• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4606055)   Today's Articles (849)   Subscriber (49373)
For: de Poulpiquet A, Ranava D, Monsalve K, Giudici-Orticoni MT, Lojou E. Biohydrogen for a New Generation of H2/O2Biofuel Cells: A Sustainable Energy Perspective. ChemElectroChem 2014. [DOI: 10.1002/celc.201402249] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Number Cited by Other Article(s)
1
Biswas A, Ghosh B, Sudarshan K, Gupta SK, Dey RS. Ample Lewis Acidic Sites in Mg2B2O5 Facilitate N2 Electroreduction through Bonding-Antibonding Interactions. Inorg Chem 2023;62:14094-14102. [PMID: 37594321 DOI: 10.1021/acs.inorgchem.3c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
2
Nishida S, Sumi H, Noji H, Itoh A, Kataoka K, Yamashita S, Kano K, Sowa K, Kitazumi Y, Shirai O. Influence of distal glycan mimics on direct electron transfer performance for bilirubin oxidase bioelectrocatalysts. Bioelectrochemistry 2023;152:108413. [PMID: 37028137 DOI: 10.1016/j.bioelechem.2023.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
3
Pasquini L, Sauvan M, Narducci R, Sgreccia E, Knauth P, Di Vona ML. Improved Hydrolytic and Mechanical Stability of Sulfonated Aromatic Proton Exchange Membranes Reinforced by Electrospun PPSU Fibers. MEMBRANES 2022;12:1159. [PMID: 36422151 PMCID: PMC9696324 DOI: 10.3390/membranes12111159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
4
A Short Overview of Biological Fuel Cells. MEMBRANES 2022;12:membranes12040427. [PMID: 35448397 PMCID: PMC9031071 DOI: 10.3390/membranes12040427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023]
5
Le T, Lasseux D, Zhang L, Carucci C, Gounel S, Bichon S, Lorenzutti F, Kuhn A, Šafarik T, Mano N. Multiscale modelling of diffusion and enzymatic reaction in porous electrodes in Direct Electron Transfer mode. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
6
Kano K. Fundamental insight into redox enzyme-based bioelectrocatalysis. Biosci Biotechnol Biochem 2021;86:141-156. [PMID: 34755834 DOI: 10.1093/bbb/zbab197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022]
7
Lielpetere A, Becker JM, Szczesny J, Conzuelo F, Ruff A, Birrell J, Lubitz W, Schuhmann W. Enhancing the catalytic current response of H 2 oxidation gas diffusion bioelectrodes using an optimized viologen‐based redox polymer and [NiFe] hydrogenase. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]  Open
8
Pasquini L, Zhakisheva B, Sgreccia E, Narducci R, Di Vona ML, Knauth P. Stability of Proton Exchange Membranes in Phosphate Buffer for Enzymatic Fuel Cell Application: Hydration, Conductivity and Mechanical Properties. Polymers (Basel) 2021;13:polym13030475. [PMID: 33540921 PMCID: PMC7867367 DOI: 10.3390/polym13030475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]  Open
9
WANIBUCHI M, KITAZUMI Y, SHIRAI O, KANO K. Enhancement of the Direct Electron Transfer-type Bioelectrocatalysis of Bilirubin Oxidase at the Interface between Carbon Particles. ELECTROCHEMISTRY 2021. [DOI: 10.5796/electrochemistry.20-00128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]  Open
10
Recent Progress in Applications of Enzymatic Bioelectrocatalysis. Catalysts 2020. [DOI: 10.3390/catal10121413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]  Open
11
Szczesny J, Birrell JA, Conzuelo F, Lubitz W, Ruff A, Schuhmann W. Redox-Polymer-Based High-Current-Density Gas-Diffusion H2 -Oxidation Bioanode Using [FeFe] Hydrogenase from Desulfovibrio desulfuricans in a Membrane-free Biofuel Cell. Angew Chem Int Ed Engl 2020;59:16506-16510. [PMID: 32432842 PMCID: PMC7540381 DOI: 10.1002/anie.202006824] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 12/11/2022]
12
Adachi T, Kitazumi Y, Shirai O, Kano K. Development Perspective of Bioelectrocatalysis-Based Biosensors. SENSORS (BASEL, SWITZERLAND) 2020;20:E4826. [PMID: 32858975 PMCID: PMC7506675 DOI: 10.3390/s20174826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023]
13
Szczesny J, Birrell JA, Conzuelo F, Lubitz W, Ruff A, Schuhmann W. Eine Redoxpolymer‐basierte Gasdiffusions‐H 2 ‐Oxidationsbioanode mit hoher Stromdichte unter Verwendung von [FeFe]‐Hydrogenase aus Desulfovibrio desulfuricans integriert in einer membranfreien Biobrennstoffzelle. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
14
Direct Electron Transfer-Type Bioelectrocatalysis of Redox Enzymes at Nanostructured Electrodes. Catalysts 2020. [DOI: 10.3390/catal10020236] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]  Open
15
Direct electron transfer-type bioelectrocatalysis of FAD-dependent glucose dehydrogenase using porous gold electrodes and enzymatically implanted platinum nanoclusters. Bioelectrochemistry 2020;133:107457. [PMID: 31978858 DOI: 10.1016/j.bioelechem.2020.107457] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/26/2019] [Accepted: 01/05/2020] [Indexed: 02/08/2023]
16
KANO K. Fundamentals and Applications of Redox Enzyme-functionalized Electrode Reactions. ELECTROCHEMISTRY 2019. [DOI: 10.5796/electrochemistry.19-6-e2676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
17
Wang X, Clément R, Roger M, Bauzan M, Mazurenko I, Poulpiquet AD, Ilbert M, Lojou E. Bacterial Respiratory Chain Diversity Reveals a Cytochrome c Oxidase Reducing O2 at Low Overpotentials. J Am Chem Soc 2019;141:11093-11102. [PMID: 31274287 DOI: 10.1021/jacs.9b03268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
18
Takahashi Y, Wanibuchi M, Kitazumi Y, Shirai O, Kano K. Improved direct electron transfer-type bioelectrocatalysis of bilirubin oxidase using porous gold electrodes. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
19
Ikeda K, Hori Y, Mahyuddin MH, Shiota Y, Staykov A, Matsumoto T, Yoshizawa K, Ogo S. Dual Catalytic Cycle of H2 and H2O Oxidations by a Half-Sandwich Iridium Complex: A Theoretical Study. Inorg Chem 2019;58:7274-7284. [DOI: 10.1021/acs.inorgchem.9b00307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
20
Takahashi Y, Kitazumi Y, Shirai O, Kano K. Improved direct electron transfer-type bioelectrocatalysis of bilirubin oxidase using thiol-modified gold nanoparticles on mesoporous carbon electrode. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.10.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
21
Pasquini L, Wacrenier O, Vona MLD, Knauth P. Hydration and Ionic Conductivity of Model Cation and Anion-Conducting Ionomers in Buffer Solutions (Phosphate, Acetate, Citrate). J Phys Chem B 2018;122:12009-12016. [PMID: 30441904 DOI: 10.1021/acs.jpcb.8b08622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
22
Wernert V, Lebouin C, Benoit V, Gadiou R, de Poulpiquet A, Lojou E, Denoyel R. Direct electron transfer of bilirubin oxidase at a carbon flow-through electrode. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
23
Blout A, Billon F, Calers C, Méthivier C, Pailleret A, Perrot H, Jolivalt C. Orientation of a Trametes versicolor laccase on amorphous carbon nitride coated graphite electrodes for improved electroreduction of dioxygen to water. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
24
Sakai K, Xia HQ, Kitazumi Y, Shirai O, Kano K. Assembly of direct-electron-transfer-type bioelectrodes with high performance. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
25
Bollella P, Gorton L, Antiochia R. Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells. SENSORS (BASEL, SWITZERLAND) 2018;18:E1319. [PMID: 29695133 PMCID: PMC5982196 DOI: 10.3390/s18051319] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 01/04/2023]
26
Gentil S, Che Mansor SM, Jamet H, Cosnier S, Cavazza C, Le Goff A. Oriented Immobilization of [NiFeSe] Hydrogenases on Covalently and Noncovalently Functionalized Carbon Nanotubes for H2/Air Enzymatic Fuel Cells. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00708] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
27
Sakai K, Kitazumi Y, Shirai O, Takagi K, Kano K. Direct electron transfer-type four-way bioelectrocatalysis of CO2/formate and NAD+/NADH redox couples by tungsten-containing formate dehydrogenase adsorbed on gold nanoparticle-embedded mesoporous carbon electrodes modified with 4-mercaptopyridine. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]  Open
28
Mano N, de Poulpiquet A. O2 Reduction in Enzymatic Biofuel Cells. Chem Rev 2017;118:2392-2468. [DOI: 10.1021/acs.chemrev.7b00220] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
29
Sakai K, Kitazumi Y, Shirai O, Takagi K, Kano K. High-Power Formate/Dioxygen Biofuel Cell Based on Mediated Electron Transfer Type Bioelectrocatalysis. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01918] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
30
So K, Ozawa H, Onizuka M, Komukai T, Kitazumi Y, Shirai O, Kano K. Highly Permeable Gas Diffusion Electrodes with Hollow Carbon Nanotubes for Bilirubin Oxidase-Catalyzed Dioxygen Reduction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
31
Rengaraj S, Haddad R, Lojou E, Duraffourg N, Holzinger M, Le Goff A, Forge V. Interprotein Electron Transfer between FeS-Protein Nanowires and Oxygen-Tolerant NiFe Hydrogenase. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
32
Rengaraj S, Haddad R, Lojou E, Duraffourg N, Holzinger M, Le Goff A, Forge V. Interprotein Electron Transfer between FeS-Protein Nanowires and Oxygen-Tolerant NiFe Hydrogenase. Angew Chem Int Ed Engl 2017;56:7774-7778. [DOI: 10.1002/anie.201702042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 12/12/2022]
33
Lindenmaier NJ, Wahlefeld S, Bill E, Szilvási T, Eberle C, Yao S, Hildebrandt P, Horch M, Zebger I, Driess M. An S-Oxygenated [NiFe] Complex Modelling Sulfenate Intermediates of an O2 -Tolerant Hydrogenase. Angew Chem Int Ed Engl 2017;56:2208-2211. [DOI: 10.1002/anie.201611069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Indexed: 11/09/2022]
34
Lindenmaier NJ, Wahlefeld S, Bill E, Szilvási T, Eberle C, Yao S, Hildebrandt P, Horch M, Zebger I, Driess M. Ein S-oxygenierter [NiFe]-Komplex als Modell für Sulfenat- intermediate einer O2 -toleranten Hydrogenase. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
35
Analysis of factors governing direct electron transfer-type bioelectrocatalysis of bilirubin oxidase at modified electrodes. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.10.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
36
Monsalve K, Mazurenko I, Gutierrez-Sanchez C, Ilbert M, Infossi P, Frielingsdorf S, Giudici-Orticoni MT, Lenz O, Lojou E. Impact of Carbon Nanotube Surface Chemistry on Hydrogen Oxidation by Membrane-Bound Oxygen-Tolerant Hydrogenases. ChemElectroChem 2016. [DOI: 10.1002/celc.201600460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
37
Mazurenko I, Monsalve K, Rouhana J, Parent P, Laffon C, Goff AL, Szunerits S, Boukherroub R, Giudici-Orticoni MT, Mano N, Lojou E. How the Intricate Interactions between Carbon Nanotubes and Two Bilirubin Oxidases Control Direct and Mediated O2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2016;8:23074-23085. [PMID: 27533778 DOI: 10.1021/acsami.6b07355] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
38
Gutierrez-Sanchez C, Ciaccafava A, Blanchard PY, Monsalve K, Giudici-Orticoni MT, Lecomte S, Lojou E. Efficiency of Enzymatic O2 Reduction by Myrothecium verrucaria Bilirubin Oxidase Probed by Surface Plasmon Resonance, PMIRRAS, and Electrochemistry. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01423] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
39
So K, Hamamoto R, Takeuchi R, Kitazumi Y, Shirai O, Endo R, Nishihara H, Higuchi Y, Kano K. Bioelectrochemical analysis of thermodynamics of the catalytic cycle and kinetics of the oxidative inactivation of oxygen-tolerant [NiFe]-hydrogenase. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
40
Takashita K, Matsumoto T, Yatabe T, Nakai H, Ogo S. A Non-precious Metal, Ni Molecular Catalyst for a Fuel Cell Cathode. CHEM LETT 2016. [DOI: 10.1246/cl.150988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
41
Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells. Biosens Bioelectron 2016;76:145-63. [DOI: 10.1016/j.bios.2015.06.052] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 01/23/2023]
42
Monsalve K, Roger M, Gutierrez-Sanchez C, Ilbert M, Nitsche S, Byrne-Kodjabachian D, Marchi V, Lojou E. Hydrogen bioelectrooxidation on gold nanoparticle-based electrodes modified by Aquifex aeolicus hydrogenase: Application to hydrogen/oxygen enzymatic biofuel cells. Bioelectrochemistry 2015;106:47-55. [DOI: 10.1016/j.bioelechem.2015.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 02/08/2023]
43
Oughli AA, Conzuelo F, Winkler M, Happe T, Lubitz W, Schuhmann W, Rüdiger O, Plumeré N. A redox hydrogel protects the O2 -sensitive [FeFe]-hydrogenase from Chlamydomonas reinhardtii from oxidative damage. Angew Chem Int Ed Engl 2015;54:12329-33. [PMID: 26073322 DOI: 10.1002/anie.201502776] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 01/10/2023]
44
Oughli AA, Conzuelo F, Winkler M, Happe T, Lubitz W, Schuhmann W, Rüdiger O, Plumeré N. Ein Redoxhydrogel schützt die O2-empfindliche [FeFe]-Hydrogenase ausChlamydomonas reinhardtiivor oxidativer Zerstörung. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
45
Fourmond V, Stapf S, Li H, Buesen D, Birrell J, Rüdiger O, Lubitz W, Schuhmann W, Plumeré N, Léger C. Mechanism of protection of catalysts supported in redox hydrogel films. J Am Chem Soc 2015;137:5494-505. [PMID: 25835569 DOI: 10.1021/jacs.5b01194] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
46
Lalaoui N, de Poulpiquet A, Haddad R, Le Goff A, Holzinger M, Gounel S, Mermoux M, Infossi P, Mano N, Lojou E, Cosnier S. A membraneless air-breathing hydrogen biofuel cell based on direct wiring of thermostable enzymes on carbon nanotube electrodes. Chem Commun (Camb) 2015;51:7447-50. [DOI: 10.1039/c5cc02166a] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
47
Oteri F, Baaden M, Lojou E, Sacquin-Mora S. Multiscale Simulations Give Insight into the Hydrogen In and Out Pathways of [NiFe]-Hydrogenases from Aquifex aeolicus and Desulfovibrio fructosovorans. J Phys Chem B 2014;118:13800-11. [DOI: 10.1021/jp5089965] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA