1
|
Mohtasham H, Bahari D, Keihan AH, Salimi A, Mehrebani RT, Rahimi-Nasrabadi M. Magnetic N-doped carbon derived from mixed ligands MOF as effective electrochemiluminescence coreactor for performance enhancement of SARS-CoV-2 immunosensor. Talanta 2024; 277:126252. [PMID: 38805948 DOI: 10.1016/j.talanta.2024.126252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024]
Abstract
COVID-19 as an infectious disease with rapid transmission speed is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), so, early and accurate diagnostics of COVID-19 is quite challenging. In this work, the selective and sensitive self-enhanced ECL method to detect of SARS-CoV-2 protein was designed with magnetic N-doped carbon derived from dual-ligand metal-organic frameworks (MOF) (CoO@N-C) with the primary and tertiary amino groups as a novel coreactant that covalently combined with Ru(bpy)2(phen-NH2)2+ as electrochemiluminescence (ECL) emitter. Mixed-ligand strategy and selected nitrogen-containing ligands, 4,4',4''-((1,3,5-triazine-2,4,6-triyl) tris-(azanediyl)) tribenzoic acid (H3TATAB) with 2-aminoterephthalic acid (BDC-NH2) were used for synthesis of the proposed MOF. Also, magnetic CoO@N-C with high synergistically charge transfer kinetics and good stability can be used as an effective platform/coreactor on the ITO electrode which load more Ru-complex as signal producing compound and SARS-CoV-2 N protein antibody to increase the sensitivity of the immunosensor. Furthermore, (CoO@N-C) as coreactor improved the ECL signal of the Ru (II)-complex more than 2.1 folds compared to tripropylamine. In view of these competences, the novel "on-off" ECL biosensor performed with great stability and repeatability for detection of SARS-CoV-2 protein, which exhibited a broad linearity from 8 fg. mL-1 to 4 ng. mL-1 (6 order of magnitude) and an ultra-low limit of detection 1.6 fg. mL-1. Finally, this proposed method was successfully applied to detect of SARS-CoV-2 N protein in serum sample with satisfactory results, indicating the proposed immunosensor has the potential for quick analysis of SARS-CoV-2.
Collapse
Affiliation(s)
- Hamed Mohtasham
- Student Research Committee, Baqiytallah University of Medical Sciences, Tehran, Iran
| | - Delnia Bahari
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Amir Homayoun Keihan
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Reza Tarbiat Mehrebani
- Organic and Nano Group (ONG), Department of Chemistry, University of Maragheh, 55181-83111 Maragheh, Iran
| | - Mehdi Rahimi-Nasrabadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Peng Y, Wang ZG, Qi BP, Liu C, Tang B, Zhang ZL, Liu SL, Pang DW. Carboxyl groups on carbon nanodots as co-reactant sites for anodic electrochemiluminescence of tris(2,2-bipyridine)ruthenium(II). J Colloid Interface Sci 2024; 653:1256-1263. [PMID: 37797501 DOI: 10.1016/j.jcis.2023.09.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Carbon nanodots (C-dots) with good biocompatibility have been extensively utilized as co-reactants for electrochemiluminescence (ECL) of the tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)32+) system. However, the ECL intensity of this system is still relatively low and the mechanism of C-dots as co-reactants remains unclear, which greatly limits its further application in bio-analysis. In this work, we revealed that the carboxyl groups on C-dots are co-reactant sites for Ru(bpy)32+ ECL by systematically investigating the contribution of carboxyl, hydroxyl and carbonyl groups on the surface of C-dots to the ECL intensity. Further treatment with hydrogen peroxide to increase the carboxyl-group content on C-dots resulted in a 10-fold increase in ECL intensity over the original Ru(bpy)32+/C-dots system. This work provides new insights for the rational design of ECL systems with C-dots as co-reactants and offers new chances for further applications of C-dots in the field of ECL.
Collapse
Affiliation(s)
- Ying Peng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for New Organic Matter, Frontiers Science Center for Cell Responses, School of Medicine, and Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, PR China
| | - Bao-Ping Qi
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, PR China
| | - Cui Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Bo Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for New Organic Matter, Frontiers Science Center for Cell Responses, School of Medicine, and Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, PR China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for New Organic Matter, Frontiers Science Center for Cell Responses, School of Medicine, and Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
3
|
Mwanza C, Ding SN. Newly Developed Electrochemiluminescence Based on Bipolar Electrochemistry for Multiplex Biosensing Applications: A Consolidated Review. BIOSENSORS 2023; 13:666. [PMID: 37367031 PMCID: PMC10295983 DOI: 10.3390/bios13060666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Recently, there has been an upsurge in the extent to which electrochemiluminescence (ECL) working in synergy with bipolar electrochemistry (BPE) is being applied in simple biosensing devices, especially in a clinical setup. The key objective of this particular write-up is to present a consolidated review of ECL-BPE, providing a three-dimensional perspective incorporating its strengths, weaknesses, limitations, and potential applications as a biosensing technique. The review encapsulates critical insights into the latest and novel developments in the field of ECL-BPE, including innovative electrode designs and newly developed, novel luminophores and co-reactants employed in ECL-BPE systems, along with challenges, such as optimization of the interelectrode distance, electrode miniaturization and electrode surface modification for enhancing sensitivity and selectivity. Moreover, this consolidated review will provide an overview of the latest, novel applications and advances made in this field with a bias toward multiplex biosensing based on the past five years of research. The studies reviewed herein, indicate that the technology is rapidly advancing at an outstanding purse and has an immense potential to revolutionize the general field of biosensing. This perspective aims to stimulate innovative ideas and inspire researchers alike to incorporate some elements of ECL-BPE into their studies, thereby steering this field into previously unexplored domains that may lead to unexpected, interesting discoveries. For instance, the application of ECL-BPE in other challenging and complex sample matrices such as hair for bioanalytical purposes is currently an unexplored area. Of great significance, a substantial fraction of the content in this review article is based on content from research articles published between the years 2018 and 2023.
Collapse
Affiliation(s)
- Christopher Mwanza
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Chemistry Department, University of Zambia, Lusaka 10101, Zambia
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Tong X, Jin S, Zhao Y, Gai Y, E Y, Li D. Facile nano-free electrochemiluminescence biosensor for detection of sulphamethoxazole via tris(2,2'-bipyridyl)ruthenium(II) and N-methyl pyrrolidone recognition. IET Nanobiotechnol 2021; 14:167-171. [PMID: 32433035 DOI: 10.1049/iet-nbt.2019.0257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The electrochemiluminescence (ECL) system based on the ruthenium complex has become a powerful tool in the field of analytical chemistry. However, the non-aqueous ECL luminescence system, which does not involve complex nano-modification, has not been widely used for the determination of analytes. In this study, N-methyl pyrrolidone was selected as the solvent, and it could also act as a co-reactant of [inline-formula removed]. Based on this, a simple ECL system without nanomaterials was established. Strong ECL was generated. Furthermore, a quenching effect between the excited state of [inline-formula removed] and sulphamethoxazole (SMZ) was observed. Based on this, a sensitive ECL sensor for detecting SMZ is constructed. A linear relationship between ECL signal quenching intensity (ΔI) and the logarithm of SMZ concentration (log C) in the concentration range of 1 × 10-7-1 × 10-5 mol/l is obtained. The limit of detection is as low as 3.33 × 10-9 mol/l. The method has been applied to the detection of SMZ in tap water samples with different concentration levels with satisfactory results, and the recovery was 95.3-102.6%.
Collapse
Affiliation(s)
- Xiyuan Tong
- Department of Physical Chemistry, School of Pharmaceutical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Shiyao Jin
- Department of Physical Chemistry, School of Pharmaceutical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Yingdai Zhao
- Department of Physical Chemistry, School of Pharmaceutical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Yue Gai
- Department of Physical Chemistry, School of Pharmaceutical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Yifeng E
- Department of Physical Chemistry, School of Pharmaceutical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China.
| | - Dan Li
- Department of Physical Chemistry, School of Pharmaceutical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, People's Republic of China
| |
Collapse
|
5
|
Zou R, Teng X, Lin Y, Lu C. Graphitic carbon nitride-based nanocomposites electrochemiluminescence systems and their applications in biosensors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116054] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Cao SP, Luo QX, Li YJ, Liang RP, Qiu JD. Gold nanoparticles decorated carbon nitride nanosheets as a coreactant regulate the conversion of the dual-potential electrochemiluminescence of Ru(bpy)32+ for Hg2+ detection. Chem Commun (Camb) 2020; 56:5625-5628. [DOI: 10.1039/d0cc01311k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dual-potential electrochemiluminescence of Ru(bpy)32+ for Hg2+ assay using Au–g-C3N4 NSs as on-electrode coreactant.
Collapse
Affiliation(s)
- Shu-Ping Cao
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Qiu-Xia Luo
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Ya-Jie Li
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Ru-Ping Liang
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Jian-Ding Qiu
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
- Engineering Technology Research Center for Environmental Protection Materials and Equipment of Jiangxi Province
| |
Collapse
|
7
|
Wei J, Zhao P, Chen L, Tian L, Wu H, Dong Y, Chi Y, Zhou S. Electrochemiluminescence for Characterizing the Polymerization Process during Graphitic Carbon Nitride Synthesis. ChemElectroChem 2019; 6:3742-3746. [DOI: 10.1002/celc.201900987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 11/27/2024]
Abstract
AbstractThe physicochemical properties and application performances of graphitic carbon nitride (g‐CN) are highly dependent on its polymerization degree, thus a facile method for screening the polymerization degree is highly desired. Here, electrochemiluminescence (ECL) is creatively employed as an effective tool to achieve this goal. Extension of π‐system and change in pedant groups during g‐CN polymerization process are characterized by g‐CN nanosheets/dissolved oxygen (CNNS/O2) and Ru(bpy)32+/CNNS co‐reactant ECL systems, respectively. Linear intensity enhancement along with positive shift in the onset and peak potentials of cathodic CNNS/O2 ECL, as well as linear intensity decreasing in anodic Ru(bpy)32+/CNNS ECL, are observed during polymerization of dicyandiamide to g‐CN, suggesting the feasibility of ECL on studying the polymerization degree. The ECL method would provide a promising prospect for novel properties exploration and application performances optimization of g‐CN.
Collapse
Affiliation(s)
- Jingjing Wei
- College of Chemical Engineering Huaqiao University Xiamen 361021 P. R China
| | - Panpan Zhao
- College of Chemical Engineering Huaqiao University Xiamen 361021 P. R China
| | - Lichan Chen
- College of Chemical Engineering Huaqiao University Xiamen 361021 P. R China
| | - Libing Tian
- College of Chemical Engineering Huaqiao University Xiamen 361021 P. R China
| | - Haishan Wu
- Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, College of Chemistry Fuzhou University Fuzhou Fujian 350108 P. R China
| | - Yongqiang Dong
- Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, College of Chemistry Fuzhou University Fuzhou Fujian 350108 P. R China
| | - Yuwu Chi
- Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, College of Chemistry Fuzhou University Fuzhou Fujian 350108 P. R China
| | - Shu‐Feng Zhou
- College of Chemical Engineering Huaqiao University Xiamen 361021 P. R China
| |
Collapse
|
8
|
Chen L, Wei J, Chi Y, Zhou S. Tris(2,2’‐bipyridyl)ruthenium(II)‐Nanomaterial Co‐Reactant Electrochemiluminescence. ChemElectroChem 2019. [DOI: 10.1002/celc.201900693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lichan Chen
- College of Chemical EngineeringHuaqiao University Xiamen 361021 P. R. China
| | - Jingjing Wei
- College of Chemical EngineeringHuaqiao University Xiamen 361021 P. R. China
| | - Yuwu Chi
- Key Laboratory for Analytical Science of Food Safety and Biology Ministry of Education, and College of ChemistryFuzhou University Fuzhou 350108 P. R. China
| | - Shu‐Feng Zhou
- College of Chemical EngineeringHuaqiao University Xiamen 361021 P. R. China
| |
Collapse
|