1
|
Zhang XR, Chai T, Chang XL, Zhang Y, Wang CB, Liu S, Iradukunda Y, Shang XY, Cao YH, Wang WF, Yang JL, Qiang Y. MAO-B-triggered reaction for an optical triple-signal assay and AND logic gate application based on PEI-functionalized silver nanoparticles. Mikrochim Acta 2025; 192:99. [PMID: 39836294 DOI: 10.1007/s00604-024-06908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
A novel analytical method was designed and developed that exhibited ultraviolet-visible (UV-Vis), fluorescence (FL), and resonance Rayleigh scattering (RRS) signals for straightforward and comprehensive determination of monoamine oxidase B (MAO-B) using polyethylenimine-functionalized silver nanoparticles (PEI-Ag NPs). Through a facile one-step experiment, and NaOH assisted, in an aqueous solution of 100 ℃ for 40 min PEI reacted with AgNO3 to generate PEI-Ag NPs with a yellow color and weak blue fluorescence. Interestingly, phenylacetaldehyde (PAA), a specific product of MAO-B, causes significant enhancement of the three optical signals of UV-Vis, FL, and RRS. A triple-signal readout sensing system was designed and constructed for MAO-B concentration assay. The limit of detection (LOD) was 0.42 (UV-Vis), 3.49 (FL), and 1.97 (RRS) μg/mL. AND logic gate analysis was applied to enhance its accurate identification. Eventually, the feasibility of the method was assessed by measuring MAO-B amount in human serum samples with satisfying recoveries. The method provided a new concept for the clinical detection of MAO-B.
Collapse
Affiliation(s)
- Xin-Ru Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Tian Chai
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, P. R. China
| | - Xiang-Lei Chang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ying Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, P. R. China
| | - Cheng-Bo Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, P. R. China
| | - Song Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yves Iradukunda
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, P. R. China
| | - Xian-Yi Shang
- Longnan Municipal Enrich People Industry Development Corporation, Longnan City, 742500, P. R. China
| | - Yong-Hong Cao
- Longnan Academy of Non-Wood Forest, Longnan City, 742500, P. R. China
| | - Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, P. R. China.
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, P. R. China.
| | - Yin Qiang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China.
| |
Collapse
|
2
|
Mittal R, Gupta N. pH-dependent Synthesis and Interactions of Fluorescent L-Histidine Capped Copper Nanoclusters with Metal Ions. J Fluoresc 2024; 34:2085-2092. [PMID: 37698760 DOI: 10.1007/s10895-023-03433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
In this work, L-Histidine-protected copper nanoclusters synthesized by changing the pH levels of precursor solution have been shown to display different emission wavelengths and intensities. As determined by mass spectrometry, nanoclusters Cu3L2 synthesized at acidic pH have 3 atoms in their core and emit in the greenish-yellow region, and nanoclusters Cu2L2, synthesized in the basic conditions have 2 atoms in their core and emit in the blue-green region. They are expected to have coordination through the carboxylate group and nitrogen of the imidazole ring of histidine ligand, respectively. Metal ions Mg2+, Mn2+, Zn2+, and Pb2+ selectively enhance the interaction between carboxylate - copper metal core and increase the emission intensity of Cu3L2. These metal ions weaken the interaction between imidazole nitrogen and copper metal core and quench the emission intensity of Cu2L2. As synthesized, nanoclusters exhibit good water solubility and photostability, they can act as fluorescent probes to sense the metal ions, therefore, they were utilized for the optical sensing of the mentioned metal ions. Fluorescent nanoclusters were found to sense even a very low concentration of metal ions with a limit of detection (3 σ/slope) in nanomolar range.
Collapse
Affiliation(s)
- Ritika Mittal
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector-3, Dwarka, Delhi, 110078, India
| | - Nancy Gupta
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector-3, Dwarka, Delhi, 110078, India.
| |
Collapse
|
3
|
Khan R, Andreescu D, Hassan MH, Ye J, Andreescu S. Nanoelectrochemistry Reveals Selective Interactions of Perfluoroalkyl Substances (PFASs) with Silver Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202209164. [DOI: 10.1002/anie.202209164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Reem Khan
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Daniel Andreescu
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Mohamed H. Hassan
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Jingyun Ye
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Silvana Andreescu
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| |
Collapse
|
4
|
Weiß LJK, Music E, Rinklin P, Banzet M, Mayer D, Wolfrum B. On-Chip Electrokinetic Micropumping for Nanoparticle Impact Electrochemistry. Anal Chem 2022; 94:11600-11609. [PMID: 35900877 DOI: 10.1021/acs.analchem.2c02017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Single-entity electrochemistry is a powerful technique to study the interactions of nanoparticles at the liquid-solid interface. In this work, we exploit Faradaic (background) processes in electrolytes of moderate ionic strength to evoke electrokinetic transport and study its influence on nanoparticle impacts. We implemented an electrode array comprising a macroscopic electrode that surrounds a set of 62 spatially distributed microelectrodes. This configuration allowed us to alter the global electrokinetic transport characteristics by adjusting the potential at the macroscopic electrode, while we concomitantly recorded silver nanoparticle impacts at the microscopic detection electrodes. By focusing on temporal changes of the impact rates, we were able to reveal alterations in the macroscopic particle transport. Our findings indicate a potential-dependent micropumping effect. The highest impact rates were obtained for strongly negative macroelectrode potentials and alkaline solutions, albeit also positive potentials lead to an increase in particle impacts. We explain this finding by reversal of the pumping direction. Variations in the electrolyte composition were shown to play a critical role as the macroelectrode processes can lead to depletion of ions, which influences both the particle oxidation and the reactions that drive the transport. Our study highlights that controlled on-chip micropumping is possible, yet its optimization is not straightforward. Nevertheless, the utilization of electro- and diffusiokinetic transport phenomena might be an appealing strategy to enhance the performance in future impact-based sensing applications.
Collapse
Affiliation(s)
- Lennart J K Weiß
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 11, Garching 85748, Germany
| | - Emir Music
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 11, Garching 85748, Germany
| | - Philipp Rinklin
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 11, Garching 85748, Germany
| | - Marko Banzet
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Bernhard Wolfrum
- Neuroelectronics - Munich Institute of Biomedical Engineering, Department of Electrical Engineering, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstrasse 11, Garching 85748, Germany
| |
Collapse
|
5
|
Khan R, Andreescu D, Hassan MH, Ye J, Andreescu S. Nanoelectrochemistry Reveals Selective Interactions of Perfluoroalkyl Substances (PFASs) with Silver Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Reem Khan
- Clarkson University Chemistry and Biomolecular Science UNITED STATES
| | - Daniel Andreescu
- Clarkson University Chemistry and Biomolecular Science 8 Clarkson Ave 13699 Potsdam UNITED STATES
| | - Mohamed H. Hassan
- Clarkson University Chemistry and Biomolecular Science UNITED STATES
| | - Jingyun Ye
- Clarkson University Chemistry and Biomolecular Science UNITED STATES
| | - Silvana Andreescu
- Clarkson University Chemistry and Biomolecular Science 8 Clarskon Ave 13699 Potsdam UNITED STATES
| |
Collapse
|
6
|
Reyes-Cruzaley AP, Ochoa-Terán A, Tirado-Guízar A, Félix-Navarro RM, Alonso-Núñez G, Pina-Luis G. A fluorescent PET probe based on polyethyleneimine-Ag nanoclusters as a reversible, stable and selective broad-range pH sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2495-2503. [PMID: 34002195 DOI: 10.1039/d1ay00302j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, nanoclusters (NCs) of Cu and Ag capped with hyperbranched polyethyleneimine (PEI) were prepared using chemical reduction by a one-step hydrothermal method. The PEI coated-NCs were characterized by high-resolution transmission electron microscopy, ζ potential, thermogravimetric analysis, dynamic light scattering, Fourier-transform infrared, UV-visible, and fluorescence spectroscopy. The PEI-NCs exhibited strong absorption and fluorescence, high stability, and excellent water dispersibility. The resulting PEI-NCs showed a reversible and linear response of fluorescence intensity with pH over a wide range (3-11); however, PEI-AgNCs showed a better reversibility and sensitivity than PEI-CuNCs. Unlike several types of pH sensors based on modified NCs, which are based on a nanoparticle aggregation/disaggregation mechanism, the response of our sensor is based on a photoinduced electron transfer process, which gives it a high reversibility. This method was successfully applied in pH measurements in tap water and green tea samples, with excellent results, indicating its practical utility for these applications. A visual device was obtained by immobilizing PEI-AgNCs into agarose hydrogels at different pH values. The results show that the proposed sensor can be used as a pH visual detector. Besides, the light emission of the nanosensor was corroborated by fluorescence microscopy, confirming that the nanosensor based on PEI-AgNCs has great potential to be used in cellular imaging.
Collapse
Affiliation(s)
- Ana Patricia Reyes-Cruzaley
- Centro de Graduados e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Bulevar Alberto Limón Padilla S/N, Otay Tecnológico, 22510, Tijuana, B. C., Mexico.
| | | | | | | | | | | |
Collapse
|
7
|
Dolinska J, Holdynski M, Ambroziak R, Modrzejewska-Sikorska A, Milczarek G, Pisarek M, Opallo M. The medium effect on electrodissolution of adsorbed or suspended Ag nanoparticles. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Kirk KA, Luitel T, Narouei FH, Andreescu S. Nanoparticle Characterization Through Nano-Impact Electrochemistry: Tools and Methodology Development. Methods Mol Biol 2020; 2118:327-342. [PMID: 32152990 DOI: 10.1007/978-1-0716-0319-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The field of nanomaterials has been expanding rapidly into many diverse applications within the last 20 years. With this growth, there is a significant need for new method development for the detection and characterization of nanomaterials. Understanding the physical properties of nanoscale entities and their associated reaction kinetics is crucial for monitoring their effect on environmental and human health, and in their use for practical applications. Nano-impact electrochemistry is a novel development in the field of fundamental electrochemistry that provides an ultrasensitive method for analyzing physical and redox properties of nanomaterials and their derivatives. This protocol focuses on the tools required for characterizing silver nanoparticles (AgNPs) by nano-impact electrochemistry, the preparation of microelectrodes and the methodology needed for measurement of the AgNP redox activity. The fabrication of cylindrical carbon fiber as well as gold and platinum microwire electrodes is described in detail. The analysis of nano-impact electrochemistry for the characterization of redox active entities is also outlined with examples of applications.
Collapse
Affiliation(s)
- Kevin A Kirk
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Tulashi Luitel
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | | | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA.
| |
Collapse
|
9
|
|
10
|
Karimi A, Andreescu S, Andreescu D. Single-Particle Investigation of Environmental Redox Processes of Arsenic on Cerium Oxide Nanoparticles by Collision Electrochemistry. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24725-24734. [PMID: 31190542 DOI: 10.1021/acsami.9b05234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Quantification of chemical reactions of nanoparticles (NPs) and their interaction with contaminants is a fundamental need to the understanding of chemical reactivity and surface chemistry of NPs released into the environment. Herein, we propose a novel strategy employing single-particle electrochemistry showing that it is possible to measure reactivity, speciation, and loading of As3+ on individual NPs, using cerium oxide (CeO2) as a model system. We demonstrate that redox reactions and adsorption processes can be electrochemically quantified with high sensitivity via the oxidation of As3+ to As5+ at 0.8 V versus Ag/AgCl or the reduction of As3+ to As0 at -0.3 V (vs Ag/AgCl) generated by collisions of single particles at an ultramicroelectrode. Using collision electrochemistry, As3+ concentrations were determined in basic conditions showing a maximum adsorption capacity at pH 8. In acidic environments (pH < 4), a small fraction of As3+ was oxidized to As5+ by surface Ce4+ and further adsorbed onto the CeO2 surface as a As5+ bidentate complex. The frequency of current spikes (oxidative or reductive) was proportional to the concentration of As3+ accumulated onto the NPs and was found to be representative of the As3+ concentration in solution. Given its sensitivity and speciation capability, the method can find many applications in the analytical, materials, and environmental chemistry fields where there is a need to quantify the reactivity and surface interactions of NPs. This is the first study demonstrating the capability of single-particle collision electrochemistry to monitor the interaction of heavy metal ions with metal oxide NPs. This knowledge is critical to the fundamental understanding of the risks associated with the release of NPs into the environment for their safe implementation and practical use.
Collapse
Affiliation(s)
- Anahita Karimi
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| | - Daniel Andreescu
- Department of Chemistry and Biomolecular Science , Clarkson University , Potsdam , New York 13699-5810 , United States
| |
Collapse
|
11
|
Shifrina ZB, Matveeva VG, Bronstein LM. Role of Polymer Structures in Catalysis by Transition Metal and Metal Oxide Nanoparticle Composites. Chem Rev 2019; 120:1350-1396. [DOI: 10.1021/acs.chemrev.9b00137] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, Moscow, 119991 Russia
| | - Valentina G. Matveeva
- Tver State Technical University, Department of Biotechnology and Chemistry, 22 A. Nikitina St, 170026 Tver, Russia
| | - Lyudmila M. Bronstein
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, Moscow, 119991 Russia
- Indiana University, Department of Chemistry, Bloomington, 800 East Kirkwood Avenue, Indiana 47405, United States
- King Abdulaziz University, Faculty of Science, Department of Physics, P.O. Box 80303, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Wang ZZ, Clifford A, Milne J, Mathews R, Zhitomirsky I. Colloidal-electrochemical fabrication strategies for functional composites of linear polyethylenimine. J Colloid Interface Sci 2019; 552:1-8. [PMID: 31102846 DOI: 10.1016/j.jcis.2019.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 10/26/2022]
Abstract
Colloidal-electrochemical fabrication strategies have been developed for the deposition of linear polyethylenimine (LPEI) composite materials. Electrophoretic deposition (EPD) allowed for the fabrication of composite films containing Mn3O4 and ZnO nanoparticles, as well as advanced flame retardant materials, such as halloysite nanotubes and memory-type Al-Mg-Zr complex hydroxide (AMZ) in the matrix of the water-insoluble LPEI. A liquid-liquid extraction method has been designed for the agglomerate-free processing of AMZ particles. Efficient extraction was achieved using decylphosphonic acid as an extractor. A conceptually new polymer complex (PC)-EPD method has been developed, which is based on the use of LPEI-metal ion complexes. Proof-of-concept studies involved the fabrication of LPEI-Ni(OH)2 and LPEI-MnOx nanocomposites. The composites showed valuable flame retardant and charge-storage properties. The analysis of basic EPD and PC-EPD mechanisms as well as complexing properties of LPEI has driven the development of new strategies for the fabrication of organic composites. Hemoglobin was used as a model protein for the fabrication of composite films. Another important finding was the fabrication of composites, containing cyclodextrin, which is a unique carrier of various functional organic molecules. EPD and PC-EPD are versatile methods, which allow for the deposition of novel LPEI based composites containing various functional materials.
Collapse
Affiliation(s)
- Z Z Wang
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - A Clifford
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - J Milne
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - R Mathews
- Advanced Ceramics Corporation, 2536 Bristol Circle, Oakville, ON L6H 5S1, Canada
| | - I Zhitomirsky
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada.
| |
Collapse
|
13
|
Andreescu D, Kirk KA, Narouei FH, Andreescu S. Electroanalytic Aspects of Single‐Entity Collision Methods for Bioanalytical and Environmental Applications. ChemElectroChem 2018. [DOI: 10.1002/celc.201800722] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daniel Andreescu
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| | - Kevin A. Kirk
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| | | | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699-5810 USA
| |
Collapse
|