1
|
Zhu X, He M, Zhang J, Jiang Y. Synergistic catalysis and detection of hydrogen peroxide based on a 3D-dimensional molybdenum disulfide interspersed carbon nanotubes nanonetwork immobilized chloroperoxidase biosensor. Bioelectrochemistry 2023; 154:108507. [PMID: 37451043 DOI: 10.1016/j.bioelechem.2023.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Enzyme-based electrochemical biosensors are promising for a wide range of applications due to their unique specificity and high sensitivity. In this work, we present a novel enzyme bioelectrode for the sensing of hydrogen peroxide (H2O2). The molybdenum disulfide nanoflowers (MoS2) is self-assembled on carboxylated carbon nanotubes (CNT) to form a three-dimensional conductive network (3D-CNT@MoS2), which is modified with 1-ethyl-3-methylimidazolium bromide (ILEMB), and followed by anchoring chloroperoxidase (CPO) onto the nanocomposite (3D-CNT@MoS2/ILEMB) through covalent binding to form a bioconjugate (3D-CNT@MoS2/ILEMB/CPO). The ILEMB modified 3D-CNT@MoS2/ILEMB has good hydrophilicity and conductivity, which not only provides a suitable microenvironment for the immobilization of CPO but also facilitates the direct electron transfer (DET) of CPO at the electrode. The 3D-CNT@MoS2/ILEMB/CPO bioconjugate modified electrode has a high catalytic efficiency for H2O2. Through electroenzymatic synergistic catalysis for H2O2 detection by 3D-CNT@MoS2/ILEMB/CPO-GCE, a wide detection range of 0.2 μmol·L-1 to 997 μmol·L-1 and a low detection limit of 0.097 μmol・L-1 with high sensitivity of 1050 µA·mmol·L-1·cm-2 were achieved. Additionally, the 3D-CNT@MoS2/ILEMB/CPO-GCE displayed exceptional stability, selectivity, and reproducibility. Furthermore, 3D-CNT@MoS2/ILEMB/CPO-GCE is suitable for sensing of H2O2 in human urine s with good recovery, suggesting its potential application for the detection of H2O2 in biomedical field.
Collapse
Affiliation(s)
- Xuefang Zhu
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| | - Meng He
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| | - Jing Zhang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| | - Yucheng Jiang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| |
Collapse
|
2
|
Chen B, Sui S, He F, He C, Cheng HM, Qiao SZ, Hu W, Zhao N. Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications. Chem Soc Rev 2023; 52:7802-7847. [PMID: 37869994 DOI: 10.1039/d3cs00445g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
To support the global goal of carbon neutrality, numerous efforts have been devoted to the advancement of electrochemical energy conversion (EEC) and electrochemical energy storage (EES) technologies. For these technologies, transition metal dichalcogenide/carbon (TMDC/C) heterostructures have emerged as promising candidates for both electrode materials and electrocatalysts over the past decade, due to their complementary advantages. It is worth noting that interfacial properties play a crucial role in establishing the overall electrochemical characteristics of TMDC/C heterostructures. However, despite the significant scientific contribution in this area, a systematic understanding of TMDC/C heterostructures' interfacial engineering is currently lacking. This literature review aims to focus on three types of interfacial engineering, namely interfacial orientation engineering, interfacial stacking engineering, and interfacial doping engineering, of TMDC/C heterostructures for their potential applications in EES and EEC devices. To accomplish this goal, a combination of experimental and theoretical approaches was used to allow the analysis and summary of the fundamental electrochemical properties and preparation strategies of TMDC/C heterostructures. Moreover, this review highlights the design and utilization of the interfacial engineering of TMDC/C heterostructures for specific EES and EEC devices. Finally, the challenges and opportunities of using interfacial engineering of TMDC/C heterostructures in practical EES and EEC devices are outlined. We expect that this review will effectively guide readers in their understanding, design, and application of interfacial engineering of TMDC/C heterostructures.
Collapse
Affiliation(s)
- Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
| | - Simi Sui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Fang He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, People's Republic of China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, People's Republic of China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
| |
Collapse
|
3
|
Nanocomposites of Nitrogen-Doped Graphene Oxide and Manganese Oxide for Photodynamic Therapy and Magnetic Resonance Imaging. Int J Mol Sci 2022; 23:ijms232315087. [PMID: 36499412 PMCID: PMC9740422 DOI: 10.3390/ijms232315087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Conventional methods of cancer treatment, including chemotherapy and radiotherapy, are associated with multiple side effects. Recently, photodynamic therapy (PDT) has emerged as an effective therapeutic modality for cancer treatment without adversely affecting normal tissue. In this study, we synthesized nitrogen doped graphene (NDG) and conjugated it with Mn3O4 nanoparticles to produce NDG-Mn3O4 nanocomposite with the aim of testing its bimodal performance including PDT and magnetic resonance imaging (MRI). We did not use any linker or binder for conjugation between NDG and Mn3O4, rather they were anchored by a milling process. The results of cell viability analysis showed that NDG-Mn3O4 nanocomposites caused significant cell death under laser irradiation, while control and Mn3O4 nanoparticles showed negligible cell death. We observed increased generation of singlet oxygen after exposure of NDG-Mn3O4 nanocomposites, which was directly proportional to the duration of laser irradiation. The results of MRI showed concentration dependent enhancement of signal intensity with an increasing concentration of NDG-Mn3O4 nanocomposites. In conclusion, NDG-Mn3O4 nanocomposites did not cause any cytotoxicity under physiological conditions. However, they produced significant and dose-dependent cytotoxicity in cancer cells after laser irradiation. NDG-Mn3O4 nanocomposites also exhibited concentration-dependent MRI contrast property, suggesting their possible application for cancer imaging. Further studies are warranted to test the theranostic potential of NDG-Mn3O4 nanocomposites using animal models of cancer.
Collapse
|
4
|
Wang C, Wu W, Zhao C, Liu T, Wang L, Zhu J. Rational design of three-dimensional interlaced frameworks with 2D MXene-Ti3C2Tx and 2D ZnCo bimetallic hydroxide for enhanced sodium-ion capacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Jia Y, Yin G, Lin Y, Ma Y. Recent progress of hierarchical MoS2 nanostructures for electrochemical energy storage. CrystEngComm 2022. [DOI: 10.1039/d1ce01439k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hierarchical MoS2 nanostructures are of increasing importance in energy storage via batteries or supercapacitors. Herein, the various hierarchical MoS2 materials as electrochemical electrode are reviewed in detail by classifying the...
Collapse
|
6
|
Jin R, Wang G, Gao S, Kang H, Chen S. NiS1.03@NiMoS4 nanocrystals encapsulated into the mesoporous carbon microspheres for high performance lithium ion batteries. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Cheng Z, Xiao Y, Wu W, Zhang X, Fu Q, Zhao Y, Qu L. All-pH-Tolerant In-Plane Heterostructures for Efficient Hydrogen Evolution Reaction. ACS NANO 2021; 15:11417-11427. [PMID: 34212730 DOI: 10.1021/acsnano.1c01024] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Generally, electrocatalytic hydrogen evolution reaction (HER) by water splitting is a pH-dependent reaction, which limits the widespread harvesting of hydrogen energy. Herein, we present a simple way for chemical bonding of MoS2 (002) planes and α-MoC {111} planes to form in-plane heterostructures capable of efficient pH-universal HER. Due to the lattice strain from mismatched lattice parameters between α-MoC and MoS2, this catalyst changes the electronic configuration of the MoS2 and thus acquires the favorable proton adsorption and desorption activity, suggested by the platinum (Pt)-like free Gibbs energy. Consequently, only a low 78 mV overpotential is needed to achieve the current density of 10 mA cm-2 in acidic solution along with a favorable Tafel kinetic process with a Tafel slope of 38.7 mV dec-1. Owing to the synergistic interaction between MoS2 (002) planes and α-MoC {111} planes with strong water dissociation activities, this catalyst also exhibits high HER performances beyond that of Pt in neutral and alkaline. This work proves the advances of in-plane heterostructures and illustrates the production of low-cost but highly efficient pH-universal HER catalytic materials, promising for future sustainable hydrogen energy.
Collapse
Affiliation(s)
- Zhihua Cheng
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yukun Xiao
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Wenpeng Wu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xinqun Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Qiang Fu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yang Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Liangti Qu
- Department of Chemistry & Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
8
|
A large area mesh-like MoS2 with an expanded interlayer distance synthesized by one-pot method and lithium storage performance. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Zhang Y, Zhang L, Lv T, Chu PK, Huo K. Two-Dimensional Transition Metal Chalcogenides for Alkali Metal Ions Storage. CHEMSUSCHEM 2020; 13:1114-1154. [PMID: 32150349 DOI: 10.1002/cssc.201903245] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/10/2020] [Indexed: 06/10/2023]
Abstract
On the heels of exacerbating environmental concerns and ever-growing global energy demand, development of high-performance renewable energy-storage and -conversion devices has aroused great interest. The electrode materials, which are the critical components in electrochemical energy storage (EES) devices, largely determine the energy-storage properties, and the development of suitable active electrode materials is crucial to achieve efficient and environmentally friendly EES technologies albeit the challenges. Two-dimensional transition-metal chalcogenides (2D TMDs) are promising electrode materials in alkali metal ion batteries and supercapacitors because of ample interlayer space, large specific surface areas, fast ion-transfer kinetics, and large theoretical capacities achieved through intercalation and conversion reactions. However, they generally suffer from low electronic conductivities as well as substantial volume change and irreversible side reactions during the charge/discharge process, which result in poor cycling stability, poor rate performance, and low round-trip efficiency. In this Review, recent advances of 2D TMDs-based electrode materials for alkali metal-ion energy-storage devices with the focus on lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), potassium-ion batteries (PIBs), high-energy lithium-sulfur (Li-S), and lithium-air (Li-O2 ) batteries are described. The challenges and future directions of 2D TMDs-based electrode materials for high-performance LIBs, SIBs, PIBs, Li-S, and Li-O2 batteries as well as emerging alkali metal-ion capacitors are also discussed.
Collapse
Affiliation(s)
- Yingxi Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, P.R. China
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P.R. China
| | - Liao Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, P.R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, P.R. China
| | - Tu'an Lv
- The Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, No. 947, Heping Avene, Wuhan, 430081, P.R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P.R. China
| | - Kaifu Huo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, No.1037 Luoyu Road, Wuhan, 430074, P.R. China
| |
Collapse
|
10
|
Gao Y, Ru Q, Liu Y, Cheng S, Wei L, Ling FC, Chen F, Hou X. Mosaic Red Phosphorus/MoS
2
Hybrid as an Anode to Boost Potassium‐Ion Storage. ChemElectroChem 2019. [DOI: 10.1002/celc.201901166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yuqing Gao
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials School of Physics and Telecommunication Engineering South China Normal University Guangzhou 510006 P. R. China
| | - Qiang Ru
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials School of Physics and Telecommunication Engineering South China Normal University Guangzhou 510006 P. R. China
| | - Yang Liu
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials School of Physics and Telecommunication Engineering South China Normal University Guangzhou 510006 P. R. China
| | - Shikun Cheng
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials School of Physics and Telecommunication Engineering South China Normal University Guangzhou 510006 P. R. China
| | - Li Wei
- School of Chemical and Biomolecular Engineering The University of Sydney Australia
| | | | - Fuming Chen
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials School of Physics and Telecommunication Engineering South China Normal University Guangzhou 510006 P. R. China
| | - Xianhua Hou
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials School of Physics and Telecommunication Engineering South China Normal University Guangzhou 510006 P. R. China
| |
Collapse
|
11
|
Zoller F, Luxa J, Bein T, Fattakhova-Rohlfing D, Bouša D, Sofer Z. Flexible freestanding MoS 2-based composite paper for energy conversion and storage. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1488-1496. [PMID: 31431861 PMCID: PMC6664410 DOI: 10.3762/bjnano.10.147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/11/2019] [Indexed: 05/20/2023]
Abstract
The construction of flexible electrochemical devices for energy storage and generation is of utmost importance in modern society. In this article, we report on the synthesis of flexible MoS2-based composite paper by high-energy shear force milling and simple vacuum filtration. This composite material combines high flexibility, mechanical strength and good chemical stability. Chronopotentiometric charge-discharge measurements were used to determine the capacitance of our paper material. The highest capacitance achieved was 33 mF·cm-2 at a current density of 1 mA·cm-2, demonstrating potential application in supercapacitors. We further used the material as a cathode for the hydrogen evolution reaction (HER) with an onset potential of approximately -0.2 V vs RHE. The onset potential was even lower (approximately -0.1 V vs RHE) after treatment with n-butyllithium, suggesting the introduction of new active sites. Finally, a potential use in lithium ion batteries (LIB) was examined. Our material can be used directly without any binder, additive carbon or copper current collector and delivers specific capacity of 740 mA·h·g-1 at a current density of 0.1 A·g-1. After 40 cycles at this current density the material still reached a capacity retention of 91%. Our findings show that this composite material could find application in electrochemical energy storage and generation devices where high flexibility and mechanical strength are desired.
Collapse
Affiliation(s)
- Florian Zoller
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München (LMU Munich), Geschwister-Scholl-Platz 1, 80539 Munich, Germany
- Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
| | - Jan Luxa
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München (LMU Munich), Geschwister-Scholl-Platz 1, 80539 Munich, Germany
| | - Dina Fattakhova-Rohlfing
- Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-1) Materials Synthesis and Processing, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Daniel Bouša
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
12
|
Huang L, He Z, Guo J, Pei S, Shao H, Wang J. Self‐Assembled Three‐Dimensional Graphene Aerogel with an Interconnected Porous Structure for Lithium‐Ion Batteries. ChemElectroChem 2019. [DOI: 10.1002/celc.201900445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liang‐ai Huang
- Department of ChemistryZhejiang University Hangzhou 310027 P.R. China
| | - Zhishun He
- Department of ChemistryZhejiang University Hangzhou 310027 P.R. China
| | - Jianfeng Guo
- Department of ChemistryZhejiang University Hangzhou 310027 P.R. China
| | - Shi‐en Pei
- Department of ChemistryZhejiang University Hangzhou 310027 P.R. China
| | - Haibo Shao
- Department of ChemistryZhejiang University Hangzhou 310027 P.R. China
| | - Jianming Wang
- Department of ChemistryZhejiang University Hangzhou 310027 P.R. China
| |
Collapse
|