1
|
Biswas A, Ghosh B, Sudarshan K, Gupta SK, Dey RS. Ample Lewis Acidic Sites in Mg 2B 2O 5 Facilitate N 2 Electroreduction through Bonding-Antibonding Interactions. Inorg Chem 2023; 62:14094-14102. [PMID: 37594321 DOI: 10.1021/acs.inorgchem.3c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Extensive research on the electrochemical nitrogen reduction reaction (NRR) has put forward a sound list of potential catalyst materials with properties inducing N2 adsorption, protonation, and reduction. However, rather than a random selection of catalysts, it is essential to understand the vitals in terms of orbital orientation and charge distribution that actually manipulate the rate-determining steps of NRR. Realizing these factors, herein we have explored a main group earth-abundant Mg-based electrocatalyst Mg2B2O5 for NRR due to the abundance of Lewis acid sites in the catalyst favoring the bonding-antibonding interactions with the N2 molecules. Positron annihilation studies indicate that the electronic charge distribution within the catalyst has shallow surface oxygen vacancies. These features in the catalyst enabled a sound Faradaic efficiency of 46.4% at -0.1 V vs reversible hydrogen electrode for the selective NH3 production in neutral electrolyte. In situ Fourier transform infrared suggests a maximum N-N bond polarization at -0.1 V and detected H-N-H and -NH2 intermediates during the course of the NRR on the catalyst surface. In a broader picture, the biocompatibility of Mg2+ diversifies the utility of this catalyst material in N2/biofuel cell applications that would certainly offer a green alternative toward our goal of a sustainable society.
Collapse
Affiliation(s)
- Ashmita Biswas
- Institute of Nano Science and Technology, Mohali, Sector-81, Mohali 140306, Punjab, India
| | - Bikram Ghosh
- Institute of Nano Science and Technology, Mohali, Sector-81, Mohali 140306, Punjab, India
| | - Kathi Sudarshan
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Santosh K Gupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Ramendra Sundar Dey
- Institute of Nano Science and Technology, Mohali, Sector-81, Mohali 140306, Punjab, India
| |
Collapse
|
2
|
Nishida S, Sumi H, Noji H, Itoh A, Kataoka K, Yamashita S, Kano K, Sowa K, Kitazumi Y, Shirai O. Influence of distal glycan mimics on direct electron transfer performance for bilirubin oxidase bioelectrocatalysts. Bioelectrochemistry 2023; 152:108413. [PMID: 37028137 DOI: 10.1016/j.bioelechem.2023.108413] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
Bilirubin oxidase (BOD) is a bioelectrocatalyst that reduces dioxygen (O2) to water and is capable of direct electron transfer (DET)-type bioelectrocatalysis via its electrode-active site (T1 Cu). BOD from Myrothecium verrucaria (mBOD) has been widely studied and has strong DET activity. mBOD contains two N-linked glycans (N-glycans) with N472 and N482 binding sites distal to T1 Cu. We previously reported that different N-glycan compositions affect the enzymatic orientation on the electrode by using recombinant BOD expressed in Pichia pastoris and the deglycosylation method. However, the individual function of the two N-glycans and the effects of N-glycan composition (size, structure, and non-reducing termini) on DET-type reactions are still unclear. In this study, we utilize maleimide-functionalized polyethylene glycol (MAL-PEG) as an N-glycan mimic to evaluate the aforementioned effects. Site-specific enzyme-PEG crosslinking was carried out by specific binding of maleimide to Cys residues. Recombinant BOD expressed in Escherichia coli (eBOD), which does not have a glycosylation system, was used as a benchmark to evaluate the effect. Site-directed mutagenesis of Asn residue (N472 or N482) into Cys residue is utilized to realize site-specific glycan mimic modification to the original binding site.
Collapse
|
3
|
Pasquini L, Sauvan M, Narducci R, Sgreccia E, Knauth P, Di Vona ML. Improved Hydrolytic and Mechanical Stability of Sulfonated Aromatic Proton Exchange Membranes Reinforced by Electrospun PPSU Fibers. MEMBRANES 2022; 12:1159. [PMID: 36422151 PMCID: PMC9696324 DOI: 10.3390/membranes12111159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The hydrolytic stability of ionomer membranes is a matter of concern for the long-term durability of energy storage and conversion devices. Various reinforcement strategies exist for the improvement of the performances of the overall membrane. We propose in this article the stabilization of membranes based on aromatic ion conducting polymers (SPEEK and SPPSU) by the introduction of an electrospun mat of inexpensive PPSU polymer. Characterization data from hydrolytic stability (mass uptake and dimension change) and from mechanical and conductivity measurements show an improved stability of membranes in phosphate buffer, used for enzymatic fuel cells, and in distilled water. The synergistic effect of the reinforcement, together with the casting solvent and the thermal treatment or blending polymers, is promising for the realization of high stability ionomer membranes.
Collapse
Affiliation(s)
- Luca Pasquini
- CNRS, MADIREL UMR 7246 (ELMA Team) and International Laboratory “Ionomer Materials for Energy” (LIME), Aix-Marseille University, 13013 Marseille, France
| | - Maxime Sauvan
- CNRS, MADIREL UMR 7246 (ELMA Team) and International Laboratory “Ionomer Materials for Energy” (LIME), Aix-Marseille University, 13013 Marseille, France
| | - Riccardo Narducci
- International Laboratory “Ionomer Materials for Energy” (LIME), Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Emanuela Sgreccia
- International Laboratory “Ionomer Materials for Energy” (LIME), Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Philippe Knauth
- CNRS, MADIREL UMR 7246 (ELMA Team) and International Laboratory “Ionomer Materials for Energy” (LIME), Aix-Marseille University, 13013 Marseille, France
| | - Maria Luisa Di Vona
- International Laboratory “Ionomer Materials for Energy” (LIME), Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
4
|
A Short Overview of Biological Fuel Cells. MEMBRANES 2022; 12:membranes12040427. [PMID: 35448397 PMCID: PMC9031071 DOI: 10.3390/membranes12040427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023]
Abstract
This short review summarizes the improvements on biological fuel cells (BioFCs) with or without ionomer separation membrane. After a general introduction about the main challenges of modern energy management, BioFCs are presented including microbial fuel cells (MFCs) and enzymatic fuel cells (EFCs). The benefits of BioFCs include the capability to derive energy from waste-water and organic matter, the possibility to use bacteria or enzymes to replace expensive catalysts such as platinum, the high selectivity of the electrode reactions that allow working with less complicated systems, without the need for high purification, and the lower environmental impact. In comparison with classical FCs and given their lower electrochemical performances, BioFCs have, up to now, only found niche applications with low power needs, but they could become a green solution in the perspective of sustainable development and the circular economy. Ion exchange membranes for utilization in BioFCs are discussed in the final section of the review: they include perfluorinated proton exchange membranes but also aromatic polymers grafted with proton or anion exchange groups.
Collapse
|
5
|
Le T, Lasseux D, Zhang L, Carucci C, Gounel S, Bichon S, Lorenzutti F, Kuhn A, Šafarik T, Mano N. Multiscale modelling of diffusion and enzymatic reaction in porous electrodes in Direct Electron Transfer mode. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Kano K. Fundamental insight into redox enzyme-based bioelectrocatalysis. Biosci Biotechnol Biochem 2022; 86:141-156. [PMID: 34755834 DOI: 10.1093/bbb/zbab197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022]
Abstract
Redox enzymes can work as efficient electrocatalysts. The coupling of redox enzymatic reactions with electrode reactions is called enzymatic bioelectrocatalysis, which imparts high reaction specificity to electrode reactions with nonspecific characteristics. The key factors required for bioelectrocatalysis are hydride ion/electron transfer characteristics and low specificity for either substrate in redox enzymes. Several theoretical features of steady-state responses are introduced to understand bioelectrocatalysis and to extend the performance of bioelectrocatalytic systems. Applications of the coupling concept to bioelectrochemical devices are also summarized with emphasis on the achievements recorded in the research group of the author.
Collapse
Affiliation(s)
- Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| |
Collapse
|
7
|
Lielpetere A, Becker JM, Szczesny J, Conzuelo F, Ruff A, Birrell J, Lubitz W, Schuhmann W. Enhancing the catalytic current response of H
2
oxidation gas diffusion bioelectrodes using an optimized viologen‐based redox polymer and [NiFe] hydrogenase. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Anna Lielpetere
- Faculty of Chemistry and Biochemistry, Analytical Chemistry – Center for Electrochemical Sciences (CES) Ruhr University Bochum Bochum Germany
| | - Jana M. Becker
- Faculty of Chemistry and Biochemistry, Analytical Chemistry – Center for Electrochemical Sciences (CES) Ruhr University Bochum Bochum Germany
| | - Julian Szczesny
- Faculty of Chemistry and Biochemistry, Analytical Chemistry – Center for Electrochemical Sciences (CES) Ruhr University Bochum Bochum Germany
| | - Felipe Conzuelo
- Faculty of Chemistry and Biochemistry, Analytical Chemistry – Center for Electrochemical Sciences (CES) Ruhr University Bochum Bochum Germany
| | - Adrian Ruff
- Faculty of Chemistry and Biochemistry, Analytical Chemistry – Center for Electrochemical Sciences (CES) Ruhr University Bochum Bochum Germany
| | - James Birrell
- Max Planck Institute for Chemical Energy Conversion Mülheim an der Ruhr Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion Mülheim an der Ruhr Germany
| | - Wolfgang Schuhmann
- Faculty of Chemistry and Biochemistry, Analytical Chemistry – Center for Electrochemical Sciences (CES) Ruhr University Bochum Bochum Germany
| |
Collapse
|
8
|
Pasquini L, Zhakisheva B, Sgreccia E, Narducci R, Di Vona ML, Knauth P. Stability of Proton Exchange Membranes in Phosphate Buffer for Enzymatic Fuel Cell Application: Hydration, Conductivity and Mechanical Properties. Polymers (Basel) 2021; 13:polym13030475. [PMID: 33540921 PMCID: PMC7867367 DOI: 10.3390/polym13030475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Proton-conducting ionomers are widespread materials for application in electrochemical energy storage devices. However, their properties depend strongly on operating conditions. In bio-fuel cells with a separator membrane, the swelling behavior as well as the conductivity need to be optimized with regard to the use of buffer solutions for the stability of the enzyme catalyst. This work presents a study of the hydrolytic stability, conductivity and mechanical behavior of different proton exchange membranes based on sulfonated poly(ether ether ketone) (SPEEK) and sulfonated poly(phenyl sulfone) (SPPSU) ionomers in phosphate buffer solution. The results show that the membrane stability can be adapted by changing the casting solvent (DMSO, water or ethanol) and procedures, including a crosslinking heat treatment, or by blending the two ionomers. A comparison with NafionTM shows the different behavior of this ionomer versus SPEEK membranes.
Collapse
Affiliation(s)
- Luca Pasquini
- CNRS, MADIREL (UMR 7246) and International Laboratory: Ionomer Materials for Energy, Aix Marseille Univ, Campus St. Jérôme, 13013 Marseille, France; (B.Z.); (P.K.)
- Correspondence:
| | - Botagoz Zhakisheva
- CNRS, MADIREL (UMR 7246) and International Laboratory: Ionomer Materials for Energy, Aix Marseille Univ, Campus St. Jérôme, 13013 Marseille, France; (B.Z.); (P.K.)
| | - Emanuela Sgreccia
- Department Industrial Engineering and International Laboratory: Ionomer Materials for Energy, University of Rome Tor Vergata, 00133 Roma, Italy; (E.S.); (R.N.); (M.L.D.V.)
| | - Riccardo Narducci
- Department Industrial Engineering and International Laboratory: Ionomer Materials for Energy, University of Rome Tor Vergata, 00133 Roma, Italy; (E.S.); (R.N.); (M.L.D.V.)
| | - Maria Luisa Di Vona
- Department Industrial Engineering and International Laboratory: Ionomer Materials for Energy, University of Rome Tor Vergata, 00133 Roma, Italy; (E.S.); (R.N.); (M.L.D.V.)
| | - Philippe Knauth
- CNRS, MADIREL (UMR 7246) and International Laboratory: Ionomer Materials for Energy, Aix Marseille Univ, Campus St. Jérôme, 13013 Marseille, France; (B.Z.); (P.K.)
| |
Collapse
|
9
|
WANIBUCHI M, KITAZUMI Y, SHIRAI O, KANO K. Enhancement of the Direct Electron Transfer-type Bioelectrocatalysis of Bilirubin Oxidase at the Interface between Carbon Particles. ELECTROCHEMISTRY 2021. [DOI: 10.5796/electrochemistry.20-00128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Mizue WANIBUCHI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Yuki KITAZUMI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Osamu SHIRAI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Kenji KANO
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
10
|
Abstract
Bioelectrocatalysis has become one of the most important research fields in electrochemistry and provided a firm base for the application of important technology in various bioelectrochemical devices, such as biosensors, biofuel cells, and biosupercapacitors. The understanding and technology of bioelectrocatalysis have greatly improved with the introduction of nanostructured electrode materials and protein-engineering methods over the last few decades. Recently, the electroenzymatic production of renewable energy resources and useful organic compounds (bioelectrosynthesis) has attracted worldwide attention. In this review, we summarize recent progress in the applications of enzymatic bioelectrocatalysis.
Collapse
|
11
|
Szczesny J, Birrell JA, Conzuelo F, Lubitz W, Ruff A, Schuhmann W. Redox-Polymer-Based High-Current-Density Gas-Diffusion H 2 -Oxidation Bioanode Using [FeFe] Hydrogenase from Desulfovibrio desulfuricans in a Membrane-free Biofuel Cell. Angew Chem Int Ed Engl 2020; 59:16506-16510. [PMID: 32432842 PMCID: PMC7540381 DOI: 10.1002/anie.202006824] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 12/11/2022]
Abstract
The incorporation of highly active but also highly sensitive catalysts (e.g. the [FeFe] hydrogenase from Desulfovibrio desulfuricans) in biofuel cells is still one of the major challenges in sustainable energy conversion. We report the fabrication of a dual-gas diffusion electrode H2 /O2 biofuel cell equipped with a [FeFe] hydrogenase/redox polymer-based high-current-density H2 -oxidation bioanode. The bioanodes show benchmark current densities of around 14 mA cm-2 and the corresponding fuel cell tests exhibit a benchmark for a hydrogenase/redox polymer-based biofuel cell with outstanding power densities of 5.4 mW cm-2 at 0.7 V cell voltage. Furthermore, the highly sensitive [FeFe] hydrogenase is protected against oxygen damage by the redox polymer and can function under 5 % O2 .
Collapse
Affiliation(s)
- Julian Szczesny
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - James A. Birrell
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Felipe Conzuelo
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Adrian Ruff
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
- Present address: PPG (Deutschland) Business Support GmbH, PPG Packaging CoatingsErlenbrunnenstr. 2072411BodelshausenGermany
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstr. 15044780BochumGermany
| |
Collapse
|
12
|
Adachi T, Kitazumi Y, Shirai O, Kano K. Development Perspective of Bioelectrocatalysis-Based Biosensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4826. [PMID: 32858975 PMCID: PMC7506675 DOI: 10.3390/s20174826] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023]
Abstract
Bioelectrocatalysis provides the intrinsic catalytic functions of redox enzymes to nonspecific electrode reactions and is the most important and basic concept for electrochemical biosensors. This review starts by describing fundamental characteristics of bioelectrocatalytic reactions in mediated and direct electron transfer types from a theoretical viewpoint and summarizes amperometric biosensors based on multi-enzymatic cascades and for multianalyte detection. The review also introduces prospective aspects of two new concepts of biosensors: mass-transfer-controlled (pseudo)steady-state amperometry at microelectrodes with enhanced enzymatic activity without calibration curves and potentiometric coulometry at enzyme/mediator-immobilized biosensors for absolute determination.
Collapse
|
13
|
Szczesny J, Birrell JA, Conzuelo F, Lubitz W, Ruff A, Schuhmann W. Eine Redoxpolymer‐basierte Gasdiffusions‐H
2
‐Oxidationsbioanode mit hoher Stromdichte unter Verwendung von [FeFe]‐Hydrogenase aus
Desulfovibrio desulfuricans
integriert in einer membranfreien Biobrennstoffzelle. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julian Szczesny
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - James A. Birrell
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
| | - Felipe Conzuelo
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
| | - Adrian Ruff
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
- PPG (Deutschland) Business Support GmbH, PPG Packaging Coatings Erlenbrunnenstraße 20 72411 Bodelshausen Deutschland
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr-Universität Bochum Universitätsstraße 150 44780 Bochum Deutschland
| |
Collapse
|
14
|
Direct Electron Transfer-Type Bioelectrocatalysis of Redox Enzymes at Nanostructured Electrodes. Catalysts 2020. [DOI: 10.3390/catal10020236] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Direct electron transfer (DET)-type bioelectrocatalysis, which couples the electrode reactions and catalytic functions of redox enzymes without any redox mediator, is one of the most intriguing subjects that has been studied over the past few decades in the field of bioelectrochemistry. In order to realize the DET-type bioelectrocatalysis and improve the performance, nanostructures of the electrode surface have to be carefully tuned for each enzyme. In addition, enzymes can also be tuned by the protein engineering approach for the DET-type reaction. This review summarizes the recent progresses in this field of the research while considering the importance of nanostructure of electrodes as well as redox enzymes. This review also describes the basic concepts and theoretical aspects of DET-type bioelectrocatalysis, the significance of nanostructures as scaffolds for DET-type reactions, protein engineering approaches for DET-type reactions, and concepts and facts of bidirectional DET-type reactions from a cross-disciplinary viewpoint.
Collapse
|
15
|
Direct electron transfer-type bioelectrocatalysis of FAD-dependent glucose dehydrogenase using porous gold electrodes and enzymatically implanted platinum nanoclusters. Bioelectrochemistry 2020; 133:107457. [PMID: 31978858 DOI: 10.1016/j.bioelechem.2020.107457] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/26/2019] [Accepted: 01/05/2020] [Indexed: 02/08/2023]
Abstract
The direct electron transfer (DET)-type bioelectrocatalysis of flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase (GDH) from Aspergillus terreus (AtGDH) was carried out using porous gold (Au) electrodes and enzymatically implanted platinum nanoclusters (PtNCs). The porous Au electrodes were prepared by anodization of planar Au electrodes in a phosphate buffer containing glucose as a reductant. Moreover, PtNCs were generated into AtGDH by an enzymatic reduction of hexachloroplatinate (IV) ion. The modification was confirmed by native polyacrylamide gel electrophoresis and sodium dodecyl sulfate polyacrylamide gel electrophoresis analyses. The AtGDH-adsorbed porous Au electrode showed a DET-type bioelectrocatalytic wave both in the presence and absence of PtNCs; however, the current density with PtNCs (~1 mA cm-2 at 0 V vs. Ag|AgCl|sat. KCl) was considerably higher than that without PtNCs. The kinetic and thermodynamic analysis of the steady-state catalytic wave indicated that inner PtNCs shortened the distance between the catalytic center of AtGDH (=FAD) and the conductive material, and improved the heterogeneous electron transfer kinetics between them.
Collapse
|
16
|
Affiliation(s)
- Kenji KANO
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
17
|
Wang X, Clément R, Roger M, Bauzan M, Mazurenko I, Poulpiquet AD, Ilbert M, Lojou E. Bacterial Respiratory Chain Diversity Reveals a Cytochrome c Oxidase Reducing O 2 at Low Overpotentials. J Am Chem Soc 2019; 141:11093-11102. [PMID: 31274287 DOI: 10.1021/jacs.9b03268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome c oxidases (CcOs) are the terminal enzymes in energy-converting chains of microorganisms, where they reduce oxygen into water. Their affinity for O2 makes them attractive biocatalysts for technological devices in which O2 concentration is limited, but the high overpotentials they display on electrodes severely limit their applicative use. Here, the CcO of the acidophilic bacterium Acidithiobacillus ferrooxidans is studied on various carbon materials by direct protein electrochemistry and mediated one with redox mediators either diffusing or co-immobilized at the electrode surface. The entrapment of the CcO in a network of hydrophobic carbon nanofibers permits a direct electrochemical communication between the enzyme and the electrode. We demonstrate that the CcO displays a μM affinity for O2 and reduces O2 at exceptionally high electrode potentials in the range of +700 to +540 mV vs NHE over a pH range of 4-6. The kinetics of interactions between the enzyme and its physiological partners are fully quantified. Based on these results, an electron transfer pathway allowing O2 reduction in the acidic metabolic chain is proposed.
Collapse
Affiliation(s)
- Xie Wang
- Aix-Marseille Univ , CNRS, BIP UMR 7281, 31 Chemin Aiguier , CS 70071, 13402 Marseille Cedex 09 , France
| | - Romain Clément
- Aix-Marseille Univ , CNRS, BIP UMR 7281, 31 Chemin Aiguier , CS 70071, 13402 Marseille Cedex 09 , France
| | - Magali Roger
- School of Natural and Environmental Sciences , Newcastle University , Devonshire Building , NE1 7RX , Newcastle upon Tyne , England
| | - Marielle Bauzan
- Aix-Marseille Univ , CNRS, IMM FR 3479, 31 Chemin Aiguier , 13009 Marseille , France
| | - Ievgen Mazurenko
- Aix-Marseille Univ , CNRS, BIP UMR 7281, 31 Chemin Aiguier , CS 70071, 13402 Marseille Cedex 09 , France
| | - Anne de Poulpiquet
- Aix-Marseille Univ , CNRS, BIP UMR 7281, 31 Chemin Aiguier , CS 70071, 13402 Marseille Cedex 09 , France
| | - Marianne Ilbert
- Aix-Marseille Univ , CNRS, BIP UMR 7281, 31 Chemin Aiguier , CS 70071, 13402 Marseille Cedex 09 , France
| | - Elisabeth Lojou
- Aix-Marseille Univ , CNRS, BIP UMR 7281, 31 Chemin Aiguier , CS 70071, 13402 Marseille Cedex 09 , France
| |
Collapse
|
18
|
Takahashi Y, Wanibuchi M, Kitazumi Y, Shirai O, Kano K. Improved direct electron transfer-type bioelectrocatalysis of bilirubin oxidase using porous gold electrodes. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Ikeda K, Hori Y, Mahyuddin MH, Shiota Y, Staykov A, Matsumoto T, Yoshizawa K, Ogo S. Dual Catalytic Cycle of H2 and H2O Oxidations by a Half-Sandwich Iridium Complex: A Theoretical Study. Inorg Chem 2019; 58:7274-7284. [DOI: 10.1021/acs.inorgchem.9b00307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kei Ikeda
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuta Hori
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | | | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Aleksandar Staykov
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Takahiro Matsumoto
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
- Center for Small Molecule Energy, Kyushu University, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Seiji Ogo
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
- Center for Small Molecule Energy, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
20
|
Takahashi Y, Kitazumi Y, Shirai O, Kano K. Improved direct electron transfer-type bioelectrocatalysis of bilirubin oxidase using thiol-modified gold nanoparticles on mesoporous carbon electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.10.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Pasquini L, Wacrenier O, Vona MLD, Knauth P. Hydration and Ionic Conductivity of Model Cation and Anion-Conducting Ionomers in Buffer Solutions (Phosphate, Acetate, Citrate). J Phys Chem B 2018; 122:12009-12016. [PMID: 30441904 DOI: 10.1021/acs.jpcb.8b08622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We studied the gravimetric and volumetric water uptake and ionic conductivity of two model ionomers, cation-conducting sulfonated poly(ether ether ketone) (SPEEK) and anion-conducting polysulfone-trimethylammonium chloride (PSU-TMA), after immersion in phosphate, acetate, and citrate buffer solutions. The equilibrium swelling of SPEEK and PSU-TMA ionomer networks was determined as a function of the pH and buffer composition. The hydration data can be interpreted using the osmotic swelling pressure dependence on the ion-exchange capacity of the ionomers and the concentration of the electrolyte solutions. In the case of SPEEK, anisotropic swelling is observed in diluted buffer solutions, where the swelling pressure is higher. The large water uptake observed for citrate ions is due to the large hydration of this bulky anion. The ionic conductivity is related to the conducting ions and, in the case of SPEEK, to sorbed excess electrolyte. The highest ionic conductivity is observed after immersion in phosphate buffers. Ionic cross-linking is, for the first time, observed in the case of an anion-conducting ionomer in the presence of divalent citrate ions, which limits the volumetric swelling and decreases the ionic conductivity of PSU-TMA.
Collapse
Affiliation(s)
- L Pasquini
- Aix Marseille Univ, CNRS, MADIREL (UMR 7246) , Campus Etoile-St Jérôme , 13013 Marseille , France.,International Associated Laboratory (L.I.A.) "Ionomer Materials for Energy" , Aix Marseille Univ, CNRS , 13013 Marseille , France
| | - O Wacrenier
- Aix Marseille Univ, CNRS, MADIREL (UMR 7246) , Campus Etoile-St Jérôme , 13013 Marseille , France
| | - M L Di Vona
- International Associated Laboratory (L.I.A.) "Ionomer Materials for Energy" , Aix Marseille Univ, CNRS , 13013 Marseille , France.,Univ. Rome Tor Vergata, Dip. Ing. Industriale , Via del Politecnico , 00133 Roma , Italy
| | - P Knauth
- Aix Marseille Univ, CNRS, MADIREL (UMR 7246) , Campus Etoile-St Jérôme , 13013 Marseille , France.,International Associated Laboratory (L.I.A.) "Ionomer Materials for Energy" , Aix Marseille Univ, CNRS , 13013 Marseille , France
| |
Collapse
|
22
|
Wernert V, Lebouin C, Benoit V, Gadiou R, de Poulpiquet A, Lojou E, Denoyel R. Direct electron transfer of bilirubin oxidase at a carbon flow-through electrode. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Blout A, Billon F, Calers C, Méthivier C, Pailleret A, Perrot H, Jolivalt C. Orientation of a Trametes versicolor laccase on amorphous carbon nitride coated graphite electrodes for improved electroreduction of dioxygen to water. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Sakai K, Xia HQ, Kitazumi Y, Shirai O, Kano K. Assembly of direct-electron-transfer-type bioelectrodes with high performance. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Bollella P, Gorton L, Antiochia R. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1319. [PMID: 29695133 PMCID: PMC5982196 DOI: 10.3390/s18051319] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 01/04/2023]
Abstract
Dehydrogenase based bioelectrocatalysis has been increasingly exploited in recent years in order to develop new bioelectrochemical devices, such as biosensors and biofuel cells, with improved performances. In some cases, dehydrogeases are able to directly exchange electrons with an appropriately designed electrode surface, without the need for an added redox mediator, allowing bioelectrocatalysis based on a direct electron transfer process. In this review we briefly describe the electron transfer mechanism of dehydrogenase enzymes and some of the characteristics required for bioelectrocatalysis reactions via a direct electron transfer mechanism. Special attention is given to cellobiose dehydrogenase and fructose dehydrogenase, which showed efficient direct electron transfer reactions. An overview of the most recent biosensors and biofuel cells based on the two dehydrogenases will be presented. The various strategies to prepare modified electrodes in order to improve the electron transfer properties of the device will be carefully investigated and all analytical parameters will be presented, discussed and compared.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Drug Technologies, Sapienza University of Rome P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Lo Gorton
- Department of Biochemistry and Structural Biology, Lund University, P.O. Box 124, 221 00 Lund, Sweden.
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
26
|
Gentil S, Che Mansor SM, Jamet H, Cosnier S, Cavazza C, Le Goff A. Oriented Immobilization of [NiFeSe] Hydrogenases on Covalently and Noncovalently Functionalized Carbon Nanotubes for H2/Air Enzymatic Fuel Cells. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00708] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Solène Gentil
- Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- Université Grenoble Alpes, CEA, CNRS, BIG-LCBM, 38000 Grenoble, France
| | | | - Hélène Jamet
- Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | - Serge Cosnier
- Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | - Christine Cavazza
- Université Grenoble Alpes, CEA, CNRS, BIG-LCBM, 38000 Grenoble, France
| | - Alan Le Goff
- Université Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| |
Collapse
|
27
|
Sakai K, Kitazumi Y, Shirai O, Takagi K, Kano K. Direct electron transfer-type four-way bioelectrocatalysis of CO2/formate and NAD+/NADH redox couples by tungsten-containing formate dehydrogenase adsorbed on gold nanoparticle-embedded mesoporous carbon electrodes modified with 4-mercaptopyridine. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
28
|
Affiliation(s)
- Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- University of Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Anne de Poulpiquet
- Aix Marseille Univ., CNRS, BIP, 31, chemin Aiguier, 13402 Marseille, France
| |
Collapse
|
29
|
Sakai K, Kitazumi Y, Shirai O, Takagi K, Kano K. High-Power Formate/Dioxygen Biofuel Cell Based on Mediated Electron Transfer Type Bioelectrocatalysis. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01918] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kento Sakai
- Division of Applied
Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yuki Kitazumi
- Division of Applied
Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Osamu Shirai
- Division of Applied
Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kazuyoshi Takagi
- Department of Applied Chemistry, College
of Life Science, Ritsumeikan University, Noji-Higashi 1-1-1, Kusatsu, Shiga 525-8577, Japan
| | - Kenji Kano
- Division of Applied
Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
30
|
So K, Ozawa H, Onizuka M, Komukai T, Kitazumi Y, Shirai O, Kano K. Highly Permeable Gas Diffusion Electrodes with Hollow Carbon Nanotubes for Bilirubin Oxidase-Catalyzed Dioxygen Reduction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
31
|
Rengaraj S, Haddad R, Lojou E, Duraffourg N, Holzinger M, Le Goff A, Forge V. Interprotein Electron Transfer between FeS-Protein Nanowires and Oxygen-Tolerant NiFe Hydrogenase. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saravanan Rengaraj
- Univ. Grenoble Alpes, CNRS, CEA, BIG/CBM/AFFOND; 38000 Grenoble France
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Raoudha Haddad
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP UMR 7281; 31 chemin Aiguier 13009 Marseille France
| | | | | | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Vincent Forge
- Univ. Grenoble Alpes, CNRS, CEA, BIG/CBM/AFFOND; 38000 Grenoble France
| |
Collapse
|
32
|
Rengaraj S, Haddad R, Lojou E, Duraffourg N, Holzinger M, Le Goff A, Forge V. Interprotein Electron Transfer between FeS-Protein Nanowires and Oxygen-Tolerant NiFe Hydrogenase. Angew Chem Int Ed Engl 2017; 56:7774-7778. [DOI: 10.1002/anie.201702042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Saravanan Rengaraj
- Univ. Grenoble Alpes, CNRS, CEA, BIG/CBM/AFFOND; 38000 Grenoble France
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Raoudha Haddad
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP UMR 7281; 31 chemin Aiguier 13009 Marseille France
| | | | | | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Vincent Forge
- Univ. Grenoble Alpes, CNRS, CEA, BIG/CBM/AFFOND; 38000 Grenoble France
| |
Collapse
|
33
|
Lindenmaier NJ, Wahlefeld S, Bill E, Szilvási T, Eberle C, Yao S, Hildebrandt P, Horch M, Zebger I, Driess M. An S-Oxygenated [NiFe] Complex Modelling Sulfenate Intermediates of an O2
-Tolerant Hydrogenase. Angew Chem Int Ed Engl 2017; 56:2208-2211. [DOI: 10.1002/anie.201611069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Nils J. Lindenmaier
- Institut für Chemie: Metallorganik und Anorganische Materialien, Sekr. C2; Technische Universität Berlin; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Stefan Wahlefeld
- Institut für Chemie: Physikalische Chemie/Biophysikalische Chemie, Sekr. PC14; Technische Universität Berlin; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Eckhard Bill
- Abteilung Molekulare Theorie und Spektroskopie; Max-Planck-Institut für Chemische Energiekonversion; Mülheim a. d. Ruhr Germany
| | - Tibor Szilvási
- Department of Chemical and Biological Engineering; University of Wisconsin, Madison; USA
| | - Christopher Eberle
- Institut für Chemie: Metallorganik und Anorganische Materialien, Sekr. C2; Technische Universität Berlin; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Shenglai Yao
- Institut für Chemie: Metallorganik und Anorganische Materialien, Sekr. C2; Technische Universität Berlin; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Peter Hildebrandt
- Institut für Chemie: Physikalische Chemie/Biophysikalische Chemie, Sekr. PC14; Technische Universität Berlin; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Marius Horch
- Institut für Chemie: Physikalische Chemie/Biophysikalische Chemie, Sekr. PC14; Technische Universität Berlin; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Ingo Zebger
- Institut für Chemie: Physikalische Chemie/Biophysikalische Chemie, Sekr. PC14; Technische Universität Berlin; Strasse des 17. Juni 135 10623 Berlin Germany
| | - Matthias Driess
- Institut für Chemie: Metallorganik und Anorganische Materialien, Sekr. C2; Technische Universität Berlin; Strasse des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
34
|
Lindenmaier NJ, Wahlefeld S, Bill E, Szilvási T, Eberle C, Yao S, Hildebrandt P, Horch M, Zebger I, Driess M. Ein S-oxygenierter [NiFe]-Komplex als Modell für Sulfenat- intermediate einer O 2
-toleranten Hydrogenase. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Nils J. Lindenmaier
- Institut für Chemie: Metallorganik und Anorganische Materialien, Sekr. C2; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Stefan Wahlefeld
- Institut für Chemie: Physikalische Chemie/Biophysikalische Chemie, Sekr. PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Eckhard Bill
- Abteilung Molekulare Theorie und Spektroskopie; Max-Planck-Institut für Chemische Energiekonversion; Mülheim a. d. Ruhr Deutschland
| | - Tibor Szilvási
- Department of Chemical and Biological Engineering; University of Wisconsin, Madison; USA
| | - Christopher Eberle
- Institut für Chemie: Metallorganik und Anorganische Materialien, Sekr. C2; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Shenglai Yao
- Institut für Chemie: Metallorganik und Anorganische Materialien, Sekr. C2; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Peter Hildebrandt
- Institut für Chemie: Physikalische Chemie/Biophysikalische Chemie, Sekr. PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Marius Horch
- Institut für Chemie: Physikalische Chemie/Biophysikalische Chemie, Sekr. PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Ingo Zebger
- Institut für Chemie: Physikalische Chemie/Biophysikalische Chemie, Sekr. PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Matthias Driess
- Institut für Chemie: Metallorganik und Anorganische Materialien, Sekr. C2; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Deutschland
| |
Collapse
|
35
|
Analysis of factors governing direct electron transfer-type bioelectrocatalysis of bilirubin oxidase at modified electrodes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.10.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Monsalve K, Mazurenko I, Gutierrez-Sanchez C, Ilbert M, Infossi P, Frielingsdorf S, Giudici-Orticoni MT, Lenz O, Lojou E. Impact of Carbon Nanotube Surface Chemistry on Hydrogen Oxidation by Membrane-Bound Oxygen-Tolerant Hydrogenases. ChemElectroChem 2016. [DOI: 10.1002/celc.201600460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Karen Monsalve
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| | - Ievgen Mazurenko
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| | | | - Marianne Ilbert
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| | - Pascale Infossi
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| | - Stefan Frielingsdorf
- Institute für Chemie, Sekretariat PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | | | - Oliver Lenz
- Institute für Chemie, Sekretariat PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, UMR 7281; 31 chemin Joseph Aiguier 13402 Marseille France
| |
Collapse
|
37
|
Mazurenko I, Monsalve K, Rouhana J, Parent P, Laffon C, Goff AL, Szunerits S, Boukherroub R, Giudici-Orticoni MT, Mano N, Lojou E. How the Intricate Interactions between Carbon Nanotubes and Two Bilirubin Oxidases Control Direct and Mediated O2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23074-23085. [PMID: 27533778 DOI: 10.1021/acsami.6b07355] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Due to the lack of a valid approach in the design of electrochemical interfaces modified with enzymes for efficient catalysis, many oxidoreductases are still not addressed by electrochemistry. We report in this work an in-depth study of the interactions between two different bilirubin oxidases, (from the fungus Myrothecium verrucaria and from the bacterium Bacillus pumilus), catalysts of oxygen reduction, and carbon nanotubes bearing various surface charges (pristine, carboxylic-, and pyrene-methylamine-functionalized). The surface charges and dipole moment of the enzymes as well as the surface state of the nanomaterials are characterized as a function of pH. An original electrochemical approach allows determination of the best interface for direct or mediated electron transfer processes as a function of enzyme, nanomaterial type, and adsorption conditions. We correlate these experimental results to theoric voltammetric curves. Such an integrative study suggests strategies for designing efficient bioelectrochemical interfaces toward the elaboration of biodevices such as enzymatic fuel cells for sustainable electricity production.
Collapse
Affiliation(s)
- Ievgen Mazurenko
- Aix Marseille Univ, CNRS , BIP, Bioénergétique et Ingénierie des Protéines UMR7281, 31 chemin Joseph Aiguier 13402 Marseille Cedex 20, France
| | - Karen Monsalve
- Aix Marseille Univ, CNRS , BIP, Bioénergétique et Ingénierie des Protéines UMR7281, 31 chemin Joseph Aiguier 13402 Marseille Cedex 20, France
| | - Jad Rouhana
- Centre de Recherche Paul Pascal, UPR 8641, CNRS, Bordeaux University , 33600 Pessac, France
| | - Philippe Parent
- Aix Marseille Université, CNRS , CINaM UMR 7325, 13288 Marseille, France
| | - Carine Laffon
- Aix Marseille Université, CNRS , CINaM UMR 7325, 13288 Marseille, France
| | - Alan Le Goff
- Université Grenoble Alpes , DCM UMR 5250, 38000 Grenoble, France
| | - Sabine Szunerits
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR CNRS 8520) , , Université Lille 1, Cité Scientifique Avenue Poincaré-BP60069, 59652 Villeneuve d'Ascq, France
| | - Rabah Boukherroub
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN, UMR CNRS 8520) , , Université Lille 1, Cité Scientifique Avenue Poincaré-BP60069, 59652 Villeneuve d'Ascq, France
| | - Marie-Thérèse Giudici-Orticoni
- Aix Marseille Univ, CNRS , BIP, Bioénergétique et Ingénierie des Protéines UMR7281, 31 chemin Joseph Aiguier 13402 Marseille Cedex 20, France
| | - Nicolas Mano
- Centre de Recherche Paul Pascal, UPR 8641, CNRS, Bordeaux University , 33600 Pessac, France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS , BIP, Bioénergétique et Ingénierie des Protéines UMR7281, 31 chemin Joseph Aiguier 13402 Marseille Cedex 20, France
| |
Collapse
|
38
|
Gutierrez-Sanchez C, Ciaccafava A, Blanchard PY, Monsalve K, Giudici-Orticoni MT, Lecomte S, Lojou E. Efficiency of Enzymatic O2 Reduction by Myrothecium verrucaria Bilirubin Oxidase Probed by Surface Plasmon Resonance, PMIRRAS, and Electrochemistry. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01423] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Alexandre Ciaccafava
- Technische Universität Berlin, Institut für
Chemie, Sekretariat PC
14, D-10623 Berlin, Germany
| | | | - Karen Monsalve
- Aix Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13402 Marseille, France
| | | | - Sophie Lecomte
- Institut for Chemistry and Biology of Membrane and Nanoobjects, Allée Geoffroy St Hilaire, 33600 Pessac, France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13402 Marseille, France
| |
Collapse
|
39
|
So K, Hamamoto R, Takeuchi R, Kitazumi Y, Shirai O, Endo R, Nishihara H, Higuchi Y, Kano K. Bioelectrochemical analysis of thermodynamics of the catalytic cycle and kinetics of the oxidative inactivation of oxygen-tolerant [NiFe]-hydrogenase. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Takashita K, Matsumoto T, Yatabe T, Nakai H, Ogo S. A Non-precious Metal, Ni Molecular Catalyst for a Fuel Cell Cathode. CHEM LETT 2016. [DOI: 10.1246/cl.150988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Keisuke Takashita
- Center for Small Molecule Energy, Kyushu University
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
| | - Takahiro Matsumoto
- Center for Small Molecule Energy, Kyushu University
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University
| | - Takeshi Yatabe
- Center for Small Molecule Energy, Kyushu University
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University
| | - Hidetaka Nakai
- Center for Small Molecule Energy, Kyushu University
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University
| | - Seiji Ogo
- Center for Small Molecule Energy, Kyushu University
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University
| |
Collapse
|
41
|
Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells. Biosens Bioelectron 2016; 76:145-63. [DOI: 10.1016/j.bios.2015.06.052] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 01/23/2023]
|
42
|
Monsalve K, Roger M, Gutierrez-Sanchez C, Ilbert M, Nitsche S, Byrne-Kodjabachian D, Marchi V, Lojou E. Hydrogen bioelectrooxidation on gold nanoparticle-based electrodes modified by Aquifex aeolicus hydrogenase: Application to hydrogen/oxygen enzymatic biofuel cells. Bioelectrochemistry 2015; 106:47-55. [DOI: 10.1016/j.bioelechem.2015.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 02/08/2023]
|
43
|
Oughli AA, Conzuelo F, Winkler M, Happe T, Lubitz W, Schuhmann W, Rüdiger O, Plumeré N. A redox hydrogel protects the O2 -sensitive [FeFe]-hydrogenase from Chlamydomonas reinhardtii from oxidative damage. Angew Chem Int Ed Engl 2015; 54:12329-33. [PMID: 26073322 DOI: 10.1002/anie.201502776] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 01/10/2023]
Abstract
The integration of sensitive catalysts in redox matrices opens up the possibility for their protection from deactivating molecules such as O2 . [FeFe]-hydrogenases are enzymes catalyzing H2 oxidation/production which are irreversibly deactivated by O2 . Therefore, their use under aerobic conditions has never been achieved. Integration of such hydrogenases in viologen-modified hydrogel films allows the enzyme to maintain catalytic current for H2 oxidation in the presence of O2 , demonstrating a protection mechanism independent of reactivation processes. Within the hydrogel, electrons from the hydrogenase-catalyzed H2 oxidation are shuttled to the hydrogel-solution interface for O2 reduction. Hence, the harmful O2 molecules do not reach the hydrogenase. We illustrate the potential applications of this protection concept with a biofuel cell under H2 /O2 mixed feed.
Collapse
Affiliation(s)
- Alaa Alsheikh Oughli
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr (Germany)
| | - Felipe Conzuelo
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum (Germany)
| | - Martin Winkler
- Lehrstuhl Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr Universität Bochum, Universitätsstrasse 150, 44801 Bochum (Germany)
| | - Thomas Happe
- Lehrstuhl Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr Universität Bochum, Universitätsstrasse 150, 44801 Bochum (Germany)
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr (Germany)
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum (Germany)
| | - Olaf Rüdiger
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr (Germany).
| | - Nicolas Plumeré
- Center for Electrochemical Sciences-Molecular Nanostructures, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum (Germany).
| |
Collapse
|
44
|
Oughli AA, Conzuelo F, Winkler M, Happe T, Lubitz W, Schuhmann W, Rüdiger O, Plumeré N. Ein Redoxhydrogel schützt die O2-empfindliche [FeFe]-Hydrogenase ausChlamydomonas reinhardtiivor oxidativer Zerstörung. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
45
|
Fourmond V, Stapf S, Li H, Buesen D, Birrell J, Rüdiger O, Lubitz W, Schuhmann W, Plumeré N, Léger C. Mechanism of protection of catalysts supported in redox hydrogel films. J Am Chem Soc 2015; 137:5494-505. [PMID: 25835569 DOI: 10.1021/jacs.5b01194] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The use of synthetic inorganic complexes as supported catalysts is a key route in energy production and in industrial synthesis. However, their intrinsic oxygen sensitivity is sometimes an issue. Some of us have recently demonstrated that hydrogenases, the fragile but very efficient biological catalysts of H2 oxidation, can be protected from O2 damage upon integration into a film of a specifically designed redox polymer. Catalytic oxidation of H2 produces electrons which reduce oxygen near the film/solution interface, thus providing a self-activated protection from oxygen [Plumeré et al., Nat Chem. 2014, 6, 822-827]. Here, we rationalize this protection mechanism by examining the time-dependent distribution of species in the hydrogenase/polymer film, using measured or estimated values of all relevant parameters and the numerical and analytical solutions of a realistic reaction-diffusion scheme. Our investigation sets the stage for optimizing the design of hydrogenase-polymer films, and for expanding this strategy to other fragile catalysts.
Collapse
Affiliation(s)
- Vincent Fourmond
- †Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix Marseille Université, CNRS, BIP UMR 7281, 13402 Marseille, France
| | | | | | | | - James Birrell
- ∥Max-Planck-Institut für Chemische Energiekonversion, Stiftstr 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- ∥Max-Planck-Institut für Chemische Energiekonversion, Stiftstr 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- ∥Max-Planck-Institut für Chemische Energiekonversion, Stiftstr 34-36, 45470 Mülheim an der Ruhr, Germany
| | | | | | - Christophe Léger
- †Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix Marseille Université, CNRS, BIP UMR 7281, 13402 Marseille, France
| |
Collapse
|
46
|
Lalaoui N, de Poulpiquet A, Haddad R, Le Goff A, Holzinger M, Gounel S, Mermoux M, Infossi P, Mano N, Lojou E, Cosnier S. A membraneless air-breathing hydrogen biofuel cell based on direct wiring of thermostable enzymes on carbon nanotube electrodes. Chem Commun (Camb) 2015; 51:7447-50. [DOI: 10.1039/c5cc02166a] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A membraneless air-breathing hydrogen biofuel cell.
Collapse
Affiliation(s)
- Noémie Lalaoui
- Univ. Grenoble Alpes
- DCM UMR 5250
- F-38000 Grenoble
- France
- CNRS
| | | | - Raoudha Haddad
- Univ. Grenoble Alpes
- DCM UMR 5250
- F-38000 Grenoble
- France
- CNRS
| | - Alan Le Goff
- Univ. Grenoble Alpes
- DCM UMR 5250
- F-38000 Grenoble
- France
- CNRS
| | | | | | - Michel Mermoux
- Univ. Grenoble Alpes
- LEPMI UMR 5279
- F-38000 Grenoble
- France
- CNRS
| | | | | | | | - Serge Cosnier
- Univ. Grenoble Alpes
- DCM UMR 5250
- F-38000 Grenoble
- France
- CNRS
| |
Collapse
|
47
|
Oteri F, Baaden M, Lojou E, Sacquin-Mora S. Multiscale Simulations Give Insight into the Hydrogen In and Out Pathways of [NiFe]-Hydrogenases from Aquifex aeolicus and Desulfovibrio fructosovorans. J Phys Chem B 2014; 118:13800-11. [DOI: 10.1021/jp5089965] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesco Oteri
- Laboratoire
de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marc Baaden
- Laboratoire
de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Elisabeth Lojou
- Bioénergétique
et Ingénierie des Protéines, Institut de Microbiologie
de la Méditerranée, CNRS, Aix Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex, France
| | - Sophie Sacquin-Mora
- Laboratoire
de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|