1
|
Rokicka-Konieczna P, Morawski AW. Photocatalytic Bacterial Destruction and Mineralization by TiO 2-Based Photocatalysts: A Mini Review. Molecules 2024; 29:2221. [PMID: 38792082 PMCID: PMC11123885 DOI: 10.3390/molecules29102221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
This work presents an overview of the reports on the bacterial cell photocatalytic destruction and mineralization process in the presence of TiO2-based photocatalysts. The presented research included experiments conducted in air and water. Numerous works confirmed that a photocatalytic process with TiO2 led to bacteria and their organic residues' mineralization. Additionally, based on the obtained results, a possible two-stage mechanism of photocatalytic mineralization in the presence of TiO2-based materials was proposed. To help future studies, challenges of photocatalytic microorganism mineralization are also proposed. There are some aspects that need to be addressed, such as the lack of standardization of conducted research or relatively small amount of research on photocatalytic microorganism mineralization. According to our best knowledge, in the available literature, no work regarding a summary of previous research on photocatalytic bacterial mineralization process was found.
Collapse
Affiliation(s)
- Paulina Rokicka-Konieczna
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland;
| | | |
Collapse
|
2
|
Huang C, Xiao M, Cui H, Wang J, Cai Y, Ke Y. Carboxymethyl cellulose gels immobilized Ag/AgCl-ZnO nanoparticles for improving sunlight-catalyzed antibacterial performance. Int J Biol Macromol 2023; 252:126495. [PMID: 37633547 DOI: 10.1016/j.ijbiomac.2023.126495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Antibacterial sodium carboxymethyl cellulose (CMC) gels were prepared via immobilizing ZnO and/or Ag/AgCl in situ to inhibit the aggregation of nano-photocatalyst. Epichlorohydrin was used as a crosslinking agent to prepare CMC gel, simultaneously introducing chlorine-containing branch chains as Cl reservoir to deposit AgCl. The composite gels presented pH responsive swelling properties, with the minimum swelling ratio at pH 8 and pH 4 for CMC gels containing Ag/AgCl and ZnO, respectively. Zn2+ release from the nanocomposite gels was much greater in acidic than in neutral. Photocatalytic degradation constants of methyl orange by the composite gels under sunlight were greater than UV irradiation. Ag/AgCl loaded gel showed a degradation rate of 71.3 % under sunlight for 1 h, with a rate constant approximately 10.2 times higher than ZnO loaded gel. Extract liquids with the gel content below 0.33 mg/mL were noncytotoxicity. The nanocomposite gels presented good bactericidal rate against E. coli and S. aureus under sunlight for 6 h, comparatively to those in dark for 24 h. Bacteriostatic activity of Ag/AgCl loaded gel under sunlight for 6 h was much greater than that in dark for 24 h. The biocompatible nanocomposite gels with sunlight-catalyzed antibacterial activity would broaden the application of CMC gels.
Collapse
Affiliation(s)
- Chongjun Huang
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meng Xiao
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Hao Cui
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiayin Wang
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yurou Cai
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu Ke
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
O’Neill S, Robertson JMC, Héquet V, Chazarenc F, Pang X, Ralphs K, Skillen N, Robertson PKJ. Comparison of Titanium Dioxide and Zinc Oxide Photocatalysts for the Inactivation of Escherichia coli in Water Using Slurry and Rotating-Disk Photocatalytic Reactors. Ind Eng Chem Res 2023; 62:18952-18959. [PMID: 38020788 PMCID: PMC10655038 DOI: 10.1021/acs.iecr.3c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 12/01/2023]
Abstract
The application of photocatalysis for the disinfection of water has been extensively reported over the past 30 years. Titanium dioxide (TiO2) has been the most widely and successfully used photocatalyst to date; however, it is not without its limitations. Frequently observed long lag times, sometimes up to 60 min, before bacterial inactivation begins and the presence of residual microorganisms, for example, up to 104 colony forming units, remaining after treatment are ongoing challenges with this particular photocatalyst. It is therefore important to find alternative photocatalysts that can address these issues. In this study, we compared the disinfection capacity of TiO2 with that of zinc oxide (ZnO) using Escherichia coli as a model organism in both a suspended and immobilized catalyst system. Our results showed that ZnO was superior to TiO2 in a number of areas. Not only were bacterial rates of destruction much quicker with ZnO, but no lag time was observed prior to inactivation in suspended systems. Furthermore, complete bacterial destruction was observed within the treatment times under investigation. The greater efficiency of ZnO is believed to be due to the decomposition of the bacterial cell wall being driven by hydrogen peroxide as opposed to hydroxyl radicals. The results reported in this paper show that ZnO is a more efficient and cost-effective photocatalyst than TiO2 and that it represents a viable alternative photocatalyst for water disinfection processes.
Collapse
Affiliation(s)
- Sean O’Neill
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5GS, Ireland
- IMT
Atlantique, CNRS, GEPEA, UMR 6144, 4 rue Alfred Kastler, CS 20722, Nantes Cedex
3 44403, France
| | - Jeanette M. C. Robertson
- School
of Biological Sciences, Queen’s University
Belfast, Chlorine Gardens, Belfast BT9 5DL, Ireland
| | - Valérie Héquet
- IMT
Atlantique, CNRS, GEPEA, UMR 6144, 4 rue Alfred Kastler, CS 20722, Nantes Cedex
3 44403, France
| | - Florent Chazarenc
- Research
Unit REVERSAAL, Centre INRAE Lyon-Grenoble, Auvergne-Rhône-Alpes, 5 Rue de la Doua, CS 20244, Villeurbanne Cedex 69625, France
| | - Xinzhu Pang
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5GS, Ireland
| | - Kathryn Ralphs
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5GS, Ireland
| | - Nathan Skillen
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5GS, Ireland
| | - Peter K. J. Robertson
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5GS, Ireland
| |
Collapse
|
4
|
Yang H, He D, Liu C, Zhou X, Qu J. Magnetic photocatalytic antimicrobial materials for water disinfection. Sep Purif Technol 2023; 325:124697. [DOI: 10.1016/j.seppur.2023.124697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
TiO2/Karaya Composite for Photoinactivation of Bacteria. MATERIALS 2022; 15:ma15134559. [PMID: 35806684 PMCID: PMC9267801 DOI: 10.3390/ma15134559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/26/2022]
Abstract
TiO2/Karaya composite was synthesized by the sol-gel method for the photoinactivation of pathogens. This is the first time that we have reported this composite for an antimicrobial approach. The structure, morphology, and optical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-rays (EDS), Fourier transform infrared spectroscopy (FTIR), and diffuse reflectance, and the surface area was characterized by the BET method. The XRD and EDS results showed that the TiO2/Karaya composite was successfully stabilized by the crystal structure and pore diameter distribution, indicating a composite of mesoporous nature. Furthermore, antibacterial experiments showed that the TiO2/Karaya composite under light was able to photoinactivate bacteria. Therefore, the composite is a promising candidate for inhibiting the growth of bacteria.
Collapse
|
6
|
Zuarez-Chamba M, Rajendran S, Herrera-Robledo M, Priya AK, Navas-Cárdenas C. Bi-based photocatalysts for bacterial inactivation in water: Inactivation mechanisms, challenges, and strategies to improve the photocatalytic activity. ENVIRONMENTAL RESEARCH 2022; 209:112834. [PMID: 35122745 DOI: 10.1016/j.envres.2022.112834] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Bi-based photocatalysts have been considered suitable materials for water disinfection under natural solar light due to their outstanding optical and electronic properties. However, until now, there are not extensive reviews about the development of Bi-based materials and their application in bacterial inactivation in aqueous solutions. For this reason, this work has focused on summarizing the state of the art related to the inactivation of Gram- and Gram + pathogenic bacteria under visible light irradiation using different Bi-based micro and nano structures. In this sense, the photocatalytic bacterial inactivation mechanisms are analyzed, considering several modifications. The factors that can affect the photocatalytic performance of these materials in real conditions and at a large scale (e.g., water characteristics, pH, light intensity, photocatalyst dosage, and bacteria level) have been studied. Furthermore, current alternatives for improving the photocatalytic antibacterial activity and reuse of Bi-based materials (e.g., surface engineering, crystal facet engineering, doping, noble metal coupling, heterojunctions, Z-scheme junctions, coupling with graphene derivatives, magnetic composites, immobilization) have been explored. According to several reports, inactivation rate values higher than 90% can be achieved by using the modified Bi-based micro/nano structures, which become them excellent candidates for photocatalytic water disinfection. However, these innovative photocatalytic materials bring a variety of future difficulties and opportunities in water disinfection.
Collapse
Affiliation(s)
| | - Saravanan Rajendran
- Department of Mechanical Engineering, Faculty of Engineering, University of Tarapaca, Avda. General Velásquez, Arica, Chile
| | | | - A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, India
| | - Carlos Navas-Cárdenas
- School of Chemical Sciences and Engineering, Universidad Yachay Tech, Urcuquí, Ecuador.
| |
Collapse
|
7
|
Zhang M, Han S, Niu X, Li H, Zhang D, Fan H, Liu X, Wang K. A PPy/MoS 2 core–shell heterojunction modified by carbon dots exhibits high photocatalytic antibacterial performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj04388b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CQDs and PPy facilitate the separation of MoS2 electron–hole pairs and enhance their photocatalytic antibacterial performance.
Collapse
Affiliation(s)
- Mengmeng Zhang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Sha Han
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiaohui Niu
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongxia Li
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Deyi Zhang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Haiyan Fan
- Chemistry Department, Nazarbayev University, Astana 010000, Kazakhstan
| | - Xiaoyu Liu
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Kunjie Wang
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
- Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou, 730050, China
| |
Collapse
|
8
|
Yang H, He D, Liu C, Zhang T, Qu J, Jin D, Zhang K, Lv Y, Zhang Z, Zhang YN. Visible-light-driven photocatalytic disinfection by S-scheme α-Fe 2O 3/g-C 3N 4 heterojunction: Bactericidal performance and mechanism insight. CHEMOSPHERE 2022; 287:132072. [PMID: 34481174 DOI: 10.1016/j.chemosphere.2021.132072] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
High-performance photocatalytic applications require to develop heterostructures between two semiconductors with matched band energy levels to facilitate charge-carrier separation. The S-scheme photocatalytic system has great potential to be explored, in terms of the improvement of charge separation, however, small efforts have been made in photocatalytic disinfection application. In this study, a non-toxic and low-cost S-scheme photocatalytic system composed of α-Fe2O3 and g-C3N4 was fabricated by in-suit production of g-C3N4 and firstly applied into water disinfection. The α-Fe2O3/g-C3N4 junction demonstrated an enhanced activity for photocatalytic bacterial inactivation, with the complete inactivation of 7 log10 cfu·mL-1 of Escherichia coli K-12 cells within 120 min under visible light irradiation. Its logarithmic bacterial inactivation efficiency was nearly 7 times better than that of single g-C3N4. The experimental results suggested that the effective prevention of charge-carrier recombination led to an improved generation of reactive oxygen species (ROSs), resulting in impressive disinfection performance. Moreover, the DNA gel electrophoresis experiments validated the reason for the irreversible death of bacteria, which was the leakage and destruction of chromosomal DNA. In addition, this S-scheme heterojunction also showed excellent photocatalytic disinfection performance in authentic water matrices (including tap water, secondary treated sewage effluent, and surface water) under visible light irradiation. Hence, the α-Fe2O3/g-C3N4 composite has great potential for sustainable and efficient photocatalytic disinfection applications.
Collapse
Affiliation(s)
- Hao Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Dongyang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Chuanhao Liu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Tingting Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Dexin Jin
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Kangning Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Yihan Lv
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Zhaocheng Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| |
Collapse
|
9
|
Ryu B, Wong KT, Choong CE, Kim JR, Kim H, Kim SH, Jeon BH, Yoon Y, Snyder SA, Jang M. Degradation synergism between sonolysis and photocatalysis for organic pollutants with different hydrophobicity: A perspective of mechanism and application for high mineralization efficiency. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125787. [PMID: 33862480 DOI: 10.1016/j.jhazmat.2021.125787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Despite extensive studies, the fundamental understanding of synergistic mechanisms between sonolysis and photocatalysis for the abatement of persistent organic pollutants (POPs) remains uncertain. As different phases formed under ultrasound irradiation, hydrophilic POPs, sulfamethoxazole (SMX, Kow: 0.89), predominantly resides in bulk liquid and is ineffectively degraded by sonolysis (kUS = 3.33 × 10-3 min-1) since <10% of hydroxyl radicals (·OH) formed at the gas-liquid interface of cavitation is diffused into the bulk, whereas the other fraction rapidly recombines into hydrogen peroxide (H2O2). This study provides a proof-of-concept for the mechanism by presenting various analytical results, endorsing the synergistic role of photoexcited electrons in splitting sonolysis-induced H2O2 into ·OH, particularly in the bulk phase. In a sonophotocatalytic system, the hydrophobic POPs such as bisphenol A (BPA) and atrazine (ATZ) were mainly degraded in gas-liquid interface indicated by the low synergistic values correlation compared to SMX [i.e., SMX has a higher synergistic factor, fsyn (3.26) than BPA (1.30) and ATZ (1.35)]. Also, fsyn was found linearly correlated with the contribution factor of photocatalysis to split H2O2. Three times of consecutive kinetics using an effluent of municipal (MP) wastewater spiked by POPs presented >98% POPs and >96% total organic carbon (TOC) removal.
Collapse
Affiliation(s)
- Baekha Ryu
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Kien Tiek Wong
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| | - Choe Earn Choong
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jung-Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyunook Kim
- Department of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Sang-Hyoun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA
| | - Shane A Snyder
- Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA; Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea.
| |
Collapse
|
10
|
Update on Interfacial Charge Transfer (IFTC) Processes on Films Inactivating Viruses/Bacteria under Visible Light: Mechanistic Considerations and Critical Issues. Catalysts 2021. [DOI: 10.3390/catal11020201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This review presents an update describing binary and ternary semiconductors involving interfacial charge transfer (IFCT) in composites made up by TiO2, CuO, Ag2O and Fe2O3 used in microbial disinfection (bacteria and viruses). The disinfection mechanism, kinetics and generation of reactive oxygen species (ROS) in solution under solar/visible light are discussed. The surface properties of the photocatalysts and their active catalytic sites are described in detail. Pathogenic biofilm inactivation by photocatalytic thin films is addressed since biofilms are the most dangerous agents of spreading pathogens into the environment.
Collapse
|
11
|
Li R, Cui L, Chen M, Huang Y. Nanomaterials for Airborne Virus Inactivation: A Short Review. AEROSOL SCIENCE AND ENGINEERING 2021; 5:1-11. [PMCID: PMC7596633 DOI: 10.1007/s41810-020-00080-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) that broke out at the end of 2019 spread rapidly around the world, causing a large number of deaths and serious economic losses. Previous studies showed that aerosol transmission is one of the main pathways for the spread of COVID-19, Therefore, effective control measures are urgently needed to contain the epidemic. Nanomaterials have broad-spectrum antiviral capabilities, and their inactivation for viruses in the air has been extensively studied. This review discusses antiviral nanomaterials such as metal nanomaterials, metal oxide-based nano-photocatalysts, and nonmetallic nanomaterials; summarizes their structure and chemical properties, the efficiency of inactivating viruses, the mechanism of inactivating viruses, and the application of virus purification in the air. This review provides insights on the development and application of antiviral nanomaterials, which can help control the aerosol transmission of viruses.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 People’s Republic of China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, 710061 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Long Cui
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 People’s Republic of China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, 710061 People’s Republic of China
| | - Meijuan Chen
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Yu Huang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 People’s Republic of China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, 710061 People’s Republic of China
| |
Collapse
|