1
|
Mechanochemistry and Eco-Bases for Sustainable Michael Addition Reactions. Molecules 2022; 27:molecules27103306. [PMID: 35630783 PMCID: PMC9144101 DOI: 10.3390/molecules27103306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
The Michael addition reaction was revisited with a full focus on sustainability combined with efficiency, using mechanochemistry in mild conditions. First, the synthesis of cyclopentenone derivatives was chosen as a model reaction to find optimal conditions in mechanochemistry while using classical but weak bases. The reaction was efficient (84–95% yields), fast (2–6 h), solvent free, and required 0.1 equivalent of base. Aiming to reach greener conditions, classical bases were then replaced using new bio-sourced bases, called Eco-bases, that were easily prepared from plants and led to heterogeneous catalysts. The composition and structure of Eco-bases were characterized by MP-AES, XRPD, EBSD/EDS, HRTEM/EDX and ion chromatography. Interestingly, a high ratio of potassium was observed with the presence of K2Ca(CO3)2 for the most effective Eco-base. The new Eco-bases were used for the mechanical-assisted construction of functionalized alkenone derivatives. The versatility of the method has been successfully applied with good to excellent yields to different Michael donors and acceptors. Eco-bases were recycled and reused four times with the same performances. Combining Eco-bases and mechanochemistry in Michael addition reactions allowed reaching a maximum degree of sustainability (efficient, rapid, low catalyst loading, solvent-free reactions with bio-sourced catalysts) and participating in the development of mechanochemistry in sustainable chemistry.
Collapse
|
2
|
Cybulska P, Legrand YM, Babst-Kostecka A, Diliberto S, Leśniewicz A, Oliviero E, Bert V, Boulanger C, Grison C, Olszewski TK. Green and Effective Preparation of α-Hydroxyphosphonates by Ecocatalysis. Molecules 2022; 27:3075. [PMID: 35630556 PMCID: PMC9146293 DOI: 10.3390/molecules27103075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/29/2022] Open
Abstract
A green and effective approach for the synthesis of structurally diversed α-hydroxyphosphonates via hydrophosphonylation of aldehydes under solventless conditions and promoted by biosourced catalysts, called ecocatalysts "Eco-MgZnOx" is presented. Ecocatalysts were prepared from Zn-hyperaccumulating plant species Arabidopsis halleri, with simple and benign thermal treatment of leaves rich in Zn, and without any further chemical treatment. The elemental composition and structure of Eco-MgZnOx were characterized by MP-AES, XRPD, HRTEM, and STEM-EDX techniques. These analyses revealed a natural richness in two unusual and valuable mixed zinc-magnesium and iron-magnesium oxides. The ecocatalysts were employed in this study to demonstrate their potential use in hydrophosphonylation of aldehydes, leading to various α-hydroxyphosphonate derivatives, which are critical building blocks in the modern chemical industry. Computational chemistry was performed to help discriminate the role of some of the constituents of the mixed oxide ecocatalysts. High conversions, broad substrate scope, mild reaction conditions, and easy purification of the final products together with simplicity of the preparation of the ecocatalysts are the major advantages of the presented protocol. Additionally, Eco-MgZnOx-P could be recovered and reused for up to five times.
Collapse
Affiliation(s)
- Pola Cybulska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Yves-Marie Legrand
- Bio-Inspired Chemistry and Ecological Innovations (ChimEco), UMR 5021 CNRS, University of Montpellier, Cap Delta, 1682 rue de la Valsière, 34790 Grabels, France;
| | - Alicja Babst-Kostecka
- Department of Environmental Science, The University of Arizona, Tucson, AZ 85721, USA;
| | - Sébastien Diliberto
- Institut Jean Lamour, UMR 7198 CNRS, University of Lorraine, 57000 Metz, France; (S.D.); (C.B.)
| | - Anna Leśniewicz
- Analytical Chemistry and Chemical Metallurgy Division, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Erwan Oliviero
- ICGM, University of Montpellier, CNRS, 34090 Montpellier, France;
| | - Valérie Bert
- Clean Technologies and Circular Economy Unit, SIT Department, INERIS, Parc Technologique Alata BP 2, 60550 Verneuil en Halatte, France;
| | - Clotilde Boulanger
- Institut Jean Lamour, UMR 7198 CNRS, University of Lorraine, 57000 Metz, France; (S.D.); (C.B.)
| | - Claude Grison
- Bio-Inspired Chemistry and Ecological Innovations (ChimEco), UMR 5021 CNRS, University of Montpellier, Cap Delta, 1682 rue de la Valsière, 34790 Grabels, France;
| | - Tomasz K. Olszewski
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| |
Collapse
|
4
|
Manganese distribution in the Mn-hyperaccumulator Grevillea meisneri from New Caledonia. Sci Rep 2021; 11:23780. [PMID: 34893664 PMCID: PMC8664926 DOI: 10.1038/s41598-021-03151-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/29/2021] [Indexed: 11/08/2022] Open
Abstract
New Caledonian endemic Mn-hyperaccumulator Grevillea meisneri is useful species for the preparation of ecocatalysts, which contain Mn–Ca oxides that are very difficult to synthesize under laboratory conditions. Mechanisms leading to their formation in the ecocatalysts are unknown. Comparing tissue-level microdistribution of these two elements could provide clues. We studied tissue-level distribution of Mn, Ca, and other elements in different tissues of G. meisneri using micro-X-Ray Fluorescence-spectroscopy (μXRF), and the speciation of Mn by micro-X-ray Absorption Near Edge Structure (µXANES), comparing nursery-grown plants transplanted into the site, and similar-sized plants growing naturally on the site. Mirroring patterns in other Grevillea species, Mn concentrations were highest in leaf epidermal tissues, in cortex and vascular tissues of stems and primary roots, and in phloem and pericycle–endodermis of parent cluster roots. Strong positive Mn/Ca correlations were observed in every tissue of G. meisneri where Mn was the most concentrated. Mn foliar speciation confirmed what was already reported for G. exul, with strong evidence for carboxylate counter-ions. The co-localization of Ca and Mn in the same tissues of G. meisneri might in some way facilitate the formation of mixed Ca–Mn oxides upon preparation of Eco-CaMnOx ecocatalysts from this plant. Grevillea meisneri has been successfully used in rehabilitation of degraded mining sites in New Caledonia, and in supplying biomass for production of ecocatalysts. We showed that transplanted nursery-grown seedlings accumulate as much Mn as do spontaneous plants, and sequester Mn in the same tissues, demonstrating the feasibility of large-scale transplantation programs for generating Mn-rich biomass.
Collapse
|
5
|
Bihanic C, Lasbleiz A, Regnier M, Petit E, Le Blainvaux P, Grison C. New Sustainable Synthetic Routes to Cyclic Oxyterpenes Using the Ecocatalyst Toolbox. Molecules 2021; 26:7194. [PMID: 34885776 PMCID: PMC8658900 DOI: 10.3390/molecules26237194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Cyclic oxyterpenes are natural products that are mostly used as fragrances, flavours and drugs by the cosmetic, food and pharmaceutical industries. However, only a few cyclic oxyterpenes are accessible via chemical syntheses, which are far from being ecofriendly. We report here the synthesis of six cyclic oxyterpenes derived from ß-pinene while respecting the principles of green and sustainable chemistry. Only natural or biosourced catalysts were used in mild conditions that were optimised for each synthesis. A new generation of ecocatalysts, derived from Mn-rich water lettuce, was prepared via green processes, characterised by MP-AES, XRPD and TEM analyses, and tested in catalysis. The epoxidation of ß-pinene led to the platform molecule, ß-pinene oxide, with a good yield, illustrating the efficacy of the new generation of ecocatalysts. The opening ß-pinene oxide was investigated in green conditions and led to new and regioselective syntheses of myrtenol, 7-hydroxy-α-terpineol and perillyl alcohol. Successive oxidations of perillyl alcohol could be performed using no hazardous oxidant and were controlled using the new generation of ecocatalysts generating perillaldehyde and cuminaldehyde.
Collapse
Affiliation(s)
- Camille Bihanic
- Laboratory of Bio-inspirated Chemistry and Ecological Innovations (ChimEco), UMR 5021, CNRS—University of Montpellier Cap Delta, 1682 rue de la Valsière, 34790 Grabels, France; (C.B.); (A.L.); (M.R.)
| | - Arthur Lasbleiz
- Laboratory of Bio-inspirated Chemistry and Ecological Innovations (ChimEco), UMR 5021, CNRS—University of Montpellier Cap Delta, 1682 rue de la Valsière, 34790 Grabels, France; (C.B.); (A.L.); (M.R.)
| | - Morgan Regnier
- Laboratory of Bio-inspirated Chemistry and Ecological Innovations (ChimEco), UMR 5021, CNRS—University of Montpellier Cap Delta, 1682 rue de la Valsière, 34790 Grabels, France; (C.B.); (A.L.); (M.R.)
| | - Eddy Petit
- European Institute of Membrane (IEM), UMR 5635—University of Montpellier 163 rue Auguste Broussonet, 34090 Montpellier, France;
| | | | - Claude Grison
- Laboratory of Bio-inspirated Chemistry and Ecological Innovations (ChimEco), UMR 5021, CNRS—University of Montpellier Cap Delta, 1682 rue de la Valsière, 34790 Grabels, France; (C.B.); (A.L.); (M.R.)
- BioInspir Cap Delta, 1682 rue de la Valsière, 34790 Grabels, France;
| |
Collapse
|
6
|
Belloeil C, Jouannais P, Malfaisan C, Fernández RR, Lopez S, Gutierrez DMN, Maeder-Pras S, Villanueva P, Tisserand R, Gallopin M, Alfonso-Gonzalez D, Marrero IMF, Muller S, Invernon V, Pillon Y, Echevarria G, Iturralde RB, Merlot S. The X-ray fluorescence screening of multiple elements in herbarium specimens from the Neotropical region reveals new records of metal accumulation in plants. Metallomics 2021; 13:6329692. [PMID: 34320190 DOI: 10.1093/mtomcs/mfab045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/16/2021] [Indexed: 01/15/2023]
Abstract
Plants have developed a diversity of strategies to take up and store essential metals in order to colonize various types of soils including mineralized soils. Yet, our knowledge of the capacity of plant species to accumulate metals is still fragmentary across the plant kingdom. In this study, we have used the X-Ray Fluorescence technology to analyze metal concentration in a wide diversity of species of the Neotropical flora that was not extensively investigated so far. In total, we screened more than 11 000 specimens representing about 5000 species from herbaria in Paris and Cuba. Our study provides a large overview of the accumulation of metals such as manganese, zinc and nickel in the Neotropical flora. We report 30 new nickel hyperaccumulating species from Cuba, including the first records in the families Connaraceae, Melastomataceae, Polygonaceae, Santalaceae and Urticaceae. We also identified the first species from this region of the world that can be considered as manganese hyperaccumulators in the genera Lomatia (Proteaceae), Calycogonium (Melastomataceae), Ilex (Aquifoliaceae), Morella (Myricaceae) and Pimenta (Myrtaceae). Finally, we report the first zinc hyperaccumulator, Rinorea multivenosa (Violaceae), from the Amazonas region. The identification of species able to accumulate high amounts of metals will become instrumental to support the development of phytotechnologies in order to limit the impact of soil metal pollution in this region of the world.
Collapse
Affiliation(s)
- Célestine Belloeil
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Pierre Jouannais
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Charles Malfaisan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Rolando Reyes Fernández
- Universidad Agraria de La Habana (UNAH), Facultad de Agronomía, Laboratorio Biotecnología Vegetal, Mayabeque, Cuba, CP: 32700
| | | | - Dulce Montserrat Navarrete Gutierrez
- Université de Lorraine, INRAE, Laboratoire Sols et Environnement (LSE), 54000 Nancy, France.,Universidad Autónoma de Chapingo, Texcoco de Mora, State of México, México
| | - Swann Maeder-Pras
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Paola Villanueva
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Romane Tisserand
- Université de Lorraine, INRAE, Laboratoire Sols et Environnement (LSE), 54000 Nancy, France
| | - Melina Gallopin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | | | - Ilsa M Fuentes Marrero
- Instituto de Ecología y Sistemática, Ministerio de Ciencia, Tecnología y Medio Ambiente, La Habana, Cuba, C.P : 11900
| | - Serge Muller
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Vanessa Invernon
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Yohan Pillon
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), IRD, INRAE, CIRAD, Institut Agro, Univ. Montpellier, Montpellier, France
| | - Guillaume Echevarria
- Université de Lorraine, INRAE, Laboratoire Sols et Environnement (LSE), 54000 Nancy, France.,Centre for Mined Land Rehabilitation, SMI, University of Queensland, QLD 4072 St. Lucia, Australia
| | | | - Sylvain Merlot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|