1
|
Arshad F, Tahir A, Haq TU, Munir A, Hussain I, Sher F. Bubbles Templated Interconnected Porous Metallic Materials: Synthesis, Surface Modification, and their Electrocatalytic Applications for Water Splitting and Alcohols Oxidation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Farhan Arshad
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| | - Aleena Tahir
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| | - Tanveer Ul Haq
- Department of Chemistry College of Sciences University of Sharjah P.O. Box 27272 Sharjah, UAE
| | - Akhtar Munir
- Department of Chemistry University of Sialkot Sialkot 51040 Pakistan
| | - Irshad Hussain
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| | - Falak Sher
- Department of Chemistry & Chemical Engineering Syed Babar Ali School of Science & Engineering Lahore University of Management Sciences (LUMS) DHA Lahore 54792 Pakistan
| |
Collapse
|
2
|
Wirtanen T, Prenzel T, Tessonnier JP, Waldvogel SR. Cathodic Corrosion of Metal Electrodes-How to Prevent It in Electroorganic Synthesis. Chem Rev 2021; 121:10241-10270. [PMID: 34228450 PMCID: PMC8431381 DOI: 10.1021/acs.chemrev.1c00148] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
The critical aspects
of the corrosion of metal electrodes in cathodic
reductions are covered. We discuss the involved mechanisms including
alloying with alkali metals, cathodic etching in aqueous and aprotic
media, and formation of metal hydrides and organometallics. Successful
approaches that have been implemented to suppress cathodic corrosion
are reviewed. We present several examples from electroorganic synthesis
where the clever use of alloys instead of soft neat heavy metals and
the application of protective cationic additives have allowed to successfully
exploit these materials as cathodes. Because of the high overpotential
for the hydrogen evolution reaction, such cathodes can contribute
toward more sustainable green synthetic processes. The reported strategies
expand the applications of organic electrosynthesis because a more
negative regime is accessible within protic media and common metal
poisons, e.g., sulfur-containing substrates, are compatible with these
cathodes. The strongly diminished hydrogen evolution side reaction
paves the way for more efficient reductive electroorganic conversions.
Collapse
Affiliation(s)
- Tom Wirtanen
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Tobias Prenzel
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jean-Philippe Tessonnier
- Department of Chemical and Biological Engineering, Iowa State University, 617 Bissell Road, Ames, Iowa 50011-1098, United States.,Center for Biorenewable Chemicals (CBiRC), Ames, Iowa, 50011-1098, United States
| | - Siegfried R Waldvogel
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
3
|
Zhang X, Li J, Li YY, Jung Y, Kuang Y, Zhu G, Liang Y, Dai H. Selective and High Current CO2 Electro-Reduction to Multicarbon Products in Near-Neutral KCl Electrolytes. J Am Chem Soc 2021; 143:3245-3255. [DOI: 10.1021/jacs.0c13427] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiao Zhang
- Department of Chemistry and BioX, Stanford University, Stanford, California 94305, United States
| | - Jiachen Li
- Department of Chemistry and BioX, Stanford University, Stanford, California 94305, United States
| | - Yuan-Yao Li
- Department of Chemistry and BioX, Stanford University, Stanford, California 94305, United States
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan
| | - Yunha Jung
- Department of Chemistry and BioX, Stanford University, Stanford, California 94305, United States
| | - Yun Kuang
- Department of Chemistry and BioX, Stanford University, Stanford, California 94305, United States
| | - Guanzhou Zhu
- Department of Chemistry and BioX, Stanford University, Stanford, California 94305, United States
| | - Yongye Liang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongjie Dai
- Department of Chemistry and BioX, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Sahu A, Mondal K, Pala RG. Activated Porous Highly Enriched Platinum and Palladium Electrocatalysts from Dealloyed Noncrystalline Alloys for Enhanced Hydrogen Evolution. ChemElectroChem 2020. [DOI: 10.1002/celc.202001230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arti Sahu
- Department of Chemical Engineering Indian Institute of Technology Kanpur 208016 India
| | - Kallol Mondal
- Department of Material Science and Engineering Indian Institute of Technology Kanpur 208016 India
| | - Raj Ganesh Pala
- Department of Chemical Engineering Indian Institute of Technology Kanpur 208016 India
- Materials Science Programme Indian Institute of Technology Kanpur 208016 India
| |
Collapse
|
5
|
|
6
|
Sayeed MA, O'Mullane AP. Electrodeposition at Highly Negative Potentials of an Iron-Cobalt Oxide Catalyst for Use in Electrochemical Water Splitting. Chemphyschem 2019; 20:3112-3119. [PMID: 31250515 DOI: 10.1002/cphc.201900498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/25/2019] [Indexed: 11/06/2022]
Abstract
Earth-abundant transition metal-based catalysts have been extensively investigated for their applicability in water electrolysers to enable overall water splitting to produce clean hydrogen and oxygen. In this study a Fe-Co based catalyst is electrodeposited in 30 seconds under vigorous hydrogen evolution conditions to produce a high surface area material that is active for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). This catalyst can achieve high current densities of 600 mAcm-2 at an applied potential of 1.6 V (vs RHE) in 1 M NaOH with a Tafel slope value of 48 mV dec-1 for the OER. In addition, the HER can be facilitated at current densities as high as 400 mA cm-2 due to the large surface area of the material. The materials were found to be predominantly amorphous but did contain crystalline regions of CoFe2 O4 which became more evident after the OER indicating interesting compositional and structural changes that occur to the catalyst after an electrocatalytic reaction. This rapid method of creating a bimetallic oxide electrode for both the HER and OER could possibly be adopted to other bimetallic oxide systems suitable for electrochemical water splitting.
Collapse
Affiliation(s)
- Md Abu Sayeed
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Anthony P O'Mullane
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| |
Collapse
|
7
|
Hersbach TJP, Kortlever R, Lehtimäki M, Krtil P, Koper MTM. Local structure and composition of PtRh nanoparticles produced through cathodic corrosion. Phys Chem Chem Phys 2018; 19:10301-10308. [PMID: 28393941 DOI: 10.1039/c7cp01059a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alloy nanoparticles fulfill an important role in catalysis. As such, producing them in a simple and clean way is much desired. A promising alloy nanoparticle production method is cathodic corrosion, which generates particles by applying an AC voltage to an alloy electrode. However, this harsh AC potential program might affect the final elemental distribution of the nanoparticles. In this work, we address this issue by characterizing the time that is required to create 1 μmol of Rh, Pt12Rh88, Pt55Rh45 and Pt nanoparticles under various applied potentials. The corrosion time measurements are complemented by structural characterization through transmission electron microscopy, X-ray diffraction and X-ray absorption spectroscopy. The corrosion times indicate that platinum and rhodium corrode at different rates and that the cathodic corrosion rates of the alloys are dominated by platinum. In addition, the structure-sensitive techniques reveal that the elemental distributions of the created alloy nanoparticles indeed exhibit small degrees of elemental segregation. These results indicate that the atomic alloy structure is not always preserved during cathodic corrosion.
Collapse
Affiliation(s)
- Thomas J P Hersbach
- Leiden Institure of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.
| | - Ruud Kortlever
- Leiden Institure of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.
| | - Matti Lehtimäki
- Department of Electrocatalysis, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague, Czech Republic
| | - Petr Krtil
- Department of Electrocatalysis, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague, Czech Republic
| | - Marc T M Koper
- Leiden Institure of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
8
|
Anisotropic etching of platinum electrodes at the onset of cathodic corrosion. Nat Commun 2016; 7:12653. [PMID: 27554398 PMCID: PMC4999510 DOI: 10.1038/ncomms12653] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/19/2016] [Indexed: 11/12/2022] Open
Abstract
Cathodic corrosion is a process that etches metal electrodes under cathodic polarization. This process is presumed to occur through anionic metallic reaction intermediates, but the exact nature of these intermediates and the onset potential of their formation is unknown. Here we determine the onset potential of cathodic corrosion on platinum electrodes. Electrodes are characterized electrochemically before and after cathodic polarization in 10 M sodium hydroxide, revealing that changes in the electrode surface start at an electrode potential of −1.3 V versus the normal hydrogen electrode. The value of this onset potential rules out previous hypotheses regarding the nature of cathodic corrosion. Scanning electron microscopy shows the formation of well-defined etch pits with a specific orientation, which match the voltammetric data and indicate a remarkable anisotropy in the cathodic etching process, favouring the creation of (100) sites. Such anisotropy is hypothesized to be due to surface charge-induced adsorption of electrolyte cations. The corrosion mechanism of metals at cathodic potentials is still poorly understood. Here the authors report the cathodic corrosion onset potential of platinum in concentrated sodium hydroxide, showing etching anisotropy, and present a framework to determine such characteristics for other metals/solutions.
Collapse
|
9
|
Ponnurangam S, Yun CM, Chernyshova IV. Robust Electroreduction of CO2at a Poly(4-vinylpyridine)-Copper Electrode. ChemElectroChem 2015. [DOI: 10.1002/celc.201500421] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sathish Ponnurangam
- Department of Earth and Environmental Engineering; Columbia University, New York; New York 10027 USA
| | - Chang Min Yun
- Department of Earth and Environmental Engineering; Columbia University, New York; New York 10027 USA
| | - Irina V. Chernyshova
- Department of Earth and Environmental Engineering; Columbia University, New York; New York 10027 USA
| |
Collapse
|