1
|
Han Y, Zhang P, Duan X, Gao X, Gao L. Advances in precise synthesis of metal nanoclusters and their applications in electrochemical biosensing of disease biomarkers. NANOSCALE 2025; 17:3616-3634. [PMID: 39744955 DOI: 10.1039/d4nr04714a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Metal nanoclusters (NCs), comprising tens to hundreds of metal atoms, are condensed matter with concrete molecular structures and discrete energy levels. Compared to metal atoms and nanoparticles, metal NCs exhibit unique physicochemical properties, especially fascinating electrocatalytic activities. This review focuses on recent progress in the precise synthesis of metal NCs and their applications in electrochemical analysis of various disease biomarkers. First, we provide a brief overview of current nanotechnology-enabled electrochemical biosensors. Subsequently, we highlight the precise synthesis of metal NCs protected by various ligands such as peptides, proteins and nucleic acids. Next, we summarize the design and construction of electrochemical biosensors that utilize metal NCs as electrode materials to detect electrochemically active and inactive disease-associated biomarkers, including small biomolecules (glucose, reactive oxygen species, cholesterol, neurotransmitters and amino acids) and biomacromolecules (proteins, enzymes, and nucleic acids). Due to unique electrocatalytic properties, high specific surface areas, and atomically modulated structures, metal NCs promote electron exchange or act as a redox medium in these electrochemical sensing platforms. Finally, we conclude with present challenges and propose future research directions, with the aim to enhance the specificity, sensitivity, and durability of customized metal NC-based electrochemical biosensors for precise disease diagnostics.
Collapse
Affiliation(s)
- Ying Han
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Ping Zhang
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Xiaoyi Duan
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Xueyun Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Liang Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
2
|
Ma H, Yi M, Messinger M, Wang G. Kinetics-Based Ratiometric Electrochemiluminescence Analysis for Signal Specificity: Case Studies of Piperazine Drug Discrimination with Au Nanoclusters. Anal Chem 2022; 94:11760-11766. [PMID: 35973062 DOI: 10.1021/acs.analchem.2c01489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A multi-parameter calibration and analysis strategy has been developed based on the kinetics of charge transfer reactions. Absolute and ratiometric electrochemiluminescence signals are elucidated from single measurements for the detection of hydroxyzine and cetirizine as prototype drugs which greatly enhance the near-infrared electrochemiluminescence from atomically precise Au22 nanoclusters stabilized with lipoic acid ligands on ITO electrodes. The signal-on sensing mechanism eliminates the need for recognition elements and highly excess co-reactants in conventional electrochemiluminescence practice. The rates of sequential charge transfer reactions render specificity in electrochemiluminescence intensity and kinetics toward the target molecular/electronic structures and are conveniently controlled/optimized by operation parameters. Signal kinetic profiles, in stark contrast to steady-state or single-point recordings, not only improve the signal/noise ratio but also offer greater resolving power to differentiate analogue species and nonspecific interference. The fundamental kinetics-based ratiometric concept/strategy is not limited to a specific luminophore or a co-reactant and is thus generalizable. The case studies successfully detect and discriminate drug compounds at sub-nanomolar physiological ranges, with efficacy validated using synthetic urine toward point-of-care applications in therapeutic/abuse drug monitoring.
Collapse
Affiliation(s)
- Hedi Ma
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Meijun Yi
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Michael Messinger
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Gangli Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
3
|
Wang Y, Bürgi T. Ligand exchange reactions on thiolate-protected gold nanoclusters. NANOSCALE ADVANCES 2021; 3:2710-2727. [PMID: 34046556 PMCID: PMC8130898 DOI: 10.1039/d1na00178g] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/02/2021] [Indexed: 05/08/2023]
Abstract
As a versatile post-synthesis modification method, ligand exchange reaction exhibits great potential to extend the space of accessible nanoclusters. In this review, we summarized this process for thiolate-protected gold nanoclusters. In order to better understand this reaction we will first provide the necessary background on the synthesis and structure of various gold clusters, such as Au25(SR)18, Au38(SR)24, and Au102(SR)44. The previous investigations illustrated that ligand exchange is enabled by the chemical properties and flexible gold-sulfur interface of nanoclusters. It is generally believed that ligand exchange follows a SN2-like mechanism, which is supported both by experiments and calculations. More interesting, several studies show that ligand exchange takes place at preferred sites, i.e. thiolate groups -SR, on the ligand shell of nanoclusters. With the help of ligand exchange reactions many functionalities could be imparted to gold nanoclusters including the introduced of chirality to achiral nanoclusters, size transformation and phase transfer of nanoclusters, and the addition of fluorescence or biological labels. Ligand exchange was also used to amplify the enantiomeric excess of an intrinsically chiral cluster. Ligand exchange reaction accelerates the prosperity of the nanocluster field, and also extends the diversity of precise nanoclusters.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva 30 Quai Ernest-Ansermet 1211 Geneva 4 Switzerland
| |
Collapse
|
4
|
Kang X, Wei X, Xiang P, Tian X, Zuo Z, Song F, Wang S, Zhu M. Rendering hydrophobic nanoclusters water-soluble and biocompatible. Chem Sci 2020; 11:4808-4816. [PMID: 34122938 PMCID: PMC8159227 DOI: 10.1039/d0sc01055c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Hydrophobic and hydrophilic nanoclusters embody complementary superiorities. The means to amalgamate these superiorities, i.e., the atomic precision of hydrophobic clusters and the water dissolvability of hydrophilic clusters, remains challenging. This work presents a versatile strategy to render hydrophobic nanoclusters water-soluble-the micellization of nanoclusters in the presence of solvent-conjoined Na+ cations-which overcomes the above major challenge. Specifically, although [Ag29(SSR)12(PPh3)4]3- nanoclusters are absolutely hydrophobic, they show good dissolvability in aqueous solution in the presence of solvent-conjoined Na+ cations (Na1(NMP)5 or Na3(DMF)12). Such cations act as both counterions of these nanoclusters and surface cosolvent of cluster-based micelles in the aqueous phase. A combination of DLS (dynamic light scattering) and aberration-corrected HAADF-STEM (high angle annular dark field detector scanning transmission electron microscopy) measurements unambiguously shows that the phase-transfer of hydrophobic Ag29 into water is triggered by the micellization of nanoclusters. Owing to the excellent water solubility and stability of [Ag29(SSR)12(PPh3)4]3-[Na1(NMP)5]3 + in H2O, its performance in cell staining has been evaluated. Furthermore, the general applicability of the micellization strategy has been verified. Overall, this work presents a convenient and efficient approach for the preparation of cluster-based, biocompatible nanomaterials.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 P. R. China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 P. R. China
| | - Pan Xiang
- School of Life Sciences, Anhui University Hefei 230601 P. R. China
| | - Xiaohe Tian
- School of Life Sciences, Anhui University Hefei 230601 P. R. China
| | - Zewen Zuo
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University Nanjing 210093 P. R. China
- Atomic Manufacture Institute Nanjing 211805 P. R. China
| | - Fengqi Song
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University Nanjing 210093 P. R. China
- Atomic Manufacture Institute Nanjing 211805 P. R. China
| | - Shuxin Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 P. R. China
| |
Collapse
|
5
|
Alkilany AM, Alsotari S, Alkawareek MY, Abulateefeh SR. Facile Hydrophobication of Glutathione-Protected Gold Nanoclusters and Encapsulation into Poly(lactide-co-glycolide) Nanocarriers. Sci Rep 2019; 9:11098. [PMID: 31366896 PMCID: PMC6668383 DOI: 10.1038/s41598-019-47543-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/05/2019] [Indexed: 12/05/2022] Open
Abstract
We report a simple surface functionalization of glutathione-capped gold nanoclusters by hydrophobic ion pairing with alkylamine followed by a complete phase transfer to various organic solvents with maintained colloidal stability and photoluminescence properties. The described surface hydrophobication enables efficient encapsulation of gold nanoclusters into PLGA nanocarriers allowing their visualization inside cultured cells using confocal fluorescent microscopy. The simplicity and efficiency of the described protocols should extend the biomedical applications of these metallic nanoclusters as a fluorescent platform to label hydrophobic polymeric nanocarriers beyond conventional organic dyes.
Collapse
Affiliation(s)
- Alaaldin M Alkilany
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan.
| | - Shrouq Alsotari
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Mahmoud Y Alkawareek
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Samer R Abulateefeh
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
6
|
Wang T, Ma H, Padelford JW, Lobo E, Tran MT, Zhao F, Fang N, Wang G. Metal ions-modulated near-infrared electrochemiluminescence from Au nanoclusters enhanced by 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid at physiological pH. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Wang T, Padelford JW, Ma H, Gubitosi‐Raspino MF, Wang G. Near‐Infrared Electrochemiluminescence from Au Nanoclusters Enhanced by EDTA and Modulated by Ions. ChemElectroChem 2017. [DOI: 10.1002/celc.201700125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tanyu Wang
- Department of Chemistry Georgia State University Atlanta, GA 30302 USA
| | | | - Hedi Ma
- Department of Chemistry Georgia State University Atlanta, GA 30302 USA
| | | | - Gangli Wang
- Department of Chemistry Georgia State University Atlanta, GA 30302 USA
| |
Collapse
|
8
|
Wang T, Wang D, Padelford JW, Jiang J, Wang G. Near-Infrared Electrogenerated Chemiluminescence from Aqueous Soluble Lipoic Acid Au Nanoclusters. J Am Chem Soc 2016; 138:6380-3. [DOI: 10.1021/jacs.6b03037] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tanyu Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Dengchao Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Jonathan W. Padelford
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Jie Jiang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Gangli Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|