1
|
Wiltshire BD, Alijani M, Sopha H, Pavliňák D, Hromadko L, Zazpe R, Thalluri SM, Kolibalova E, Macak JM, Zarifi MH. Gigahertz-Based Visible Light Detection Enabled via CdS-Coated TiO 2 Nanotube Layers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18379-18390. [PMID: 37010878 DOI: 10.1021/acsami.2c21877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Detection of visible light is a key component in material characterization techniques and often a key component of quality or purity control analyses for health and safety applications. Here in this work, to enable visible light detection at gigahertz frequencies, a planar microwave resonator is integrated with high aspect ratio TiO2 nanotube (TNT) layer-sensitized CdS coating using the atomic layer deposition (ALD) technique. This unique method of visible light detection with microwave-based sensing improves integration of the light detection devices with digital technology. The designed planar microwave resonator sensor was implemented and tested with resonant frequency between 8.2 and 8.4 GHz and a resonant amplitude between -15 and -25 dB, depending on the wavelength of the illuminated light illumination on the nanotubes. The ALD CdS coating sensitized the nanotubes in visible light up to ∼650 nm wavelengths, as characterized by visible spectroscopy. Furthermore, CdS-coated TNT layer integration with the planar resonator sensor allowed for development of a robust microwave sensing platform with improved sensitivity to green and red light (60 and 1300%, respectively) compared to the blank TNT layers. Moreover, the CdS coating of the TNT layer enhanced the sensor's response to light exposure and resulted in shorter recovery times once the light source was removed. Despite having a CdS coating, the sensor was capable of detecting blue and UV light; however, refining the sensitizing layer could potentially enhance its sensitivity to specific wavelengths of light in certain applications.
Collapse
Affiliation(s)
- Benjamin D Wiltshire
- Okanagan MicroElectronics and Gigahertz Applications (OMEGA) Laboratory, School of Engineering, University of British Columbia, Kelowna V1V 1V7, Canada
| | - Mahnaz Alijani
- Okanagan MicroElectronics and Gigahertz Applications (OMEGA) Laboratory, School of Engineering, University of British Columbia, Kelowna V1V 1V7, Canada
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno 61200, Czech Republic
| | - Hanna Sopha
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno 61200, Czech Republic
- Center of Materials and Nanotechnology, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice, Czech Republic
| | - David Pavliňák
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno 61200, Czech Republic
| | - Ludek Hromadko
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno 61200, Czech Republic
- Center of Materials and Nanotechnology, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice, Czech Republic
| | - Raul Zazpe
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno 61200, Czech Republic
- Center of Materials and Nanotechnology, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice, Czech Republic
| | - Sitaramanjaneya M Thalluri
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno 61200, Czech Republic
- Center of Materials and Nanotechnology, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice, Czech Republic
| | - Eva Kolibalova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno 61200, Czech Republic
| | - Jan M Macak
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno 61200, Czech Republic
- Center of Materials and Nanotechnology, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice, Czech Republic
| | - Mohammad H Zarifi
- Okanagan MicroElectronics and Gigahertz Applications (OMEGA) Laboratory, School of Engineering, University of British Columbia, Kelowna V1V 1V7, Canada
| |
Collapse
|
2
|
Liu J, Luo Z, Mao X, Dong Y, Peng L, Sun-Waterhouse D, Kennedy JV, Waterhouse GIN. Recent Advances in Self-Supported Semiconductor Heterojunction Nanoarrays as Efficient Photoanodes for Photoelectrochemical Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204553. [PMID: 36135974 DOI: 10.1002/smll.202204553] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Growth of semiconductor heterojunction nanoarrays directly on conductive substrates represents a promising strategy toward high-performance photoelectrodes for photoelectrochemical (PEC) water splitting. By controlling the growth conditions, heterojunction nanoarrays with different morphologies and semiconductor components can be fabricated, resulting in greatly enhanced light-absorption properties, stabilities, and PEC activities. Herein, recent progress in the development of self-supported heterostructured semiconductor nanoarrays as efficient photoanode catalysts for water oxidation is reviewed. Synthetic methods for the fabrication of heterojunction nanoarrays with specific compositions and structures are first discussed, including templating methods, wet chemical syntheses, electrochemical approaches and chemical vapor deposition (CVD) methods. Then, various heterojunction nanoarrays that have been reported in recent years based on particular core semiconductor scaffolds (e.g., TiO2 , ZnO, WO3 , Fe2 O3 , etc.) are summarized, placing strong emphasis on the synergies generated at the interface between the semiconductor components that can favorably boost PEC water oxidation. Whilst strong progress has been made in recent years to enhance the visible-light responsiveness, photon-to-O2 conversion efficiency and stability of photoanodes based on heterojunction nanoarrays, further advancements in all these areas are needed for PEC water splitting to gain any traction alongside photovoltaic-electrochemical (PV-EC) systems as a viable and cost-effective route toward the hydrogen economy.
Collapse
Affiliation(s)
- Jinlong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Ziyu Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Xichen Mao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yusong Dong
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Lishan Peng
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Dongxiao Sun-Waterhouse
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - John V Kennedy
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
- National Isotope Centre, GNS Science, Lower Hutt, 5010, New Zealand
| | - Geoffrey I N Waterhouse
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| |
Collapse
|
3
|
Lin Z, Yang Z, Huang J. Hierarchical Bi 2WO 6/TiO 2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:745-762. [PMID: 35975179 PMCID: PMC9359189 DOI: 10.3762/bjnano.13.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/21/2022] [Indexed: 06/13/2023]
Abstract
A series of Bi2WO6/TiO2-nanotube (Bi2WO6/TiO2-NT) heterostructured composites were prepared by utilizing natural cellulose (e.g., laboratory filter paper) as the structural template. The obtained nanoarchitectonics, namely Bi2WO6/TiO2-NT nanocomposites, displayed three-dimensionally interwoven structures which replicated the initial cellulose template. The composite Bi2WO6/TiO2-NT nanotubes were formed by TiO2 nanotubes that uniformly anchored with Bi2WO6 nanoparticles of various densities on the surface. The composites exhibited improved photocatalytic activities toward the reduction of Cr(VI) and degradation of rhodamine B under visible light (λ > 420 nm), which were attributed to the uniform anchoring of Bi2WO6 nanoparticles on TiO2 nanotubes, as well as strong mutual effects and well-proportioned formation of heterostructures in between the Bi2WO6 and TiO2 phases. These improvements arose from the cellulose-derived unique structures, leading to an enhanced absorption of visible light together with an accelerated separation and transfer of the photogenerated electron-hole pairs of the nanocomposites, which resulted in increased effective amounts of photogenerated carriers for the photocatalytic reactions. It was demonstrated that the photoinduced electrons dominated the photocatalytic reduction of Cr(VI), while hydroxyl radicals and reactive holes contributed to the photocatalytic degradation of rhodamine B.
Collapse
Affiliation(s)
- Zehao Lin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
- Shenzhen Middle School, Shenzhen, Guangdong 518001, P. R. China
| | - Zhan Yang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Jianguo Huang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| |
Collapse
|
4
|
Wang Y, Chen X, Xiu H, Zhuang H, Li J, Zhou Y, Liu D, Kuang Y. General In Situ Photoactivation Route with IPCE over 80% toward CdS Photoanodes for Photoelectrochemical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104307. [PMID: 34725925 DOI: 10.1002/smll.202104307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Cost-effective photoanodes with remarkable electronic properties are highly demanded for practical photoelectrochemical (PEC) water splitting. The ability to manipulate the surface carrier separation and recombination is pivotal for achieving high PEC performance for water splitting. Here, a facile and economical approach is reported for substantially improving the surface charge separation property of CdS photoanodes through in situ photoactivation, which significantly reduces surface charge recombination through the formation of thiosulfate ion which is favorable to the transfer of photogenerated holes and a uniform nanoporous morphology via the dissolving Cd2+ with phosphate ions on the surface of CdS. The resulting CdS electrodes through scalable particle transfer method exhibit nearly tripled photocurrents, with an incident-photon-to-current conversion efficiency (IPCE) at 480 nm exceeding 80% at 0.6 V versus reversible hydrogen electrode (RHE). And the CdS thin films prepared from chemical bath deposition display quadrupled photocurrents after the stir and PEC activation, with an IPCE of 91.7% at 455 nm and 0.6 V versus RHE. With the suppression of photocorrosion in alkaline borate buffer, the activated photoanodes show great stability for solar hydrogen production at the sacrifice of sulfite. This work brings insights into the design of nanoporous metal sulfide semiconductors for solar water splitting.
Collapse
Affiliation(s)
- Ying Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde, Fujian, 352100, China
| | - Xiuyu Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Hao Xiu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Huanglong Zhuang
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde, Fujian, 352100, China
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of Chemistry and Materials, Ningde Normal University, Ningde, Fujian, 352100, China
| | - Jianming Li
- Petroleum Geology Research and Laboratory Center, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing, 100083, China
| | - Yang Zhou
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Deyu Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Yongbo Kuang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100000, China
| |
Collapse
|
5
|
Murugan C, Ranjithkumar K, Pandikumar A. Interfacial charge dynamics in type-II heterostructured sulfur doped-graphitic carbon nitride/bismuth tungstate as competent photoelectrocatalytic water splitting photoanode. J Colloid Interface Sci 2021; 602:437-451. [PMID: 34139539 DOI: 10.1016/j.jcis.2021.05.179] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/05/2021] [Accepted: 05/29/2021] [Indexed: 11/24/2022]
Abstract
Sluggish charge transfers at the electrode/electrolyte interface and fast recombination of electron-hole pairs limit the photoelectrocatalytic water-splitting ability of the bismuth tungstate (Bi2WO6). To address these issues, sulfur doped-graphitic carbon nitride/bismuth tungstate (S-g-C3N4/Bi2WO6) heterostructured hybrid material with different wt% of S-g-C3N4 were constructed via an ultrasonic approach. The formation of heterostructure offers well-separated electron-hole pairs, thereby improving the charge transfer process, and boosting water oxidation kinetics on the surface of modified electrodes. Electrochemical impedance analysis confirms the rapid charge transfer process and quick electrochemical reaction at the electrode/electrolyte interface, which quenches the charge recombination process. The S-g-C3N4/Bi2WO6 with 3 wt% of S-g-C3N4 photoanode delivers ~43, ~18 and ~2-folds higher applied bias photon-to-current efficiency than S-g-C3N4, Bi2WO6, and g-C3N4/Bi2WO6 (3 wt% of g-C3N4) photoanodes, respectively. From the combination of UV-Vis, XPS valance band, and Mott-Schottky analysis the plausible band edge positions of the Bi2WO6 and S-g-C3N4 were calculated. Based on the band structure, we have concluded that the S-g-C3N4/Bi2WO6 hybrid photoanode follows a type-II charge transfer mechanism to promote the photoelectrocatalytic water splitting ability.
Collapse
Affiliation(s)
- C Murugan
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K Ranjithkumar
- Central Instrumentation Facility Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - A Pandikumar
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Kong W, Zhang X, Chang B, Guo Y, Li Y, Zhang S, Yang B. TiO
2
Nanorods Co‐decorated with Metal‐Free Carbon Materials for Boosted Photoelectrochemical Water Oxidation. ChemElectroChem 2020. [DOI: 10.1002/celc.202000032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Weiqian Kong
- Department Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional MaterialsHuanghe Science and Technology College Zhengzhou, Henan 450006 China
| | - Xiaofan Zhang
- School of Materials Science and EngineeringDongguan University of Technology Dongguan 523808 China
| | - Binbin Chang
- Department Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional MaterialsHuanghe Science and Technology College Zhengzhou, Henan 450006 China
| | - Yanzhen Guo
- Department Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional MaterialsHuanghe Science and Technology College Zhengzhou, Henan 450006 China
| | - Yipeng Li
- Department Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional MaterialsHuanghe Science and Technology College Zhengzhou, Henan 450006 China
| | - Shouren Zhang
- Department Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional MaterialsHuanghe Science and Technology College Zhengzhou, Henan 450006 China
| | - Baocheng Yang
- Department Henan Provincial Key Laboratory of Nanocomposite and Applications Institute of Nanostructured Functional MaterialsHuanghe Science and Technology College Zhengzhou, Henan 450006 China
| |
Collapse
|
7
|
Jia C, Hu W, Zhang Y, Teng C, Chen Z, Liu J. Facile assembly of a graphitic carbon nitride film at an air/water interface for photoelectrochemical NADH regeneration. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00182a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A graphitic carbon nitride film electrode could be assembled at an air/water interface from nanosheets which exhibits improved photoelectrochemical coenzyme regeneration by further coupling with graphene during the interfacial self-assembly.
Collapse
Affiliation(s)
- Changchao Jia
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Wenjuan Hu
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Yuanyuan Zhang
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Chao Teng
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Zupeng Chen
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- Zürich
- Switzerland
| | - Jian Liu
- College of Materials Science and Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| |
Collapse
|