Braunschweig
Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| |
Collapse
|
2
|
Staar M, Schallmey A. Performance of cross-linked enzyme crystals of engineered halohydrin dehalogenase HheG in different chemical reactor systems. Biotechnol Bioeng 2023; 120:3210-3223. [PMID: 37593803 DOI: 10.1002/bit.28528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Halohydrin dehalogenase HheG is an industrially interesting biocatalyst for the preparation of different β-substituted alcohols starting from bulky internal epoxides. We previously demonstrated that the immobilization of different HheG variants in the form of cross-linked enzyme crystals (CLECs) yielded stable and reusable enzyme immobilizes with increased resistance regarding temperature, pH, and the presence of organic solvents. Now, to further establish their preparative applicability, HheG D114C CLECs cross-linked with bis-maleimidoethane have been successfully produced on a larger scale using a stirred crystallization approach, and their application in different chemical reactor types (stirred tank reactor, fluidized bed reactor, and packed bed reactor) was systematically studied and compared for the ring opening of cyclohexene oxide with azide. This revealed the highest obtained space-time yield of 23.9 kgproduct gCLEC -1 h-1 Lreactor volume -1 along with the highest achieved product enantiomeric excess [64%] for application in a packed-bed reactor. Additionally, lyophilization of those CLECs yielded a storage-stable HheG preparation that still retained 67% of initial activity (after lyophilization) after 6 months of storage at room temperature.
Collapse
Affiliation(s)
- Marcel Staar
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
3
|
Solarczek J, Kaspar F, Bauer P, Schallmey A. G-type Halohydrin Dehalogenases Catalyze Ring Opening Reactions of Cyclic Epoxides with Diverse Anionic Nucleophiles. Chemistry 2022; 28:e202202343. [PMID: 36214160 PMCID: PMC10099379 DOI: 10.1002/chem.202202343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/07/2022]
Abstract
Halohydrin dehalogenases are promiscuous biocatalysts, which enable asymmetric ring opening reactions of epoxides with various anionic nucleophiles. However, despite the increasing interest in such asymmetric transformations, the substrate scope of G-type halohydrin dehalogenases toward cyclic epoxides has remained largely unexplored, even though this subfamily is the only one known to display activity with these sterically demanding substrates. Herein, we report on the exploration of the substrate scope of the two G-type halohydrin dehalogenases HheG and HheG2 and a newly identified, more thermostable member of the family, HheG3, with a variety of sterically demanding cyclic epoxides and anionic nucleophiles. This work shows that, in addition to azide and cyanide, these enzymes facilitate ring-opening reactions with cyanate, thiocyanate, formate, and nitrite, significantly expanding the known repertoire of accessible transformations.
Collapse
Affiliation(s)
- Jennifer Solarczek
- Technische Universität Braunschweig, Institute for Biochemistry Biotechnology and Bioinformatics, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Felix Kaspar
- Technische Universität Braunschweig, Institute for Biochemistry Biotechnology and Bioinformatics, Spielmannstraße 7, 38106, Braunschweig, Germany.,Chair of Bioprocess Engineering, Technische Universität Berlin, Ackerstraße 76, 13355, Berlin, Germany
| | - Pia Bauer
- Technische Universität Braunschweig, Institute for Biochemistry Biotechnology and Bioinformatics, Spielmannstraße 7, 38106, Braunschweig, Germany.,Amedes Genetics, MVZ for Laboratory Medicine, Georgstraße 50, 30159, Hannover, Germany
| | - Anett Schallmey
- Technische Universität Braunschweig, Institute for Biochemistry Biotechnology and Bioinformatics, Spielmannstraße 7, 38106, Braunschweig, Germany.,Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106, Braunschweig, Germany.,Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Braunschweig, Germany
| |
Collapse
|
4
|
Ma R, Hua X, He CL, Wang HH, Wang ZX, Cui BD, Han WY, Chen YZ, Wan NW. Biocatalytic Thionation of Epoxides for Enantioselective Synthesis of Thiiranes. Angew Chem Int Ed Engl 2022; 61:e202212589. [PMID: 36328962 DOI: 10.1002/anie.202212589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 11/06/2022]
Abstract
Expanding the enzymatic toolbox for the green synthesis of valuable molecules is still of high interest in synthetic chemistry and the pharmaceutical industry. Chiral thiiranes are valuable sulfur-containing heterocyclic compounds, but relevant methods for their enantioselective synthesis are limited. Herein, we report a biocatalytic thionation strategy for the enantioselective synthesis of thiiranes, which was developed based on the halohydrin dehalogenase (HHDH)-catalyzed enantioselective ring-opening reaction of epoxides with thiocyanate and a subsequent nonenzymatic rearrangement process. A novel HHDH was identified and engineered for enantioselective biocatalytic thionation of various aryl- and alkyl-substituted epoxides on a preparative scale, affording the corresponding thiiranes in up to 43 % isolated yield and 98 % ee. Large-scale synthesis and useful transformations of chiral thiiranes were also performed to demonstrate the utility and scalability of the biocatalytic thionation strategy.
Collapse
Affiliation(s)
- Ran Ma
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xia Hua
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Cheng-Li He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Hui-Hui Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zhu-Xiang Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Dokli I, Brkljača Z, Švaco P, Tang L, Stepanić V, Majerić Elenkov M. Biocatalytic approach to chiral fluoroaromatic scaffolds. Org Biomol Chem 2022; 20:9734-9741. [PMID: 36440739 DOI: 10.1039/d2ob01955h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ten different fluorinated aromatic epoxides have been tested as potential substrates for halohydrin dehalogenase (HHDH) HheC. The majority of investigated epoxides are useful building blocks in synthetic chemistry applications, with a number of them being polysubstituted. Moderate to high enantioselectivities (ER = 15 → 200) were observed in azidolysis, allowing the synthesis of enantioenriched (R)-azido alcohols containing fluorine in the molecule. In the case where a reaction runs over 50% conversion, enantiopure (S)-epoxides are also available. While o-F-styrene oxide was easily converted into a product, a sterically challenging o-CF3-derivative was not accepted by HheC. In silico probing of the binding site indicates that, in order to accommodate an o-CF3-derivative in the HheC active site, it is necessary to eliminate steric hindrance. Hence, we extended our research by probing several available HheC variants containing relevant modifications in the active site. The active mutant P84V/F86P/T134A/N176A (named HheC-M4) was identified, showing not only high activity towards o-CF3-styrene oxide, but also inverted enantioselectivity (ES = 27). Since (S)-enantioselective HHDHs are rare and therefore valuable for their synthetic application, this enzyme was screened on the initial panel of substrates. The observed (S)-enantioselectivity (ES = 1-111) is ascribed to the formation of the additional space by introduced mutations in HheC-M4, which is also confirmed by classical MD simulations. Successive molecular docking demonstrated that this newly formed tunnel located close to the protein surface is a critical feature of HheC-M4, representing a novel binding site.
Collapse
Affiliation(s)
- Irena Dokli
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb 10000, Croatia.
| | - Zlatko Brkljača
- Selvita Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Petra Švaco
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb 10000, Croatia.
| | - Lixia Tang
- University of Electronic Science and Technology, No. 4, Section 2, North Jianshe Road, Chengdu, China
| | - Višnja Stepanić
- Ruđer Bošković Institute, Bijenička c. 54, Zagreb 10000, Croatia.
| | | |
Collapse
|
6
|
Crystal Contact Engineering for Enhanced Cross-Linking Efficiency of HheG Crystals. Catalysts 2022. [DOI: 10.3390/catal12121553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The generation of cross-linked enzyme crystals is a very attractive method for immobilization of enzymes displaying high crystalizability. However, the commonly used cross-linker glutaraldehyde is not always compatible with enzyme activity. Therefore, we previously reported the engineering of halohydrin dehalogenase HheG from Ilumatobacter coccineus to enable thiol-specific cross-linking during CLEC generation by insertion of cysteine residues in the crystal contact. To broaden the applicability of this approach, herein crystal contact engineering of HheG has been performed to incorporate additional lysine residues as defined cross-linking sites for CLEC generation. Using the primary amine-specific cross-linker dithiobis(succinimidyl propionate) (DSP), CLECs of HheG variant V46K were obtained that displayed a high gain in thermal stability compared to wild-type HheG, while using only a low cross-linker concentration. Moreover, respective V46K CLECs exhibited a 10 K higher reaction temperature optimum as well as significantly improved activity and stability at acidic pH and in the presence of organic co-solvents. Overall, our study demonstrates that lysine-specific cross-linkers can also be used as an alternative to glutaraldehyde for stable CLEC generation of halohydrin dehalogenases, and that cross-linking efficiency is significantly improved upon crystal contact engineering.
Collapse
|
7
|
Wang H, Wan N, Miao R, He C, Chen Y, Liu Z, Zheng Y. Identification and Structure Analysis of an Unusual Halohydrin Dehalogenase for Highly Chemo‐, Regio‐ and Enantioselective Bio‐Nitration of Epoxides. Angew Chem Int Ed Engl 2022; 61:e202205790. [DOI: 10.1002/anie.202205790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Hui‐Hui Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Nan‐Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Run‐Ping Miao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Cheng‐Li He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Yong‐Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Zhi‐Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
| | - Yu‐Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
8
|
Wang HH, Wan NW, Miao RP, He CL, Chen YZ, Liu ZQ, Zheng YG. Identification and Structure Analysis of an Unusual Halohydrin Dehalogenase for Highly Chemo‐, Regio‐ and Enantioselective Bio‐Nitration of Epoxides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui-Hui Wang
- Zunyi Medical University School of Pharmacy CHINA
| | - Nan-Wei Wan
- Zunyi Medical University School of Pharmacy CHINA
| | | | - Cheng-Li He
- Zunyi Medical University School of Pharmacy CHINA
| | | | - Zhi-Qiang Liu
- Zhejiang University of Technology College of Biotechnology and Bioengineering Chaowang Rd. 18# 3100114 Hangzhou CHINA
| | - Yu-Guo Zheng
- Zhejiang University of Technology College of Biotechnology and Bioengineering CHINA
| |
Collapse
|
9
|
Mehić E, Hok L, Wang Q, Dokli I, Svetec Miklenić M, Findrik Blažević Z, Tang L, Vianello R, Majerić Elenkov M. Expanding the Scope of Enantioselective Halohydrin Dehalogenases – Group B. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Qian Wang
- University of Electronic Science and Technology of China CHINA
| | | | | | | | - Lixia Tang
- University of Electronic Science and Technology of China CHINA
| | | | | |
Collapse
|
10
|
Staar M, Henke S, Blankenfeldt W, Schallmey A. Biocatalytically active and stable cross‐linked enzyme crystals of halohydrin dehalogenase HheG by protein engineering. ChemCatChem 2022. [DOI: 10.1002/cctc.202200145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marcel Staar
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institute for Biochemistry, Biotechnology and Bioinformatics GERMANY
| | - Steffi Henke
- Helmholtz Centre for Infection Research: Helmholtz-Zentrum fur Infektionsforschung GmbH Structure and Function of Proteins GERMANY
| | - Wulf Blankenfeldt
- Helmholtz Centre for Infection Research: Helmholtz-Zentrum fur Infektionsforschung GmbH Structure and Function of Proteins GERMANY
| | - Anett Schallmey
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institute for Biochemistry, Biotechnology and Bioinformatics Spielmannstr. 7 38106 Braunschweig GERMANY
| |
Collapse
|
11
|
Wu JF, Wan NW, Li YN, Wang QP, Cui BD, Han WY, Chen YZ. Regiodivergent and stereoselective hydroxyazidation of alkenes by biocatalytic cascades. iScience 2021; 24:102883. [PMID: 34401667 PMCID: PMC8353479 DOI: 10.1016/j.isci.2021.102883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022] Open
Abstract
Asymmetric functionalization of alkenes allows the direct synthesis of a wide range of chiral compounds. Vicinal hydroxyazidation of alkenes provides a desirable path to 1,2-azidoalcohols; however, existing methods are limited by the control of stereoselectivity and regioselectivity. Herein, we describe a dual-enzyme cascade strategy for regiodivergent and stereoselective hydroxyazidation of alkenes, affording various enantiomerically pure 1,2-azidoalcohols. The biocatalytic cascade process is designed by combining styrene monooxygenase-catalyzed asymmetric epoxidation of alkenes and halohydrin dehalogenase-catalyzed regioselective ring opening of epoxides with azide. Additionally, a one-pot chemo-enzymatic route to chiral β-hydroxytriazoles from alkenes is developed via combining the biocatalytic cascades and Cu-catalyzed azide-alkyne cycloaddition.
Collapse
Affiliation(s)
- Jing-Fei Wu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Ying-Na Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Qing-Ping Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, , Zunyi, 563000, China
| |
Collapse
|
12
|
Two (Chemo)-Enzymatic Cascades for the Production of Opposite Enantiomers of Chiral Azidoalcohols. Catalysts 2021. [DOI: 10.3390/catal11080982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multi-step cascade reactions have gained increasing attention in the biocatalysis field in recent years. In particular, multi-enzymatic cascades can achieve high molecular complexity without workup of reaction intermediates thanks to the enzymes’ intrinsic selectivity; and where enzymes fall short, organo- or metal catalysts can further expand the range of possible synthetic routes. Here, we present two enantiocomplementary (chemo)-enzymatic cascades composed of either a styrene monooxygenase (StyAB) or the Shi epoxidation catalyst for enantioselective alkene epoxidation in the first step, coupled with a halohydrin dehalogenase (HHDH)-catalysed regioselective epoxide ring opening in the second step for the synthesis of chiral aliphatic non-terminal azidoalcohols. Through the controlled formation of two new stereocenters, corresponding azidoalcohol products could be obtained with high regioselectivity and excellent enantioselectivity (99% ee) in the StyAB-HHDH cascade, while product enantiomeric excesses in the Shi-HHDH cascade ranged between 56 and 61%.
Collapse
|
13
|
Martínez-Montero L, Tischler D, Süss P, Schallmey A, Franssen MCR, Hollmann F, Paul CE. Asymmetric azidohydroxylation of styrene derivatives mediated by a biomimetic styrene monooxygenase enzymatic cascade. Catal Sci Technol 2021; 11:5077-5085. [PMID: 34381590 PMCID: PMC8328376 DOI: 10.1039/d1cy00855b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/13/2021] [Indexed: 12/18/2022]
Abstract
Enantioenriched azido alcohols are precursors for valuable chiral aziridines and 1,2-amino alcohols, however their chiral substituted analogues are difficult to access. We established a cascade for the asymmetric azidohydroxylation of styrene derivatives leading to chiral substituted 1,2-azido alcohols via enzymatic asymmetric epoxidation, followed by regioselective azidolysis, affording the azido alcohols with up to two contiguous stereogenic centers. A newly isolated two-component flavoprotein styrene monooxygenase StyA proved to be highly selective for epoxidation with a nicotinamide coenzyme biomimetic as a practical reductant. Coupled with azide as a nucleophile for regioselective ring opening, this chemo-enzymatic cascade produced highly enantioenriched aromatic α-azido alcohols with up to >99% conversion. A bi-enzymatic counterpart with halohydrin dehalogenase-catalyzed azidolysis afforded the alternative β-azido alcohol isomers with up to 94% diastereomeric excess. We anticipate our biocatalytic cascade to be a starting point for more practical production of these chiral compounds with two-component flavoprotein monooxygenases.
Collapse
Affiliation(s)
- Lía Martínez-Montero
- Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Ruhr-Universität Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Philipp Süss
- Enzymicals AG Walther-Rathenau-Straße 49a 17489 Greifswald Germany
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig Spielmannstraße 7 38106 Braunschweig Germany
| | - Maurice C R Franssen
- Laboratory of Organic Chemistry, Wageningen University Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
14
|
Wessel J, Petrillo G, Estevez-Gay M, Bosch S, Seeger M, Dijkman WP, Iglesias-Fernández J, Hidalgo A, Uson I, Osuna S, Schallmey A. Insights into the molecular determinants of thermal stability in halohydrin dehalogenase HheD2. FEBS J 2021; 288:4683-4701. [PMID: 33605544 DOI: 10.1111/febs.15777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/07/2021] [Accepted: 02/15/2021] [Indexed: 11/30/2022]
Abstract
Halohydrin dehalogenases (HHDHs) are promising enzymes for application in biocatalysis due to their promiscuous epoxide ring-opening activity with various anionic nucleophiles. So far, seven different HHDH subtypes A to G have been reported with subtype D containing the by far largest number of enzymes. Moreover, several characterized members of subtype D have been reported to display outstanding characteristics such as high catalytic activity, broad substrate spectra or remarkable thermal stability. Yet, no structure of a D-type HHDH has been reported to date that could be used to investigate and understand those features on a molecular level. We therefore solved the crystal structure of HheD2 from gamma proteobacterium HTCC2207 at 1.6 Å resolution and used it as a starting point for targeted mutagenesis in combination with molecular dynamics (MD) simulation, in order to study the low thermal stability of HheD2 in comparison with other members of subtype D. This revealed a hydrogen bond between conserved residues Q160 and D198 to be connected with a high catalytic activity of this enzyme. Moreover, a flexible surface region containing two α-helices was identified to impact thermal stability of HheD2. Exchange of this surface region by residues of HheD3 yielded a variant with 10 °C higher melting temperature and reaction temperature optimum. Overall, our results provide important insights into the structure-function relationship of HheD2 and presumably for other D-type HHDHs. DATABASES: Structural data are available in PDB database under the accession number 7B73.
Collapse
Affiliation(s)
- Julia Wessel
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Germany
| | - Giovanna Petrillo
- Molecular Biology Institute of Barcelona, IBMB-CSIC, Barcelona, Spain
| | - Miquel Estevez-Gay
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Spain
| | - Sandra Bosch
- Centro de Biología Molecular 'Severo Ochoa', UAM-CSIC, Madrid, Spain
| | - Margarita Seeger
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Germany
| | - Willem P Dijkman
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Germany
| | - Javier Iglesias-Fernández
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Spain
| | - Aurelio Hidalgo
- Centro de Biología Molecular 'Severo Ochoa', UAM-CSIC, Madrid, Spain
| | - Isabel Uson
- Molecular Biology Institute of Barcelona, IBMB-CSIC, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Spain.,ICREA, Barcelona, Spain
| | - Anett Schallmey
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Germany
| |
Collapse
|
15
|
Gul I, Le W, Jie Z, Ruiqin F, Bilal M, Tang L. Recent advances on engineered enzyme-conjugated biosensing modalities and devices for halogenated compounds. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Conformational Landscapes of Halohydrin Dehalogenases and Their Accessible Active Site Tunnels. Catalysts 2020. [DOI: 10.3390/catal10121403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Halohydrin dehalogenases (HHDH) are industrially relevant biocatalysts exhibiting a promiscuous epoxide-ring opening reactivity in the presence of small nucleophiles, thus giving access to novel carbon–carbon, carbon–oxygen, carbon–nitrogen, and carbon–sulfur bonds. Recently, the repertoire of HHDH has been expanded, providing access to some novel HHDH subclasses exhibiting a broader epoxide substrate scope. In this work, we develop a computational approach based on the application of linear and non-linear dimensionality reduction techniques to long time-scale Molecular Dynamics (MD) simulations to study the HHDH conformational landscapes. We couple the analysis of the conformational landscapes to CAVER calculations to assess their impact on the active site tunnels and potential ability towards bulky epoxide ring opening reaction. Our study indicates that the analyzed HHDHs subclasses share a common breathing motion of the halide binding pocket, but present large deviations in the loops adjacent to the active site pocket and N-terminal regions. Such conformational differences affect the available tunnels for epoxide binding to the active site. The superior activity of the HHDH G subclass towards bulkier substrates is explained by the additional structural elements delimiting the active site region, its rich conformational heterogeneity, and the substantially wider and frequently observed active site tunnels. This study therefore provides key information for HHDH promiscuity and engineering.
Collapse
|
17
|
Findrik Blažević Z, Milčić N, Sudar M, Majerić Elenkov M. Halohydrin Dehalogenases and Their Potential in Industrial Application – A Viewpoint of Enzyme Reaction Engineering. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zvjezdana Findrik Blažević
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia
| | - Nevena Milčić
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia
| | - Martina Sudar
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia
| | | |
Collapse
|
18
|
Gul I, Fantaye Bogale T, Deng J, Wang L, Feng J, Tang L. A high-throughput screening assay for the directed evolution-guided discovery of halohydrin dehalogenase mutants for epoxide ring-opening reaction. J Biotechnol 2020; 311:19-24. [DOI: 10.1016/j.jbiotec.2020.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023]
|