1
|
Sahu JK, Adhikary R, Dalal S, Hazra S, Sadhu KK. Self-assembled Supra-Plate from Gold Nanoparticle with Zn(II) and 1H-pyrazole-3,5-dicarboxylic Acid for Antibacterial Studies. Chem Asian J 2025:e202401530. [PMID: 39924973 DOI: 10.1002/asia.202401530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/11/2025]
Abstract
Interactions of aromatic nitrogen and carboxylate group of 1H-pyrazole-3,5-dicarboxylic acid (PDC) with bivalent Zn(II) metal ions and gold nanoparticle (AuNP, average diameter ~16 nm) surface has been targeted in this current study. The time-dependent absorption and structural analysis experimentally demonstrate the combined role of PDC and metal ion towards the self-assembly of AuNP. The collective interaction in solution triggers self-assembly, which results in the synthesis of unique Au/Zn@PDC supra-plates at room temperature. The Zn(II) induced supra-plates have been further characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The selectivity of the self-assembly for supra-plate architectures has been verified with handful of other metal ions such as Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Mg(II) and Pb(II). Among these studied metal ions, Pb(II) only provides the self-assembled supra-sphere formation under identical conditions. Pb(II) being a toxic metal ion, antibacterial properties have been explored for Au/Zn@PDC supra-plates with four significant human pathogens: Methicillin-resistant Staphylococcus aureus (MRSA) ATCC BAA-44, Methicillin-sensitive Staphylococcus aureus (MSSA) S18 (clinical isolate), Klebsiella pneumoniae ATCC BAA-1706, and Klebsiella pneumoniae MDR 36 (clinical isolate). Compared to the parent constituents, these bacterial cells experience greater damage to the cell wall, when treated with Au/Zn@PDC supra-plates with a minimum inhibitory concentration (MIC) of 0.2-0.8 ng/mL.
Collapse
Affiliation(s)
- Jitendra K Sahu
- Department of Chemistry, Indian Institute of Technology, Roorkee Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Rajsekhar Adhikary
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Roorkee Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Sancharika Dalal
- Department of Chemistry, Indian Institute of Technology, Roorkee Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Saugata Hazra
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Roorkee Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Kalyan K Sadhu
- Department of Chemistry, Indian Institute of Technology, Roorkee Roorkee, Haridwar, Uttarakhand, 247667, India
| |
Collapse
|
2
|
Hefayathullah M, Singh S, Ganesan V, Maduraiveeran G. Metal-organic frameworks for biomedical applications: A review. Adv Colloid Interface Sci 2024; 331:103210. [PMID: 38865745 DOI: 10.1016/j.cis.2024.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Metal-organic frameworks (MOFs) are emergent materials in diverse prospective biomedical uses, owing to their inherent features such as adjustable pore dimension and volume, well-defined active sites, high surface area, and hybrid structures. The multifunctionality and unique chemical and biological characteristics of MOFs allow them as ideal platforms for sensing numerous emergent biomolecules with real-time monitoring towards the point-of-care applications. This review objects to deliver key insights on the topical developments of MOFs for biomedical applications. The rational design, preparation of stable MOF architectures, chemical and biological properties, biocompatibility, enzyme-mimicking materials, fabrication of biosensor platforms, and the exploration in diagnostic and therapeutic systems are compiled. The state-of-the-art, major challenges, and the imminent perspectives to improve the progressions convoluted outside the proof-of-concept, especially for biosensor platforms, imaging, and photodynamic therapy in biomedical research are also described. The present review may excite the interdisciplinary studies at the juncture of MOFs and biomedicine.
Collapse
Affiliation(s)
- Mohamed Hefayathullah
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Smita Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
3
|
Yadav M, Kumar Singh D, Kumar Yadav D, Kumar Sonkar P, Gupta R, Ganesan V. Enhanced Four-Electron Selective Oxygen Reduction Reaction at Carbon-Nanotube-Supported Sulfonic-Acid-Functionalized Copper Phthalocyanine. Chemphyschem 2023; 24:e202300117. [PMID: 37464546 DOI: 10.1002/cphc.202300117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
In the present work, the oxygen reduction reaction (ORR) is explored in an acidic medium with two different catalytic supports (multi-walled carbon nanotubes (MWCNTs) and nitrogen-doped multi-walled carbon nanotubes (NMWCNTs)) and two different catalysts (copper phthalocyanine (CuPc) and sulfonic acid functionalized CuPc (CuPc-SO3 - )). The composite, NMWCNTs-CuPc-SO3 - exhibits high ORR activity (assessed based on the onset potential (0.57 V vs. reversible hydrogen electrode) and Tafel slope) in comparison to the other composites. Rotating ring disc electrode (RRDE) studies demonstrate a highly selective four-electron ORR (less than 2.5 % H2 O2 formation) at the NMWCNTs-CuPc-SO3 - . The synergistic effect of the catalyst support (NMWCNTs) and sulfonic acid functionalization of the catalyst (in CuPc-SO3 - ) increase the efficiency and selectivity of the ORR at the NMWCNTs-CuPc-SO3 - . The catalyst activity of NMWCNTs-CuPc-SO3 - has been compared with many reported materials and found to be better than several catalysts. NMWCNTs-CuPc-SO3 - shows high tolerance for methanol and very small deviation in the onset potential (10 mV) between the linear sweep voltammetry responses recorded before and after 3000 cyclic voltammetry cycles, demonstrating exceptional durability. The high durability is attributed to the stabilization of CuPc-SO3 - by the additional coordination with nitrogen (Cu-Nx ) present on the surface of NMWCNTs.
Collapse
Affiliation(s)
- Mamta Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | | | | | - Piyush Kumar Sonkar
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Rupali Gupta
- Department of Chemistry, M. M. Mahila College, Veer Kunwar Singh University, Ara, 802301, Bihar, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| |
Collapse
|
4
|
Mohamed RM, El-Sheikh SM, Kadi MW, Labib AA, Sheta SM. A novel test device and quantitative colorimetric method for the detection of human chorionic gonadotropin (hCG) based on Au@Zn-salen MOF for POCT applications. RSC Adv 2023; 13:11751-11761. [PMID: 37063717 PMCID: PMC10103075 DOI: 10.1039/d2ra07854f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/29/2023] [Indexed: 04/18/2023] Open
Abstract
The human chorionic gonadotropin (hCG) hormone is a biomarker that can predict tumors and early pregnancy; however, it is challenging to develop sensitive qualitative-quantitative procedures that are also effective, inventive, and unique. In this study, we used a novel easy in situ reaction of an organic nano-linker with Zn(NO3)2·6H2O and HAuCl4·3H2O to produce a gold-zinc-salen metal-organic framework composite known as Au-Zn-Sln-MOF. A wide variety of micro-analytical instruments and spectroscopic techniques were used in order to characterize the newly synthesized Au-Zn-Sln-MOF composite. Disclosure is provided for a novel swab test instrument and a straightforward colorimetric approach for detecting hCG hormone based on an Au-Zn-Sln-MOF composite. Both of these methods are easy. In order to validate a natural enzyme-free immunoassay, an Au-Zn-Sln-MOF composite was utilized in the role of an enzyme; a woman can use this gadget to determine whether or not she is pregnant in the early stages of the pregnancy or whether or not her hCG levels are excessively high, which is a symptom that she may have a tumor. This cotton swab test device is compatible with testing of various biological fluids, such as serum, plasma, or urine, and it can be easily transferred to the market to commercialize it as a costless kit, which will be 20-30% cheaper than what is available on the market. Additionally, it can be used easily at home and for near-patient testing (applications of point-of-care testing (POCT)).
Collapse
Affiliation(s)
- Reda M Mohamed
- Chemistry Department, Faculty of Science, King Abdul-Aziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Said M El-Sheikh
- Department of Nanomaterials and Nanotechnology, Central Metallurgical R & D Institute Cairo 11421 Egypt
| | - Mohammad W Kadi
- Chemistry Department, Faculty of Science, King Abdul-Aziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Ammar A Labib
- Department of Inorganic Chemistry, National Research Centre Cairo 12622 Egypt +201009697356
| | - Sheta M Sheta
- Department of Inorganic Chemistry, National Research Centre Cairo 12622 Egypt +201009697356
| |
Collapse
|
5
|
El-Sheikh SM, Sheta SM, Salem SR, Abd-Elzaher MM, Basaleh AS, Labib AA. Prostate-Specific Antigen Monitoring Using Nano Zinc(II) Metal-Organic Framework-Based Optical Biosensor. BIOSENSORS 2022; 12:931. [PMID: 36354440 PMCID: PMC9688191 DOI: 10.3390/bios12110931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The prostate-specific antigen (PSA) is an important cancer biomarker that is commonly utilized in the diagnosis of prostate cancer. The development of a PSA determination technique that is rapid, simple, and inexpensive, in addition to highly accurate, sensitive, and selective, remains a formidable obstacle. METHODS In this study, we developed a practical biosensor based on Zn(II) metal-organic framework nanoparticles (Zn-MOFs-NPs). Many spectroscopic and microanalytical tools are used to determine the structure, morphology, and physicochemical properties of the prepared MOF. RESULTS According to the results, Zn-MOFs-NPs are sensitive to PSA, selective to an extremely greater extent, and stable in terms of chemical composition. Furthermore, the Zn-MOFs-NPs did not exhibit any interferences from other common analytes that might cause interference. The detection limit for PSA was calculated and was 0.145 fg/mL throughout a wide linear concentration range (0.1 fg/mL-20 pg/mL). CONCLUSIONS Zn-MOFs-NPs were successfully used as a growing biosensor for the monitoring and measurement of PSA in biological real samples.
Collapse
Affiliation(s)
- Said M. El-Sheikh
- Department of Nanomaterials and Nanotechnology, Central Metallurgical R & D Institute, Cairo 11421, Egypt
| | - Sheta M. Sheta
- Department of Inorganic Chemistry, National Research Centre, Cairo 12622, Egypt
| | - Salem R. Salem
- Department of Biochemistry, Egypt Centre for Research and Regenerative Medicine, Cairo 11887, Egypt
| | | | - Amal S. Basaleh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ammar A. Labib
- Department of Inorganic Chemistry, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
6
|
Singh V, Thakur PS, Ganesan V, Sankar M. Zn(II) porphyrin-based polymer facilitated electrochemical synthesis of green hydrogen peroxide. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Peng X, Shi Y, Zeng Z, Zheng J, Xu C. Versatile Photo/Electricity Responsive Properties of a Coordination Polymer Based on Extended Viologen Ligands. MEMBRANES 2022; 12:membranes12030277. [PMID: 35323752 PMCID: PMC8955544 DOI: 10.3390/membranes12030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022]
Abstract
Responsive chromogenic materials have attracted increasing interest among researchers; however, up until now, few materials have exhibited multifunctional chromogenic properties. The coordination polymers (CPs) provide intriguing platforms to design and construct multifunctional materials. Here, a multifunctional photo/electricity responsive CP named Zn−Oxv, which is based on the “extended viologen” (ExV) ligand, was synthesized. The Zn−Oxv exhibited reversible photochromism, photomodulated fluorescence, electrochromism and electrofluorochromism. Furthermore, we prepared Zn−Oxv thin films and investigated electrochromic (EC) properties of viologen−based CPs for the first time. Zn−Oxv thin films showed excellent EC performance with a rapid switching speed (both coloring and bleaching time within 1 s), high coloration efficiency (102.9 cm2/C) and transmittance change (exceeding 40%). Notably, the Zn−Oxv is by far the fastest CP EC material based on redox−active ligands ever reported, indicating that the viologen−based CPs could open up a new field of materials for EC applications. Therefore, viologen−based CPs are attractive candidates for the design of novel multi−responsive chromogenic materials and EC materials that could promise creative applications in intelligent technology, dynamic displays and smart sensors.
Collapse
|
8
|
Prakash J, Shekhar H, Yadav SR, Sonkar PK, Kumar N. Synthesis and Characterization of Plant Derived Copper Oxide Nanoparticles and Their Application towards Oxygen Reduction Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202103594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jai Prakash
- Department of Chemistry S P Jain College Veer Kunwar Singh University Sasaram 821115 Bihar India
| | - Himanshu Shekhar
- Department of Chemistry Veer Kunwar Singh University Ara 802301 Bihar India
| | - Shyam R. Yadav
- Department of Chemistry S P Jain College Veer Kunwar Singh University Sasaram 821115 Bihar India
| | - Piyush K. Sonkar
- Department of Chemistry MMV Banaras Hindu University Varanasi 221005 UP India
| | - Narvadeshwar Kumar
- Department of Chemistry MMV Banaras Hindu University Varanasi 221005 UP India
| |
Collapse
|
9
|
Govindaraju S, Arumugasamy SK, Chellasamy G, Yun K. Zn-MOF decorated bio activated carbon for photocatalytic degradation, oxygen evolution and reduction catalysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126720. [PMID: 34343883 DOI: 10.1016/j.jhazmat.2021.126720] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 05/24/2023]
Abstract
An emerging global necessity for alternative resources combined with maximum catalytic efficiency, low cost, and eco-friendly composite remains a hotspot in the scientific society. Hereby, a novel protocol is approached to design a heterostructure of Zinc MOF decorated on the surface of 2D activated carbon (AC) through a simplistic approach. To begin with, analytical, morphological and spectroscopical studies were performed to identify the functional moieties, cruciate-flower like morphology and oxidative state of atoms present in the composite Zn-MOF @AC. The photocatalytic material aids in degrading both cationic and anionic dye in a UV (254 nm) irradiated environment at a rate of 86.4% and 77.5% within 90 mins. Subsequently, the hybrid materials are coated on the carbon substrate to evaluate the catalytic activity using oxygen evolution and reduction reaction process. The mechanical insight for the catalytic activity relies on the electronic transitions of atoms on the edges of the sheets ascribing to d-d energy levels between the interfacial electron movement. Our composite exhibits an overpotential of 0.7 V and a Tafel slope of 70 mV/dec for the oxygen reduction reaction. This study proposes an alternate approach for developing MOF decorated carbon-based composites for photocatalytic degradability and energy necessity.
Collapse
Affiliation(s)
- Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea
| | | | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea.
| |
Collapse
|
10
|
Singh D, Raj KK, Azad UP, Pandey R. In situ transformed three heteroleptic Co(II)-MOFs as potential electrocatalysts for the electrochemical oxygen evolution reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Ruan X, Yang Y, Liu W, Ma X, Zhang C, Meng Q, Wang Z, Cui F, Feng J, Cai F, Yuan Y, Zhu G. Mechanical Bond Approach to Introducing Self-Adaptive Active Sites in Covalent Organic Frameworks for Zinc-Catalyzed Organophosphorus Degradation. ACS CENTRAL SCIENCE 2021; 7:1698-1706. [PMID: 34729413 PMCID: PMC8554822 DOI: 10.1021/acscentsci.1c00941] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 05/11/2023]
Abstract
Mechanically interlocked molecules (MIMs) with discrete molecular components linked through a mechanical bond in space can be harnessed for the operation of molecular switches and machines, which shows huge potential to imitate the dynamic response of natural enzymes. In this work, rotaxane compounds were adopted as building monomers for the synthesis of a crown-ether ring mechanically intercalated covalence organic framework (COF). This incorporation of MIMs into open architecture implemented large amplitude motions, whose wheel slid along the axle in response to external stimulation. After impregnation with Zn2+ ions, the relative locations of two zinc active sites (crown-ether coordinated Zn(II) and bipyridine coordinated Zn(II)) are endowed with great flexibility to fit the conformational transformation of an organophosphorus agent during the hydrolytic process. Notably, the resulting self-adaptive binuclear zinc center in a crown-ether-threaded COF network is endowed with a record catalytic ability, with a rate over 85.5 μM min-1 for organophosphorus degradation. The strategy of synthesis for porous artificial enzymes through the introduction of mechanically bound crown ether will enable significant breakthroughs and new synthetic concepts for the development of advanced biomimetic catalysts.
Collapse
|
12
|
Yang Y, Yang Y, Liu Y, Zhao S, Tang Z. Metal–Organic Frameworks for Electrocatalysis: Beyond Their Derivatives. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100015] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yongchao Yang
- School of Chemical and Biomolecular Engineering The University of Sydney Camperdown NSW 2006 Australia
| | - Yuwei Yang
- School of Chemical and Biomolecular Engineering The University of Sydney Camperdown NSW 2006 Australia
| | - Yangyang Liu
- School of Chemical and Biomolecular Engineering The University of Sydney Camperdown NSW 2006 Australia
| | - Shenlong Zhao
- School of Chemical and Biomolecular Engineering The University of Sydney Camperdown NSW 2006 Australia
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
| |
Collapse
|
13
|
Sheta SM, Abd-Elzaher MM, El-Sheikh SM. A novel nano-lanthanum complex: synthesis, characterization and application as a macrofuran chemosensor in pharmaceutical, biological and environmental samples. RSC Adv 2021; 11:9675-9681. [PMID: 35423443 PMCID: PMC8695408 DOI: 10.1039/d0ra10116h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/16/2021] [Indexed: 12/27/2022] Open
Abstract
Macrofuran is widely used as an antibiotic for the treatment of urinary tract infections. Nevertheless, it is prohibited due to toxicity and environmental concerns. The development of a fast, simple, and cost-effective approach for the determination of macrofuran antibiotic (MFA) is still a challenge. Herein, we report a chemosensor based on a nano-lanthanum complex derived from phenylenediamine. The physicochemical properties and structure of the prepared complex were confirmed using different spectroscopic tools such as X-ray diffraction (XRD), scanning electron microscopy equipped with EDX, elemental analysis, Fourier transform-infrared (FT-IR) spectroscopy, UV-vis spectroscopy, mass spectroscopy and photoluminescence (PL). The nano-lanthanum complex was found to be chemically stable, highly sensitive and selective to MFA, without interference from other common antibiotics. The limit of detection for MFA was 0.025 ng mL-1, over a linear concentration range of 0.02-30.0 ng mL-1, with a correlation coefficient of 0.994. The nano-lanthanum complex can be used successfully as a promising chemosensor for MFA determination in pharmaceutical formulation and different biological samples (whole blood-serum-plasma). In addition, this approach will protect human beings from the environmental hazards of antibiotics through the detection of the low limit of MFA. Meanwhile, the mechanism of interaction between the nano-lanthanum complex and MFA was studied and investigated.
Collapse
Affiliation(s)
- Sheta M Sheta
- Inorganic Chemistry Department, National Research Centre 33, El-Behouth St., Dokki Giza 12622 Egypt +20-02-33370931 +20 1009697356
| | - Mohkles M Abd-Elzaher
- Inorganic Chemistry Department, National Research Centre 33, El-Behouth St., Dokki Giza 12622 Egypt +20-02-33370931 +20 1009697356
| | - Said M El-Sheikh
- Nanomaterials and Nanotechnology Department, Central Metallurgical R & D Institute Cairo 11421 Egypt
| |
Collapse
|
14
|
Bodkhe GA, Hedau BS, Deshmukh MA, Patil HK, Shirsat SM, Phase DM, Pandey KK, Shirsat MD. Detection of Pb(II): Au Nanoparticle Incorporated CuBTC MOFs. Front Chem 2020; 8:803. [PMID: 33195028 PMCID: PMC7593771 DOI: 10.3389/fchem.2020.00803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/30/2020] [Indexed: 12/02/2022] Open
Abstract
In the present investigation, copper benzene tricarboxylate metal organic frameworks (CuBTC MOF) and Au nanoparticle incorporated CuBTC MOF (Au@CuBTC) were synthesized by the conventional solvothermal method in a round bottom flask at 105°C and kept in an oil bath. The synthesized CuBTC MOF and Au@CuBTC MOFs were characterized by structure using X-ray diffraction (XRD) spectroscopic methods including Fourier Transform Infrared spectroscopy, Raman Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), and Energy dispersive spectroscopy (EDS). We also characterized them using morphological techniques such as Field emission scanning electron microscopy (FE-SEM), and electrochemical approaches that included cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). We examined thermal stability by thermogravimetric analysis (TG/DTA) and N2 adsorption—desorption isotherm by Brunauer-Emmett-Teller (BET) surface area method. Both materials were tested for the detection of lead (II) ions in aqueous media. Au nanoparticle incorporated CuBTC MOF showed great affinity and selectivity toward Pb2+ ions and achieved a lower detection limit (LOD) of 1 nM/L by differential pulse voltammetry (DPV) technique, which is far below than MCL for Pb2+ ions (0.03 μM/L) suggested by the United States (U.S.) Environmental Protection Agency (EPA) drinking water regulations.
Collapse
Affiliation(s)
- Gajanan A Bodkhe
- RUSA Center for Advanced Sensor Technology, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Bhavna S Hedau
- RUSA Center for Advanced Sensor Technology, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Megha A Deshmukh
- RUSA Center for Advanced Sensor Technology, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Harshada K Patil
- RUSA Center for Advanced Sensor Technology, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Sumedh M Shirsat
- Department of Electronics and Telecommunication Engineering, Jawaharlal Nehru Engineering College, Aurangabad, India
| | - Devdatta M Phase
- UGC-DAE Consortium for Scientific Research, University Campus, Indore, India
| | - Krishan K Pandey
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Center, Mumbai, India
| | - Mahendra D Shirsat
- RUSA Center for Advanced Sensor Technology, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| |
Collapse
|
15
|
Singh DK, Ganesan V, Yadav DK, Yadav M. Metal (Mn, Fe, Co, Ni, Cu, and Zn) Phthalocyanine-Immobilized Mesoporous Carbon Nitride Materials as Durable Electrode Modifiers for the Oxygen Reduction Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12202-12212. [PMID: 32970946 DOI: 10.1021/acs.langmuir.0c01822] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the search for alternative sources to replace fossil fuels, carbon nitride materials can be used in a variety of ways. In the present work, porosity is introduced to the carbon nitride material using mesoporous silica material, MCM-41, as a hard template, and a mesoporous carbon nitride (MCN) material is synthesized. Further, the MCN is modified by immobilizing metal phthalocyanine (MPc, where M = Mn, Fe, Co, Ni, Cu, and Zn). The resulting MPc-incorporated MCN materials (MPc@MCN) were tested for the electrocatalytic oxygen reduction reaction (ORR) in acidic and basic media. Detailed studies reveal that the FePc@MCN and CoPc@MCN materials exhibit higher ORR activity than the other composites in 0.1 M KOH. FePc@MCN follows a direct four-electron oxygen reduction mechanism and shows ORR onset potential (vs RHE) at 0.93 V (in 0.1 M KOH), which is very close to the onset potential exhibited by the state-of-the-art material, Pt-C (1.0 V), and higher than several similar composites of MPc with carbon supports tested in similar environments. Besides, due to the inherent property of coordination through nitrogen present on the MCN, FePc@MCN shows excellent stability even after 3000 cyclic voltammetry (CV) cycles. FePc@MCN was found to have a better methanol tolerance in comparison to Pt-C in basic medium. CoPc@MCN shows a highly selective two-electron reduction reaction in both acidic and basic media at lower overpotential than many of the reported catalysts for the two-electron oxygen reduction. Therefore, these materials (FePc@MCN and CoPc@MCN) can be used as suitable alternatives to replace Pt and other expensive materials in ORR and related applications.
Collapse
Affiliation(s)
- Devesh Kumar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005 UP, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005 UP, India
| | - Dharmendra Kumar Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005 UP, India
| | - Mamta Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005 UP, India
| |
Collapse
|
16
|
Ren Z, Jin L, Gao J, Chen H, Zhai C, Tan L, Cong N, Fang H, Zhou X, Zhu Y. A nano AuTiO 2-x composite with electrochemical characteristics of under-potential deposition of H (H-UPD) as a highly efficient electrocatalyst for hydrogen evolution. Chem Commun (Camb) 2019; 55:12695-12698. [PMID: 31588458 DOI: 10.1039/c9cc06530j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An obvious H-UPD for a nano AuTiO2-x composite has been found for the first time in terms of the electrochemical characteristics of the Au composite. The electronic effect between Au and TiO2 and the oxygen vacancy defect would change the adsorption energy of H and HER activity. The HER activity of the AuTiO2-x electrode is 6.44 times that of the Au electrode.
Collapse
Affiliation(s)
- Zhandong Ren
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China.
| | - Lingzhi Jin
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China.
| | - Jie Gao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China.
| | - Hanruo Chen
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China.
| | - Conghui Zhai
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China.
| | - Lingjun Tan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China.
| | - Ning Cong
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China.
| | - Hua Fang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China.
| | - Xiaorong Zhou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China.
| | - Yuchan Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China.
| |
Collapse
|
17
|
He DH, Liu JJ, Wang Y, Li F, Li B, He JB. Electrocatalysis of the first electron transfer in hydrogen evolution reaction with an atomically precise CuII-organic framework catalyst. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|