1
|
Jamagne R, Power MJ, Zhang ZH, Zango G, Gibber B, Leigh DA. Active template synthesis. Chem Soc Rev 2024; 53:10216-10252. [PMID: 39235620 PMCID: PMC11376342 DOI: 10.1039/d4cs00430b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Indexed: 09/06/2024]
Abstract
The active template synthesis of mechanically interlocked molecular architectures exploits the dual ability of various structural elements (metals or, in the case of metal-free active template synthesis, particular arrangements of functional groups) to serve as both a template for the organisation of building blocks and as a catalyst to facilitate the formation of covalent bonds between them. This enables the entwined or threaded intermediate structure to be covalently captured under kinetic control. Unlike classical passive template synthesis, the intercomponent interactions transiently used to promote the assembly typically do not 'live on' in the interlocked product, meaning that active template synthesis can be traceless and used for constructing mechanically interlocked molecules that do not feature strong binding interactions between the components. Since its introduction in 2006, active template synthesis has been used to prepare a variety of rotaxanes, catenanes and knots. Amongst the metal-ion-mediated versions of the strategy, the copper(I)-catalysed alkyne-azide cycloaddition (CuAAC) remains the most extensively used transformation, although a broad range of other catalytic reactions and transition metals also provide effective manifolds. In metal-free active template synthesis, the recent discovery of the acceleration of the reaction of primary amines with electrophiles through the cavity of crown ethers has proved effective for forming an array of rotaxanes without recognition elements, including compact rotaxane superbases, dissipatively assembled rotaxanes and molecular pumps. This Review details the active template concept, outlines its advantages and limitations for the synthesis of interlocked molecules, and charts the diverse set of reactions that have been used with this strategy to date. The application of active template synthesis in various domains is discussed, including molecular machinery, mechanical chirality, catalysis, molecular recognition and various aspects of materials science.
Collapse
Affiliation(s)
- Romain Jamagne
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Martin J Power
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Zhi-Hui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Germán Zango
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Benjamin Gibber
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
2
|
Nandi M, Bej S, Jana T, Ghosh P. From construction to application of a new generation of interlocked molecules composed of heteroditopic wheels. Chem Commun (Camb) 2023. [PMID: 38015500 DOI: 10.1039/d3cc03778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Over the last few decades, research on mechanically interlocked molecules has significantly evolved owing to their unique structural features and interesting properties. A substantial percentage of the reported works have focused on the synthetic strategies, leading to the preparation of functional MIMs for their applications in the chemical, materials, and biomedical sciences. Importantly, various macrocyclic wheels with specific heteroditopicity (including phenanthroline, amide, amine, oxy-ether, isophthalamide, calixarene and triazole) and threading axles (bipyridine, phenanthroline, pyridinium, triazolium, etc.) have been designed to synthesize targeted multifunctional mononuclear/multinuclear pseudorotaxanes, rotaxanes and catenanes. The structural uniqueness of these interlocked systems is advantageous owing to the presence of mechanical bonds with specific three-dimensional cavities. Furthermore, their multi-functionalities and preorganised structural entities exhibit a high potential for versatile applications, like switching, shuttling, dynamic properties, recognition and sensing. In this feature article, we describe some of the most recent advances in the construction and chemical behaviour of a new generation of interlocked molecules, primarily focusing on heteroditopic wheels and their applications in different directions of the modern research area. Furthermore, we outline the future prospects and significant perspectives of the new generation heteroditopic wheel based interlocked molecules in different emerging areas of science.
Collapse
Affiliation(s)
- Mandira Nandi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Somnath Bej
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Tarun Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
3
|
Bej S, Nandi M, Ghosh P. Development of fluorophoric [2]pseudorotaxanes and [2]rotaxane: selective sensing of Zn(II). Org Biomol Chem 2022; 20:7284-7293. [PMID: 36052954 DOI: 10.1039/d2ob01210c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorophoric [2]pseudorotaxanes {NiPR1(ClO4)2-NiPR3(ClO4)2} are synthesized by utilizing newly designed fluorophoric bidentate ligands (L1-L3) and a heteroditopic naphthalene containing macrocycle (NaphMC) with high yields via Ni(II) templation and π-π stacking interactions. Subsequently, a fluorophoric [2]rotaxane (NAPRTX) is established through a Cu(I) catalysed click reaction between an azide terminated pseudorotaxane, {NiPR4(ClO4)2}, which contains the newly designed fluorophoric ligand L4, and alkyne terminated bulky stopper units. All these fluorophoric [2]pseudorotaxanes and the [2]rotaxane were characterized using numerous techniques such as mass spectrometry, NMR, UV/Vis, PL, and elemental analysis, wherever applicable. Furthermore, to investigate the effect of the fluorophoric moieties, the coordinating ability of chelating units, and size and shape of the three dimensional cavity generated by the mechanical bond in the interlocked [2]rotaxane (NAPRTX), we have performed a sensing study of various metal ions. Thus, the interlocked [2]rotaxane is found to have potential as a selective fluorescent sensor for Zn(II) metal ions over other transition, alkali and alkaline earth metal ions, where the 2,2'-bipyridyl arylvinylene moiety of the axle acts as a fluorescence signalling unit.
Collapse
Affiliation(s)
- Somnath Bej
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | - Mandira Nandi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
4
|
Munasinghe VK, Pancholi J, Manawadu D, Zhang Z, Beer PD. Mechanical Bond Enhanced Lithium Halide Ion-Pair Binding by Halogen Bonding Heteroditopic Rotaxanes. Chemistry 2022; 28:e202201209. [PMID: 35621330 PMCID: PMC9541756 DOI: 10.1002/chem.202201209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/10/2022]
Abstract
A family of novel halogen bonding (XB) and hydrogen bonding (HB) heteroditopic [2]rotaxane host systems constructed by active metal template (AMT) methodology, were studied for their ability to cooperatively recognise lithium halide (LiX) ion-pairs. 1 H NMR ion-pair titration experiments in CD3 CN:CDCl3 solvent mixtures revealed a notable "switch-on" of halide anion binding in the presence of a co-bound lithium cation, with rotaxane hosts demonstrating selectivity for LiBr over LiI. The strength of halide binding was shown to greatly increase with increasing number of halogen bond donors integrated into the interlocked cavity, where an all-XB rotaxane was found to be the most potent host for LiBr. DFT calculations corroborated these findings, determining the mode of LiX ion-pair binding. Notably, ion-pair binding was not observed with the corresponding XB/HB macrocycles alone, highlighting the cooperative, heteroditopic, rotaxane axle-macrocycle component mechanical bond effect as an efficient strategy for ion-pair recognition in general.
Collapse
Affiliation(s)
- Vihanga K. Munasinghe
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX13TAUK
| | - Jessica Pancholi
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX13TAUK
| | - Dilhan Manawadu
- Department of ChemistryUniversity of Oxford Physical and Theoretical Chemistry LaboratoryOxfordOX13QZUK
| | - Zongyao Zhang
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX13TAUK
| | - Paul D. Beer
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX13TAUK
| |
Collapse
|
5
|
Nandi M, Bej S, Ghosh P. NDI-integrated rotaxane/catenane and their interactions with anions. Dalton Trans 2022; 51:13507-13514. [PMID: 35997084 DOI: 10.1039/d2dt01908f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complexation of alkali and alkaline earth metal ions with the heteroditopic Phen-ester oxy-ether macrocyclic wheel (PhenMC) is established for the synthesis of interlocked molecular systems. The single crystal X-ray structure of Na-bound PhenMC confirms the hexacoordinated geometry around the Na ion in the macrocycle. Further, Ca-ion-bound PhenMC (Ca-PhenMC) is explored with a fluorophoric azide-terminated NDI (naphthalene diimide) axle (NDIAz) for the synthesis of fluorophoric [2]rotaxane (NDIROT) and [2]catenane (NDICAT) via Cu(I)-catalyzed cycloaddition reaction. Characterizations of these two new interlocked molecular systems are performed by ESI-MS, NMR, UV-vis and PL spectroscopic studies wherever applicable. Moreover, the new molecular systems are explored towards anion sensing applications via colorimetric, UV-vis-NIR, PL and other spectroscopic studies.
Collapse
Affiliation(s)
- Mandira Nandi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | - Somnath Bej
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
6
|
Rashid S, Yoshigoe Y, Saito S. Phenanthroline based rotaxanes: recent developments in syntheses and applications. RSC Adv 2022; 12:11318-11344. [PMID: 35425043 PMCID: PMC9004258 DOI: 10.1039/d2ra01318e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
The advancements in the field of mechanically interlocked molecular systems (MIMs) has concurrently restructured the material chemistry frontiers and provided ample scope to explore new dimensions for applications and diversity creation. Among all these molecular entities, rotaxanes have a special locale and many research groups over the globe have contributed to their current niche in supramolecular chemistry. From refinements for better yielding synthetic strategies to their application oriented designs, this field has come a long way and is well inclined for further developments. In this review, we aim to document the contemporary developments in the synthesis of phenanthroline (phen) based rotaxanes. In addition to providing a comprehensive account of various subtypes of these rotaxanes and their stitching strategies, their applications, wherever discernible, will be duely highlighted.
Collapse
Affiliation(s)
- Showkat Rashid
- Tokyo University of Science, Department of Chemistry Tokyo Japan
| | - Yusuke Yoshigoe
- Tokyo University of Science, Department of Chemistry Tokyo Japan
| | - Shinichi Saito
- Tokyo University of Science, Department of Chemistry Tokyo Japan
| |
Collapse
|
7
|
Bej S, Nandi M, Ghosh P. A Cd(ii) and Zn(ii) selective naphthyl based [2]rotaxane acts as an exclusive Zn(ii) sensor upon further functionalization with pyrene. Dalton Trans 2021; 50:294-303. [PMID: 33300925 DOI: 10.1039/d0dt03645e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new multi-functional [2]rotaxane, ROTX, has been synthesized via a Cu(i) catalysed azide-alkyne cycloaddition reaction between Ni(ii) templated azide terminated pseudorotaxane composed of a naphthalene based heteroditopic wheel, NaphMC, and an alkyne terminated stopper. Subsequently, ROTX has been functionalized with pyrene moieties to develop a bifluorophoric [2]rotaxane, PYROTX, having naphthalene and pyrene moieties. Detailed characterization of these two rotaxanes is performed by utilizing several techniques such as ESI-MS, (1D and 2D) NMR, UV/Vis and PL studies. Comparative metal ion sensing studies of NaphMC (a fluorophoric cyclic receptor), ROTX ([2]rotaxane with a naphthyl fluorophore) and PYROTX ([2]rotaxane having naphthyl and pyrene fluorophores) have been performed to determine the effect of dimensionality/functionalization on the metal ion selectivity. Although NaphMC fails to discriminate between metal ions, ROTX serves as a selective sensor for Zn(ii) and Cd(ii). Importantly, PYROTX shows exclusive selectivity towards Zn(ii) over various transition, alkali and alkaline earth metal ions including Cd(ii).
Collapse
Affiliation(s)
- Somnath Bej
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
| | | | | |
Collapse
|
8
|
Iwamoto T, Miyagawa S, Naito M, Tokunaga Y. Orientation of the α-CD component of [2]rotaxanes affects their specific molecular recognition behaviour. Org Chem Front 2021. [DOI: 10.1039/d0qo01337d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An α-CD component enhanced the anion recognition ability of the urea moiety and the deprotonation of the phenol moiety in the axle component in orientationally isomeric [2]rotaxanes with the OH groups on the wide rim of the α-CD, respectively.
Collapse
Affiliation(s)
- Takuya Iwamoto
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Bunkyo
- Japan
| | - Shinobu Miyagawa
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Bunkyo
- Japan
| | - Masaya Naito
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Bunkyo
- Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering
- Faculty of Engineering
- University of Fukui
- Bunkyo
- Japan
| |
Collapse
|