1
|
Bilal M, Qamar SA, Carballares D, Berenguer-Murcia Á, Fernandez-Lafuente R. Proteases immobilized on nanomaterials for biocatalytic, environmental and biomedical applications: Advantages and drawbacks. Biotechnol Adv 2024; 70:108304. [PMID: 38135131 DOI: 10.1016/j.biotechadv.2023.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Proteases have gained significant scientific and industrial interest due to their unique biocatalytic characteristics and broad-spectrum applications in different industries. The development of robust nanobiocatalytic systems by attaching proteases onto various nanostructured materials as fascinating and novel nanocarriers has demonstrated exceptional biocatalytic performance, substantial stability, and ease of recyclability over multiple reaction cycles under different chemical and physical conditions. Proteases immobilized on nanocarriers may be much more resistant to denaturation caused by extreme temperatures or pH values, detergents, organic solvents, and other protein denaturants than free enzymes. Immobilized proteases may present a lower inhibition. The use of non-porous materials in the immobilization prevents diffusion and steric hindrances during the binding of the substrate to the active sites of enzymes compared to immobilization onto porous materials; when using very large or solid substrates, orientation of the enzyme must always be adequate. The advantages and problems of the immobilization of proteases on nanoparticles are discussed in this review. The continuous and batch reactor operations of nanocarrier-immobilized proteases have been successfully investigated for a variety of applications in the leather, detergent, biomedical, food, and pharmaceutical industries. Information about immobilized proteases on various nanocarriers and nanomaterials has been systematically compiled here. Furthermore, different industrial applications of immobilized proteases have also been highlighted in this review.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233 Gdansk, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland.
| | - Sarmad Ahmad Qamar
- Department of Environmental, Biological & Pharmaceutical Sciences, and Technologies, University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100 Caserta, Italy
| | - Diego Carballares
- Department of Biocatalysis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC Cantoblanco, Madrid, Spain
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, 03080 Alicante, Spain
| | | |
Collapse
|
2
|
Kizhepat S, Rasal AS, Chang JY, Wu HF. Development of Two-Dimensional Functional Nanomaterials for Biosensor Applications: Opportunities, Challenges, and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091520. [PMID: 37177065 PMCID: PMC10180329 DOI: 10.3390/nano13091520] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
New possibilities for the development of biosensors that are ready to be implemented in the field have emerged thanks to the recent progress of functional nanomaterials and the careful engineering of nanostructures. Two-dimensional (2D) nanomaterials have exceptional physical, chemical, highly anisotropic, chemically active, and mechanical capabilities due to their ultra-thin structures. The diversity of the high surface area, layered topologies, and porosity found in 2D nanomaterials makes them amenable to being engineered with surface characteristics that make it possible for targeted identification. By integrating the distinctive features of several varieties of nanostructures and employing them as scaffolds for bimolecular assemblies, biosensing platforms with improved reliability, selectivity, and sensitivity for the identification of a plethora of analytes can be developed. In this review, we compile a number of approaches to using 2D nanomaterials for biomolecule detection. Subsequently, we summarize the advantages and disadvantages of using 2D nanomaterials in biosensing. Finally, both the opportunities and the challenges that exist within this potentially fruitful subject are discussed. This review will assist readers in understanding the synthesis of 2D nanomaterials, their alteration by enzymes and composite materials, and the implementation of 2D material-based biosensors for efficient bioanalysis and disease diagnosis.
Collapse
Affiliation(s)
- Shamsa Kizhepat
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Akash S Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
3
|
Wang Y, Zhao P, Zhang S, Zhu K, Shangguan X, Liu L, Zhang S. Application of Janus Particles in Point-of-Care Testing. BIOSENSORS 2022; 12:bios12090689. [PMID: 36140074 PMCID: PMC9496037 DOI: 10.3390/bios12090689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/01/2023]
Abstract
Janus particles (JPs), named after the two-faced Roman god, are asymmetric particles with different chemical properties or polarities. JPs have been widely used in the biomedical field in recent years, including as drug carriers for targeted controlled drug release and as biosensors for biological imaging and biomarker detection, which is crucial in the early detection and treatment of diseases. In this review, we highlight the most recent advancements made with regard to Janus particles in point-of-care testing (POCT). Firstly, we introduce several commonly used methods for preparing Janus particles. Secondly, we present biomarker detection using JPs based on various detection methods to achieve the goal of POCT. Finally, we discuss the challenges and opportunities for developing Janus particles in POCT. This review will facilitate the development of POCT biosensing devices based on the unique properties of Janus particles.
Collapse
|
4
|
Villalonga A, Sánchez A, Vilela D, Mayol B, Martínez-Ruíz P, Villalonga R. Electrochemical aptasensor based on anisotropically modified (Janus-type) gold nanoparticles for determination of C-reactive protein. Mikrochim Acta 2022; 189:309. [PMID: 35918542 DOI: 10.1007/s00604-022-05420-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022]
Abstract
Novel Janus nanoparticles based on Au colloids anisotropically modified with polyamidoamine dendrons were prepared though a masking/toposelective modification approach. These nanomaterials were further functionalized with horseradish peroxidase on the dendritic face and provided on the opposite metal surface with a ssDNA aptamer for C-reactive protein (CRP). The resulting nanoparticles were employed as biorecognition/signaling elements to construct an amperometric aptasensor with sandwich-type architecture for the specific detection of this cardiac biomarker. To do this, screen-printed carbon electrodes modified with electrodeposited Au nanoparticles and functionalized with anti-CRP aptamers were used as transduction interface. The aptasensor was employed for the amperometric detection of CRP (working potential: - 200 mV vs pseudo-Ag/AgCl) in the broad range from 10 pg·mL-1 to 1.0 ng·mL-1 with a detection limit of 3.1 pg·mL-1. This electroanalytical device also showed good specificity, reproducibility (RSD = 9.8%, n = 10), and stability and was useful to quantify CRP in reconstituted human serum samples, with a RSD of 13.3%.
Collapse
Affiliation(s)
- Anabel Villalonga
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Alfredo Sánchez
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Diana Vilela
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Beatriz Mayol
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Paloma Martínez-Ruíz
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Reynaldo Villalonga
- Nanosensors and Nanomachines Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Kankala RK, Han YH, Xia HY, Wang SB, Chen AZ. Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications. J Nanobiotechnology 2022; 20:126. [PMID: 35279150 PMCID: PMC8917689 DOI: 10.1186/s12951-022-01315-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
Despite exceptional morphological and physicochemical attributes, mesoporous silica nanoparticles (MSNs) are often employed as carriers or vectors. Moreover, these conventional MSNs often suffer from various limitations in biomedicine, such as reduced drug encapsulation efficacy, deprived compatibility, and poor degradability, resulting in poor therapeutic outcomes. To address these limitations, several modifications have been corroborated to fabricating hierarchically-engineered MSNs in terms of tuning the pore sizes, modifying the surfaces, and engineering of siliceous networks. Interestingly, the further advancements of engineered MSNs lead to the generation of highly complex and nature-mimicking structures, such as Janus-type, multi-podal, and flower-like architectures, as well as streamlined tadpole-like nanomotors. In this review, we present explicit discussions relevant to these advanced hierarchical architectures in different fields of biomedicine, including drug delivery, bioimaging, tissue engineering, and miscellaneous applications, such as photoluminescence, artificial enzymes, peptide enrichment, DNA detection, and biosensing, among others. Initially, we give a brief overview of diverse, innovative stimuli-responsive (pH, light, ultrasound, and thermos)- and targeted drug delivery strategies, along with discussions on recent advancements in cancer immune therapy and applicability of advanced MSNs in other ailments related to cardiac, vascular, and nervous systems, as well as diabetes. Then, we provide initiatives taken so far in clinical translation of various silica-based materials and their scope towards clinical translation. Finally, we summarize the review with interesting perspectives on lessons learned in exploring the biomedical applications of advanced MSNs and further requirements to be explored.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China.
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People's Republic of China.
| | - Ya-Hui Han
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
| | - Hong-Ying Xia
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People's Republic of China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People's Republic of China
| |
Collapse
|
6
|
Jurado-Sánchez B, Campuzano S, Pingarrón JM, Escarpa A. Janus particles and motors: unrivaled devices for mastering (bio)sensing. Mikrochim Acta 2021; 188:416. [PMID: 34757512 PMCID: PMC8579181 DOI: 10.1007/s00604-021-05053-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022]
Abstract
Janus particles are a unique type of materials combining two different functionalities in a single unit. This allows the combination of different analytical properties leading to new analytical capabilities, i.e., enhanced fluid mixing to increase sensitivity with targeting capturing abilities and unique advantages in terms of multi-functionality and versatility of modification, use, and operation both in static and dynamic modes. The aim of this conceptual review is to cover recent (over the last 5 years) advances in the use of Janus microparticles and micromotors in (bio)-sensing. First, the role of different materials and synthetic routes in the performance of Janus particles are described. In a second main section, electrochemical and optical biosensing based on Janus particles and motors are covered, including in vivo and in vitro methodologies as the next biosensing generation. Current challenges and future perspectives are provided in the conclusions section.
Collapse
Affiliation(s)
- Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain.
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares E-28871, Madrid, Spain.
| | - Susana Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - José M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain.
- Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares E-28871, Madrid, Spain.
| |
Collapse
|
7
|
Soysaldı F, Soylu MÇ. The Effect of (3‐Mercaptopropyl)trimethoxysilane (MPS) Coating on the Genetic Detection Performance of Quartz Crystal Microbalance‐Dissipation (QCM‐D) Biosensor: Novel Intact Double‐Layered Surface Modification on QCM‐D. ChemistrySelect 2021. [DOI: 10.1002/slct.202100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Furkan Soysaldı
- Department of Electronic and Automation Vocational School Nevsehir Haci Bektas Veli University Nevsehir 50300 Turkey
| | - Mehmet Çağrı Soylu
- Biological & Medical Diagnostic (BioMeD) Sensors Laboratory Department of Biomedical Engineering Erciyes University Kayseri 38030 Turkey
| |
Collapse
|
8
|
Su L, Wang L, Xu J, Wang Z, Yao X, Sun J, Wang J, Zhang D. Competitive Lateral Flow Immunoassay Relying on Au-SiO 2 Janus Nanoparticles with an Asymmetric Structure and Function for Furazolidone Residue Monitoring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:511-519. [PMID: 33373219 DOI: 10.1021/acs.jafc.0c06016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gold nanoparticles (AuNPs) are the most commonly used signal materials in lateral flow immunoassay (LFIA). However, the assay sensitivity of traditional AuNP-based LFIA is usually limited by the incomplete competition between free target analytes and immobilized antigens for the binding of AuNP-labeled antibodies. To unfreeze this limitation, here, asymmetric Au-SiO2 Janus NPs (about 66 nm) were designed and synthesized. Au-SiO2 Janus NPs can assemble into snowman-like anisotropic structures and combine two different physicochemical properties at their opposite sides, where the AuNP side mainly possesses the antibody conjugating and signal providing functions and the SiO2 side primarily offers the stable function. In virtue of the unique asymmetric nanostructure, only the AuNP side can interact with target analytes by specific antigen-antibody interactions, which could significantly improve the efficiency of competition. Selecting furazolidone as a model analyte, the immunoassay biosensor showed a limit of detection as low as 0.08 ng/mL, 10-fold decreased than that of the AuNPs-LFIA. Moreover, the Au-SiO2 Janus NP lateral flow immunoassay was well applied in chicken, pork, honey, and beef food samples with visual detection limits of 0.8 ng/g, 0.16 ng/g, 0.4 ng/mL, and 0.16 ng/g, respectively. The Au-SiO2 Janus NPs possess the advantages of both materials, which will broaden their applications as a potential alternative in the rapid and sensitive detection of antibiotic residues.
Collapse
Affiliation(s)
- Lihong Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Lulu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Jingke Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Zonghan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Xiaolin Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| |
Collapse
|
9
|
Sasaki K, Furusawa H, Nagamine K, Tokito S. Constructive Optimization of a Multienzymatic Film Based on a Cascade Reaction for Electrochemical Biosensors. ACS OMEGA 2020; 5:32844-32851. [PMID: 33376922 PMCID: PMC7758940 DOI: 10.1021/acsomega.0c05521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
The application of a multienzyme cascade reaction in electrochemical biosensors has the advantage of expanding the target substrates in addition to selectivity combining multiple enzymes on an electrode. However, the multienzyme system has the drawback of inefficient substance conversion because of the time-consuming passing of intermediates between the enzymes and/or diffusional loss of the intermediates. In this study, the optimal construction of a multienzymatic film in an ammonia detection sensor was investigated using a cascade reaction of l-glutamate oxidase and l-glutamate dehydrogenase as a model sensor. Three enzymatic films were prepared: (1) a mixed film designed to have a short diffusional distance between closely located enzymes, (2) a normal-sequential layered film arranged for the correct reaction pathway, and (3) a reverse-sequential layered film as a negative control. This was followed by comparison of the conversion efficiency of ammonia to hydrogen peroxide using time-dependent potentiometric measurements of a Prussian blue electrode determining the hydrogen peroxide amount. The results indicate that the conversion efficiency of the normal-sequential layered film was the highest among the three enzymatic films. The quantitative evaluation of the intermediate conversion efficiency of the cascade reaction showed that compared to the mixed film (34%), a higher conversion efficiency of 92% was obtained in the first enzymatic reaction step. These findings will promote the use of multienzymatic cascade reaction systems not only in biosensors and bioreactors but also in various industrial fields.
Collapse
Affiliation(s)
- Kai Sasaki
- Graduate
School of Organic Materials Science, Yamagata
University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Innovative
Flex Course for Frontier Organic Material Systems (iFront), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroyuki Furusawa
- Innovative
Flex Course for Frontier Organic Material Systems (iFront), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Institute
for the Promotion of General Graduate Education (IPGE), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research
Center for Organic Electronics (ROEL), Yamagata
University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kuniaki Nagamine
- Graduate
School of Organic Materials Science, Yamagata
University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research
Center for Organic Electronics (ROEL), Yamagata
University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shizuo Tokito
- Graduate
School of Organic Materials Science, Yamagata
University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research
Center for Organic Electronics (ROEL), Yamagata
University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
10
|
Yáñez-Sedeño P, González-Cortés A, Campuzano S, Pingarrón JM. Multimodal/Multifunctional Nanomaterials in (Bio)electrochemistry: Now and in the Coming Decade. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2556. [PMID: 33352731 PMCID: PMC7766190 DOI: 10.3390/nano10122556] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Multifunctional nanomaterials, defined as those able to achieve a combined effect or more than one function through their multiple functionalization or combination with other materials, are gaining increasing attention in the last years in many relevant fields, including cargo targeted delivery, tissue engineering, in vitro and/or in vivo diseases imaging and therapy, as well as in the development of electrochemical (bio)sensors and (bio)sensing strategies with improved performance. This review article aims to provide an updated overview of the important advances and future opportunities exhibited by electrochemical biosensing in connection to multifunctional nanomaterials. Accordingly, representative aspects of recent approaches involving metal, carbon, and silica-based multifunctional nanomaterials are selected and critically discussed, as they are the most widely used multifunctional nanomaterials imparting unique capabilities in (bio)electroanalysis. A brief overview of the main remaining challenges and future perspectives in the field is also provided.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | | - Susana Campuzano
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | |
Collapse
|
11
|
Wu R, Song H, Wang Y, Wang L, Zhu Z. Multienzyme co-immobilization-based bioelectrode: Design of principles and bioelectrochemical applications. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Kankala RK, Han YH, Na J, Lee CH, Sun Z, Wang SB, Kimura T, Ok YS, Yamauchi Y, Chen AZ, Wu KCW. Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907035. [PMID: 32319133 DOI: 10.1002/adma.201907035] [Citation(s) in RCA: 261] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 05/19/2023]
Abstract
Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features and advantageous morphological attributes. They are of particular importance for use in diverse fields including, but not limited to, adsorption, catalysis, and medicine. Despite their intrinsic stable siliceous frameworks, excellent mechanical strength, and optimal morphological attributes, pristine MSNs suffer from poor drug loading efficiency, as well as compatibility and degradability issues for therapeutic, diagnostic, and tissue engineering purposes. Collectively, the desirable and beneficial properties of MSNs have been harnessed by modifying the surface of the siliceous frameworks through incorporating supramolecular assemblies and various metal species, and through incorporating supramolecular assemblies and various metal species and their conjugates. Substantial advancements of these innovative colloidal inorganic nanocontainers drive researchers in promoting them toward innovative applications like stimuli (light/ultrasound/magnetic)-responsive delivery-associated therapies with exceptional performance in vivo. Here, a brief overview of the fabrication of siliceous frameworks, along with discussions on the significant advances in engineering of MSNs, is provided. The scope of the advancement in terms of structural and physicochemical attributes and their effects on biomedical applications with a particular focus on recent studies is emphasized. Finally, interesting perspectives are recapitulated, along with the scope toward clinical translation.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- College of Chemical Engineering, Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Ya-Hui Han
- College of Chemical Engineering, Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Jongbeom Na
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, QLD, 4072, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Chia-Hung Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Ziqi Sun
- Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Shi-Bin Wang
- College of Chemical Engineering, Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Tatsuo Kimura
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, 463-8560, Japan
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, QLD, 4072, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Ai-Zheng Chen
- College of Chemical Engineering, Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
13
|
Campuzano S, Gamella M, Serafín V, Pedrero M, Yáñez-Sedeño P, Pingarrón JM. Biosensing and Delivery of Nucleic Acids Involving Selected Well-Known and Rising Star Functional Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1614. [PMID: 31739523 PMCID: PMC6915577 DOI: 10.3390/nano9111614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022]
Abstract
In the last fifteen years, the nucleic acid biosensors and delivery area has seen a breakthrough due to the interrelation between the recognition of nucleic acid's high specificity, the great sensitivity of electrochemical and optical transduction and the unprecedented opportunities imparted by nanotechnology. Advances in this area have demonstrated that the assembly of nanoscaled materials allows the performance enhancement, particularly in terms of sensitivity and response time, of functional nucleic acids' biosensing and delivery to a level suitable for the construction of point-of-care diagnostic tools. Consequently, this has propelled detection methods using nanomaterials to the vanguard of the biosensing and delivery research fields. This review overviews the striking advancement in functional nanomaterials' assisted biosensing and delivery of nucleic acids. We highlight the advantages demonstrated by selected well-known and rising star functional nanomaterials (metallic, magnetic and Janus nanomaterials) focusing on the literature produced in the past five years.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (M.G.); (V.S.); (M.P.)
| | | | | | | | - Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (M.G.); (V.S.); (M.P.)
| | - José Manuel Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (M.G.); (V.S.); (M.P.)
| |
Collapse
|
14
|
Affiliation(s)
- Ee Taek Hwang
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering & Technology, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| | - Seonbyul Lee
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering & Technology, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea
| |
Collapse
|
15
|
Amperometric aptasensor for carcinoembryonic antigen based on the use of bifunctionalized Janus nanoparticles as biorecognition-signaling element. Anal Chim Acta 2019; 1061:84-91. [PMID: 30926042 DOI: 10.1016/j.aca.2019.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/27/2019] [Accepted: 02/07/2019] [Indexed: 01/02/2023]
Abstract
We report herein the design of a novel biosensing strategy for the detection of carcinoembryonic antigen (CEA), based on the use of Janus-type nanoparticles having Au and silica opposite faces as integrated electrochemical biorecognition-signaling system. The Janus nanoparticles were properly functionalized with horseradish peroxidase on the silica surface to act as signaling element, and a biotin thiol-modified anti-CEA DNA hairpin aptamer the Au face to assemble the biorecognition element. The sensing approach relies on the first specific recognition of CEA by the bifunctionalized Janus nanoparticles, causing unfolding of the DNA hairpin structure and unmasking the biotin residues at the aptamer chain. This CEA-Janus nanoparticle complex was then captured by avidin-modified Fe3O4@SiO2 NanoCaptors®, allowing further magnetic deposition on carbon screen printed electrodes for the amperometric detection of the cancer biomarker. The Janus nanoparticles-based aptasensor was able to detect CEA in the range from 1 to 5000 ng mL-1 (5.5 pM-28 nM) with a detection limit of 210 pg mL-1 (1.2 pM). The aptasensor also showed high reproducibility and storage stability, and was successfully validated in human serum.
Collapse
|
16
|
Eguílaz M, Villalonga R, Rivas G. Electrochemical biointerfaces based on carbon nanotubes-mesoporous silica hybrid material: Bioelectrocatalysis of hemoglobin and biosensing applications. Biosens Bioelectron 2018; 111:144-151. [DOI: 10.1016/j.bios.2018.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023]
|
17
|
Lawal AT. Progress in utilisation of graphene for electrochemical biosensors. Biosens Bioelectron 2018; 106:149-178. [PMID: 29414083 DOI: 10.1016/j.bios.2018.01.030] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 01/02/2023]
Abstract
This review discusses recent graphene (GR) electrochemical biosensor for accurate detection of biomolecules, including glucose, hydrogen peroxide, dopamine, ascorbic acid, uric acid, nicotinamide adenine dinucleotide, DNA, metals and immunosensor through effective immobilization of enzymes, including glucose oxidase, horseradish peroxidase, and haemoglobin. GR-based biosensors exhibited remarkable performance with high sensitivities, wide linear detection ranges, low detection limits, and long-term stabilities. Future challenges for the field include miniaturising biosensors and simplifying mass production are discussed.
Collapse
|
18
|
Wu ZQ, Liu JJ, Li JY, Xu D, Xia XH. Illustrating the Mass-Transport Effect on Enzyme Cascade Reaction Kinetics by Use of a Rotating Ring–Disk Electrode. Anal Chem 2017; 89:12924-12929. [DOI: 10.1021/acs.analchem.7b03780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Zeng-Qiang Wu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jun-Jun Liu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jin-Yi Li
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Dan Xu
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
19
|
Boujakhrout A, Díez P, Sánchez A, Martínez-Ruíz P, Pingarrón JM, Villalonga R. Gold nanoparticles-decorated silver-bipyridine nanobelts for the construction of mediatorless hydrogen peroxide biosensor. J Colloid Interface Sci 2016; 482:105-111. [DOI: 10.1016/j.jcis.2016.07.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 11/15/2022]
|
20
|
Fabrication of an electrochemical immunosensor for α-fetoprotein based on a poly-L-lysine-single-walled carbon nanotubes/Prussian blue composite film interface. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3229-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|