1
|
Han T, Fu Z, Yang M, Cao X. "Sweet space" strategy for solvent system selection in countercurrent chromatography: A case study on separation of polyunsaturated fatty acids from borage oil. J Sep Sci 2024; 47:e2400195. [PMID: 38819780 DOI: 10.1002/jssc.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
This study presents a comprehensive strategy for the selection and optimization of solvent systems in countercurrent chromatography (CCC) for the effective separation of compounds. With a focus on traditional organic solvent systems, the research introduces a "sweet space" strategy that merges intuitive understanding with mathematical accuracy, addressing the significant challenges in solvent system selection, a critical bottleneck in the widespread application of CCC. By employing a combination of volume ratios and graphical representations, including both regular and trirectangular tetrahedron models, the proposed approach facilitates a more inclusive and user-friendly strategy for solvent system selection. This study demonstrates the potential of the proposed strategy through the successful separation of gamma-linolenic acid, oleic acid, and linoleic acid from borage oil, highlighting the strategy's effectiveness and practical applicability in CCC separations.
Collapse
Affiliation(s)
- Tian Han
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Zhuo Fu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Muyun Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xueli Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
2
|
Kiene M, Zaremba M, Fellensiek H, Januschewski E, Juadjur A, Jerz G, Winterhalter P. In Silico-Assisted Isolation of trans-Resveratrol and trans-ε-Viniferin from Grapevine Canes and Their Sustainable Extraction Using Natural Deep Eutectic Solvents (NADES). Foods 2023; 12:4184. [PMID: 38002241 PMCID: PMC10670976 DOI: 10.3390/foods12224184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Grapevine canes are an important source of bioactive compounds, such as stilbenoids. This study aimed to evaluate an in silico method, based on the Conductor-like Screening Model for Real Solvents (COSMO-RS) to isolate stilbenoids from a grapevine cane extract by offline heart-cut high-performance countercurrent chromatography (HPCCC). For the following extraction of resveratrol and ε-viniferin from grapevine canes, natural deep eutectic solvents (NADES) were used as an environmentally friendly alternative to the traditionally used organic solvents. In order to evaluate a variety of combinations of hydrogen bond acceptors (HBAs) and hydrogen bond donors (HBDs) for the targeted extraction of stilbenoids, COSMO-RS was applied. In particular, ultrasonic-assisted extraction using a solvent mixture of choline chloride/1,2-propanediol leads to higher extraction yields of resveratrol and ε-viniferin. COSMO-RS calculations for NADES extraction combined with HPCCC biphasic solvent system calculations are a powerful combination for the sustainable extraction, recovery, and isolation of natural products. This in silico-supported workflow enables the reduction of preliminary experimental tests required for the extraction and isolation of natural compounds.
Collapse
Affiliation(s)
- Mats Kiene
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (E.J.); (G.J.)
| | - Malte Zaremba
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (E.J.); (G.J.)
| | - Hendrik Fellensiek
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (E.J.); (G.J.)
| | - Edwin Januschewski
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (E.J.); (G.J.)
- German Institute of Food Technologies, Chemical Analytics, Prof.-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany;
| | - Andreas Juadjur
- German Institute of Food Technologies, Chemical Analytics, Prof.-von-Klitzing-Straße 7, 49610 Quakenbrück, Germany;
| | - Gerold Jerz
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (E.J.); (G.J.)
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany; (M.K.); (E.J.); (G.J.)
| |
Collapse
|
3
|
Kulinowski Ł, Luca SV, Pecio Ł, Minceva M, Skalicka-Woźniak K. Liquid-liquid chromatography isolation of Petasites hybridus sesquiterpenes and their LC-HR-MS/MS and NMR characterization. J Pharm Biomed Anal 2023; 234:115529. [PMID: 37364450 DOI: 10.1016/j.jpba.2023.115529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Petasites hybridus L. (butterbur, Asteraceae) is a well-known medicinal plant traditionally used as a remedy for neurological, respiratory, cardiovascular, and gastrointestinal disorders. Eremophilane-type sesquiterpenes (petasins) are considered to be the major bioactive constituents of butterbur. However, efficient methods to isolate high-purity petasins in sufficient amounts for further analytical and biological testing are lacking. In this study, various sesquiterpenes were separated from a methanol rootstock extract of P. hybridus with liquid-liquid chromatography (LLC). The appropriate biphasic solvent system was selected using the predictive thermodynamic model COSMO-RS and shake-flask experiments. After the selection of the feed (extract) concentration and operating flow rate, a batch LLC experiment was performed with n-hexane/ethyl acetate/methanol/water 5/1/5/1 (v/v/v/v). For those LLC fractions containing petasin derivatives with purities < 95%, a preparative high-performance liquid chromatography purification step followed. All isolated compounds were identified by state-of-the-art spectroscopic methods, i.e., liquid chromatography coupled with high-resolution tandem mass spectrometry and nuclear magnetic resonance techniques. As a result, six compounds were obtained, namely 8β-hydroxyeremophil-7(11)-en-12,8-olide, 2-[(angeloyl)oxy]eremophil-7(11)-en-12,8-olide, 8α/β-H-eremophil-7(11)-en-12,8-olide, neopetasin, petasin, and isopetasin. The isolated petasins can be further used as reference materials for standardization and pharmacological evaluation.
Collapse
Affiliation(s)
- Łukasz Kulinowski
- Department of Chemistry of Natural Products, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany.
| | - Łukasz Pecio
- Department of Chemistry of Natural Products, Medical University of Lublin, 20-093 Lublin, Poland; Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation-State Research Institute, 24-100 Puławy, Poland
| | - Mirjana Minceva
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | | |
Collapse
|
4
|
Kiene M, Blum S, Jerz G, Winterhalter P. A Comparison between High-Performance Countercurrent Chromatography and Fast-Centrifugal Partition Chromatography for a One-Step Isolation of Flavonoids from Peanut Hulls Supported by a Conductor like Screening Model for Real Solvents. Molecules 2023; 28:5111. [PMID: 37446775 DOI: 10.3390/molecules28135111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Peanut hulls (Arachis hypogaea, Leguminosae), which are a side stream of global peanut processing, are rich in bioactive flavonoids such as luteolin, eriodictyol, and 5,7-dihydroxychromone. This study aimed to isolate these flavonoid derivatives by liquid-liquid chromatography with as few steps as possible. To this end, luteolin, eriodictyol and 5,7-dihydroxychromone were isolated from peanut hulls using two different techniques, high-performance countercurrent chromatography (HPCCC) and fast-centrifugal partition chromatography (FCPC). The suitability of the biphasic solvent system composed of n-hexane/ethyl acetate/methanol/water (1.0/1.0/1.0/1.5; v/v/v/v) was determined by the Conductor like Screening Model for Real Solvents (COSMO-RS), which allowed the partition ratio KD-values of the three main flavonoids to be calculated. After a one-step HPCCC separation of ~1000 mg of an ethanolic peanut hull extract, 15 mg of luteolin and 8 mg of eriodictyol were isolated with purities over 96%. Furthermore, 3 mg of 5,7-dihydroxychromone could be isolated after purification by semi-preparative reversed-phase liquid chromatography (semi-prep. HPLC) in purity of over 99%. The compounds were identified by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance spectroscopy (NMR).
Collapse
Affiliation(s)
- Mats Kiene
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Brauschweig, Germany
| | - Svenja Blum
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Brauschweig, Germany
| | - Gerold Jerz
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Brauschweig, Germany
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Brauschweig, Germany
| |
Collapse
|
5
|
Morley R, Minceva M. Liquid-Liquid Chromatography: Current Design Approaches and Future Pathways. Annu Rev Chem Biomol Eng 2021; 12:495-518. [PMID: 33848424 DOI: 10.1146/annurev-chembioeng-101420-033548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since its first appearance in the 1960s, solid support-free liquid-liquid chromatography has played an ever-growing role in the field of natural products research. The use of the two phases of a liquid biphasic system, the mobile and stationary phases, renders the technique highly versatile and adaptable to a wide spectrum of target molecules, from hydrophobic to highly polar small molecules to proteins. Generally considered a niche technique used only for small-scale preparative separations, liquid-liquid chromatography currently lags far behind conventional liquid-solid chromatography and liquid-liquid extraction in process modeling and industrial acceptance. This review aims to expose a broader audience to this high-potential separation technique by presenting the wide variety of available operating modes and solvent systems as well as structured, model-based design approaches. Topics currently offering opportunities for further investigation are also addressed.
Collapse
Affiliation(s)
- Raena Morley
- Biothermodynamics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; ,
| | - Mirjana Minceva
- Biothermodynamics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; ,
| |
Collapse
|
6
|
Slavik B, Roehrer S, Loos HM, Minceva M, Buettner A. Isolation of sesquiterpenoids from Matricaria chamomilla by means of solvent assisted flavor evaporation and centrifugal partition chromatography. Anal Bioanal Chem 2021; 413:4387-4396. [PMID: 34050388 PMCID: PMC8245379 DOI: 10.1007/s00216-021-03400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 12/04/2022]
Abstract
The (semi)volatile fraction of Matricaria chamomilla L., an annual herbal plant from the family of Asteraceae, contains high quantities of sesquiterpenes and sesquiterpenoids. A method was developed to achieve isolation and separation of these compounds, using a combination of solvent assisted flavor evaporation (SAFE) and solid support-free liquid-liquid chromatography. The biphasic liquid solvent system n-heptane/ethyl acetate/methanol/water, 5/2/5/2 v/v/v/v (Arizona S) was elaborated as a suitable solvent system for the simultaneous separation of the target compounds. The lab-scale liquid-liquid chromatography separation performed in a countercurrent chromatography (CCC) column was successfully transferred to a semi-preparative centrifugal partition chromatography (CPC) column, which enabled the isolation of artemisia ketone, artemisia alcohol, α-bisabolone oxide A, and (E)-en-yn-dicycloether. α-Bisabolol oxide A and (Z)-en-yn-dicycloether co-eluted, but were successfully separated by subsequent size-exclusion chromatography (SEC). Similarly, spathulenol and α-bisabolol oxide B were obtained as a mixture, and were separated by means of column chromatography using silica gel as stationary phase. The isolated compounds were characterized by means of nuclear magnetic resonance spectroscopy (NMR) and gas chromatography–mass spectrometry (GC-MS). ![]()
Collapse
Affiliation(s)
- Benedikt Slavik
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 9, 91054, Erlangen, Germany
| | - Simon Roehrer
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany
| | - Helene M Loos
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 9, 91054, Erlangen, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354, Freising, Germany
| | - Mirjana Minceva
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
| | - Andrea Buettner
- Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 9, 91054, Erlangen, Germany.
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354, Freising, Germany.
| |
Collapse
|
7
|
Polyphenolic Compounds Extracted and Purified from Buddleja Globosa Hope (Buddlejaceae) Leaves Using Natural Deep Eutectic Solvents and Centrifugal Partition Chromatography. Molecules 2021; 26:molecules26082192. [PMID: 33920316 PMCID: PMC8070204 DOI: 10.3390/molecules26082192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Chemical profiling of Buddleja globosa was performed by high-performance liquid chromatography coupled to electrospray ionization (HPLC-DAD-ESI-IT/MS) and quadrupole time-of-flight high-resolution mass spectrometry (HPLC-ESI-QTOF/MS). The identification of 17 main phenolic compounds in B. globosa leaf extracts was achieved. Along with caffeoyl glucoside isomers, caffeoylshikimic acid and several verbascoside derivatives (β-hydroxyverbascoside and β-hydroxyisoverbascoside) were identified. Among flavonoid compounds, the presence of 6-hydroxyluteolin-7-O-glucoside, quercetin-3-O-glucoside, luteolin 7-O-glucoside, apigenin 7-O-glucoside was confirmed. Campneoside I, forsythoside B, lipedoside A and forsythoside A were identified along with verbascoside, isoverbascoside, eukovoside and martynoside. The isolation of two bioactive phenolic compounds verbascoside and forsythoside B from Buddleja globosa (Buddlejaceae) was successfully achieved by centrifugal partition chromatography (CPC). Both compounds were obtained in one-step using optimized CPC methodology with the two-phase solvent system comprising ethyl acetate-n-butanol-ethanol-water (0.25:0.75:0.1:1, v/v). Additionally, eight Natural Deep Eutectic Solvents (NADESs) were tested for the extraction of polyphenols and compared with 80% methanol. The contents of verbascoside and luteolin 7-O-glucoside after extraction with 80% methanol were 26.165 and 3.206 mg/g, respectively. Among the NADESs tested in this study, proline- citric acid (1:1) and choline chloride-1, 2- propanediol (1:2) were the most promising solvents. With these NADES, extraction yields for verbascoside and luteolin 7-O-glucoside were 51.045 and 4.387 mg/g, respectively. Taken together, the results of this study confirm that CPC enabled the fast isolation of bioactive polyphenols from B. globosa. NADESs displayed higher extraction efficiency of phenolic and therefore could be used as an ecofriendly alternative to classic organic solvents.
Collapse
|
8
|
Wang X, Zhao S, Wang C, Du W, Sun H, Sun W, Jin Y, Zuo G, Tong S. Orthogonality in the selection of biphasic solvent systems for off-line two-dimensional countercurrent chromatography from Polygonum cuspidatum Sieb. et Zucc. J Chromatogr A 2020; 1634:461666. [PMID: 33197846 DOI: 10.1016/j.chroma.2020.461666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022]
Abstract
Off-line two-dimensional countercurrent chromatography has been widely applied to the isolation of complex samples, but little research on the investigation of orthogonality in the selection of biphasic solvent systems is available. In the present work, the orthogonality in the selection of a biphasic solvent system for liquid-liquid chromatographic separation of aqueous extract and ether extract from the traditional Chinese medicinal plant Polygonum cuspidatum Sieb. et Zucc was evaluated by the correlation coefficient and space occupancy rate. In total, 25 different biphasic solvent systems were tested, and 313 system combinations were analysed. A convex hull methodology was used to determine the separation space and to optimize separation conditions. The correlation coefficient matrix was transformed into dendrograms and a colour map to visualize the dissimilarity between, and orthogonality for, all solvent systems. The aqueous extracts from Polygonum cuspidatum were separated using selected biphasic solvent systems with high orthogonality: ethyl acetate-ethanol-water (70:1:70, v/v) and petroleum ether-ethyl acetate-water (1:5:5, v/v). The ether extracts from Polygonum cuspidatum were also separated using selected biphasic solvent systems with high orthogonality: petroleum-ethyl acetate-methanol-aqueous 0.25 M NH3•H2O (5:5:5:5, v/v) and petroleum-ethyl acetate-methanol-water (5:5:5:5, v/v). Thirteen compounds were successfully obtained. The experimental results demonstrated that the evaluation of orthogonality provided an alternative strategy to select an applicable solvent system for the separation of complex samples using off-line two-dimensional countercurrent chromatography.
Collapse
Affiliation(s)
- Xiang Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shanshan Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chaoyue Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wei Du
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hengmian Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wenyu Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yang Jin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Guanglei Zuo
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon, 24252, Republic of Korea
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
9
|
Guo Y, Tong S, Zhang K, Yan J. Recent progress in separation prediction of counter-current chromatography. J Sep Sci 2020; 44:6-16. [PMID: 32926765 DOI: 10.1002/jssc.202000473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/11/2020] [Accepted: 08/09/2020] [Indexed: 12/21/2022]
Abstract
As a liquid-liquid partition chromatography, counter-current chromatography has advantages in large sample loading capacity without irreversible adsorption, which has been widely applied in separation and purification fields. The main factors, including partition coefficient, two-phase solvent systems, apparatus, and operating parameters greatly affect the separation process of counter-current chromatography. To promote the applications of counter-current chromatography, it is essential to develop theoretical research to master the principles of counter-current chromatographic separations so as to achieve predictions before laborious trials. In this article, recent progress about separation prediction methods are reviewed from a point of the steady and unsteady state of the mass transfer process of counter-current chromatography and its mass transfer characteristics, and then it is divided into three aspects: prediction of partition coefficient, modeling the thermodynamic process of counter-current chromatography, and modeling the dynamic process of counter-current chromatography.
Collapse
Affiliation(s)
- Yuru Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Keqing Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jizhong Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
10
|
Zhao S, Wang C, Wang X, Jin Y, Sun W, Gong X, Tong S. Liquid-liquid chromatography in sample pretreatment for quantitative analysis of trace component in traditional Chinese medicines by conventional liquid chromatography. J Chromatogr A 2020; 1619:460917. [DOI: 10.1016/j.chroma.2020.460917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 01/09/2023]
|
11
|
Shen Z, Van Lehn RC. Solvent Selection for the Separation of Lignin-Derived Monomers Using the Conductor-like Screening Model for Real Solvents. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Zhizhang Shen
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Reid C. Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
12
|
Marlot L, Batteau M, Faure K. Classification of biphasic solvent systems according to Abraham descriptors for countercurrent chromatography. J Chromatogr A 2019; 1617:460820. [PMID: 31928775 DOI: 10.1016/j.chroma.2019.460820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022]
Abstract
The method development of liquid-liquid chromatography, either countercurrent chromatography or centrifugal partition chromatography, is slowed down by the selection of the biphasic solvent system that constitutes its column. This paper introduces a classification of 19 solvent systems, including the most popular systems based on heptane/ethyl acetate/methanol/water, some non-aqueous systems and some greener systems. This classification is based on Abraham descriptors determined through the partition coefficients of 43 probes. Among 21 determined models, nine of them allow an accurate prediction of partition coefficients from solute descriptors and another ten provide a description of the chromatographic interactions at the 5% significance level. A graphical tool (spider diagram) is built for the comparison of the chromatographic columns previously characterized with the solvation parameter model. The position of a solvent system in this spider diagram relates to the interactions at stake, thus the selection of columns offering similar or orthogonal interactions is facilitated, with no previous knowledge of the solute required. This semi-empirical strategy cannot fully predict the retention behavior but can judiciously orientate the user towards a limited number of solvent systems to be experimentally tested.
Collapse
Affiliation(s)
- Léa Marlot
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 VILLEURBANNE, France
| | - Magali Batteau
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 VILLEURBANNE, France
| | - Karine Faure
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 VILLEURBANNE, France.
| |
Collapse
|
13
|
The 10th international conference on countercurrent chromatography held at Technische Universität Braunschweig, Braunschweig, Germany, August 1-3, 2018. J Chromatogr A 2019; 1617:460698. [PMID: 31810622 DOI: 10.1016/j.chroma.2019.460698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 10th International Countercurrent Chromatography Conference (CCC 2018) was held at Technische Universität Braunschweig, Germany, from August 1st-3rd, 2018. The presentations in the scientific program demonstrated the progress in the field of countercurrent chromatography (CCC) and centrifugal partition chromatography (CPC) in recent years and numerous applications have impressively proven the potential of this all-liquid separation technique not only for academic research but also for industry. Special highlights of the conference were the celebration of the 90th birthday of Dr. Yoichiro Ito, the pioneer of countercurrent chromatography, as well as the foundation of an international "Society of Partition and Countercurrent Chromatography (SPCC)".
Collapse
|
14
|
Morley R, Minceva M. Operating mode and parameter selection in liquid-liquid chromatography. J Chromatogr A 2019; 1617:460479. [PMID: 31477275 DOI: 10.1016/j.chroma.2019.460479] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/29/2019] [Accepted: 08/22/2019] [Indexed: 12/27/2022]
Abstract
The presence of a liquid stationary phase in liquid-liquid chromatography (LLC) allows for high versatility of operation as well as adaptability to different sample types and separation tasks. LLC, also known as countercurrent chromatography (CCC) or centrifugal partition chromatography (CPC), offers the user a variety of operating modes, many of which have no direct equivalent in conventional preparative liquid-solid chromatography. These operating modes have the potential to greatly improve LLC separation performance compared to the standard "classical" isocratic batch injection mode, and they often require minimal to no addition of equipment to the standard set-up. However, reports of the use of alternative LLC operating modes make up only a fraction of the literature. This is likely due, at least in part, to the lack of clear guidelines and methods for operating mode and parameter selection, leaving alternative process options to be avoided and underutilized. This review seeks to remedy this by providing a thorough overview of the available LLC operating modes, identifying the key characteristics, advantages and disadvantages, and areas of application of each. Additionally, the equations and short-cut models aiding in operating mode and parameter selection are presented and critiqued, and their notation is unified for clarity. By rendering LLC and its alternative operating modes more accessible to current and prospective users, it is hoped to help expand the application of this technology and support the achievement of its full potential.
Collapse
Affiliation(s)
- Raena Morley
- Biothermodynamics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Mirjana Minceva
- Biothermodynamics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany.
| |
Collapse
|
15
|
Computational solvent system screening for the separation of tocopherols with centrifugal partition chromatography using deep eutectic solvent-based biphasic systems. J Chromatogr A 2017; 1491:153-158. [DOI: 10.1016/j.chroma.2017.02.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
|
16
|
Bisson J, Brunel M, Badoc A, Da Costa G, Richard T, Mérillon JM, Waffo-Téguo P. Hyphenating Centrifugal Partition Chromatography with Nuclear Magnetic Resonance through Automated Solid Phase Extraction. Anal Chem 2016; 88:9941-9948. [DOI: 10.1021/acs.analchem.6b01429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jonathan Bisson
- Université Bordeaux, Faculté des Sciences Pharmaceutiques,
ISVV, EA 4577 Œnologie, Molécules d’Intérêt
Biologique (GESVAB), F-33882 Villenave-d’Ornon, France
| | - Marion Brunel
- Université Bordeaux, Faculté des Sciences Pharmaceutiques,
ISVV, EA 4577 Œnologie, Molécules d’Intérêt
Biologique (GESVAB), F-33882 Villenave-d’Ornon, France
| | - Alain Badoc
- Université Bordeaux, Faculté des Sciences Pharmaceutiques,
ISVV, EA 4577 Œnologie, Molécules d’Intérêt
Biologique (GESVAB), F-33882 Villenave-d’Ornon, France
- INRA, ISVV,
USC
1366 Œnologie, F-33882 Villenave-d’Ornon, France
| | - Grégory Da Costa
- Université Bordeaux, Faculté des Sciences Pharmaceutiques,
ISVV, EA 4577 Œnologie, Molécules d’Intérêt
Biologique (GESVAB), F-33882 Villenave-d’Ornon, France
- INRA, ISVV,
USC
1366 Œnologie, F-33882 Villenave-d’Ornon, France
| | - Tristan Richard
- Université Bordeaux, Faculté des Sciences Pharmaceutiques,
ISVV, EA 4577 Œnologie, Molécules d’Intérêt
Biologique (GESVAB), F-33882 Villenave-d’Ornon, France
- INRA, ISVV,
USC
1366 Œnologie, F-33882 Villenave-d’Ornon, France
| | - Jean-Michel Mérillon
- Université Bordeaux, Faculté des Sciences Pharmaceutiques,
ISVV, EA 4577 Œnologie, Molécules d’Intérêt
Biologique (GESVAB), F-33882 Villenave-d’Ornon, France
- INRA, ISVV,
USC
1366 Œnologie, F-33882 Villenave-d’Ornon, France
| | - Pierre Waffo-Téguo
- Université Bordeaux, Faculté des Sciences Pharmaceutiques,
ISVV, EA 4577 Œnologie, Molécules d’Intérêt
Biologique (GESVAB), F-33882 Villenave-d’Ornon, France
- INRA, ISVV,
USC
1366 Œnologie, F-33882 Villenave-d’Ornon, France
| |
Collapse
|
17
|
A combination strategy for extraction and isolation of multi-component natural products by systematic two-phase solvent extraction-(13)C nuclear magnetic resonance pattern recognition and following conical counter-current chromatography separation: Podophyllotoxins and flavonoids from Dysosma versipellis (Hance) as examples. J Chromatogr A 2015; 1431:184-196. [PMID: 26777088 DOI: 10.1016/j.chroma.2015.12.074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 11/21/2022]
Abstract
Despite of substantial developments of extraction and separation techniques, isolation of natural products from natural resources is still a challenging task. In this work, an efficient strategy for extraction and isolation of multi-component natural products has been successfully developed by combination of systematic two-phase liquid-liquid extraction-(13)C NMR pattern recognition and following conical counter-current chromatography separation. A small-scale crude sample was first distributed into 9 systematic hexane-ethyl acetate-methanol-water (HEMWat) two-phase solvent systems for determination of the optimum extraction solvents and partition coefficients of the prominent components. Then, the optimized solvent systems were used in succession to enrich the hydrophilic and lipophilic components from the large-scale crude sample. At last, the enriched components samples were further purified by a new conical counter-current chromatography (CCC). Due to the use of (13)C NMR pattern recognition, the kinds and structures of major components in the solvent extracts could be predicted. Therefore, the method could collect simultaneously the partition coefficients and the structural information of components in the selected two-phase solvents. As an example, a cytotoxic extract of podophyllotoxins and flavonoids from Dysosma versipellis (Hance) was selected. After the systematic HEMWat system solvent extraction and (13)C NMR pattern recognition analyses, the crude extract of D. versipellis was first degreased by the upper phase of HEMWat system (9:1:9:1, v/v), and then distributed in the two phases of the system of HEMWat (2:8:2:8, v/v) to obtain the hydrophilic lower phase extract and lipophilic upper phase extract, respectively. These extracts were further separated by conical CCC with the HEMWat systems (1:9:1:9 and 4:6:4:6, v/v). As results, total 17 cytotoxic compounds were isolated and identified. In general, whole results suggested that the strategy was very efficient for the systematic extraction and isolation of biological active components from the complex biomaterials.
Collapse
|
18
|
Krause J, Oeldorf T, Schembecker G, Merz J. Enzymatic hydrolysis in an aqueous organic two-phase system using centrifugal partition chromatography. J Chromatogr A 2015; 1391:72-9. [PMID: 25773726 DOI: 10.1016/j.chroma.2015.02.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 11/17/2022]
Abstract
Multi-phase reaction systems, mostly aqueous organic systems, are used in enzyme catalysis to convert hydrophobic substrates which are almost insoluble in aqueous media. In this study, a Centrifugal Partition Chromatograph is used as a compact device for enzymatic multi-phase reaction that combines efficient substrate supply to the aqueous phase and separation of both phases in one apparatus. A process design procedure to systematically select the aqueous and organic phase to achieve stable and efficient reaction rates and operation conditions in Centrifugal Partition Chromatography for efficient mixing and separation of the phases is presented. The procedure is applied to the hydrolysis of 4-nitrophenyl palmitate with a lipase derived from Candida rugosa. It was found that the hydrolysis rate of 4-nitrophenyl palmitate was two times higher in Centrifugal Partition Chromatography than in comparable stirred tank reactor experiments.
Collapse
Affiliation(s)
- J Krause
- Laboratory of Plant and Process Design, Department of Biochemical and Chemical Engineering, TU Dortmund University, D-44227 Dortmund, Germany
| | - T Oeldorf
- Laboratory of Plant and Process Design, Department of Biochemical and Chemical Engineering, TU Dortmund University, D-44227 Dortmund, Germany
| | - G Schembecker
- Laboratory of Plant and Process Design, Department of Biochemical and Chemical Engineering, TU Dortmund University, D-44227 Dortmund, Germany
| | - J Merz
- Laboratory of Plant and Process Design, Department of Biochemical and Chemical Engineering, TU Dortmund University, D-44227 Dortmund, Germany.
| |
Collapse
|