1
|
Collado L, Pizarro AH, Barawi M, García-Tecedor M, Liras M, de la Peña O'Shea VA. Light-driven nitrogen fixation routes for green ammonia production. Chem Soc Rev 2024. [PMID: 39387285 DOI: 10.1039/d3cs01075a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The global goal for decarbonization of the energy sector and the chemical industry could become a reality by a massive increase in renewable-based technologies. For this clean energy transition, the versatile green ammonia may play a key role in the future as a fossil-free fertilizer, long-term energy storage medium, chemical feedstock, and clean burning fuel for transportation and decentralized power generation. The high energy-intensive industrial ammonia production has triggered researchers to look for a step change in new synthetic approaches powered by renewable energies. This review provides a comprehensive comparison of light-mediated N2 fixation technologies for green ammonia production, including photocatalytic, photoelectrocatalytic, PV-electrocatalytic and photothermocatalytic routes. Since these approaches are still at laboratory scale, we examine the most recent developments and discuss the open challenges for future improvements. Last, we offer a technoeconomic comparison of current and emerging ammonia production technologies, highlighting costs, barriers, recommendations, and potential opportunities for the real development of the next generation of green ammonia solutions.
Collapse
Affiliation(s)
- Laura Collado
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Alejandro H Pizarro
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Mariam Barawi
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Miguel García-Tecedor
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | - Marta Liras
- Photoactivated Processes Unit, IMDEA Energy Institute, Móstoles, Madrid 28935, Spain.
| | | |
Collapse
|
2
|
Tort R, Bagger A, Westhead O, Kondo Y, Khobnya A, Winiwarter A, Davies BJV, Walsh A, Katayama Y, Yamada Y, Ryan MP, Titirici MM, Stephens IEL. Searching for the Rules of Electrochemical Nitrogen Fixation. ACS Catal 2023; 13:14513-14522. [PMID: 38026818 PMCID: PMC10660346 DOI: 10.1021/acscatal.3c03951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Li-mediated ammonia synthesis is, thus far, the only electrochemical method for heterogeneous decentralized ammonia production. The unique selectivity of the solid electrode provides an alternative to one of the largest heterogeneous thermal catalytic processes. However, it is burdened with intrinsic energy losses, operating at a Li plating potential. In this work, we survey the periodic table to understand the fundamental features that make Li stand out. Through density functional theory calculations and experimentation on chemistries analogous to lithium (e.g., Na, Mg, Ca), we find that lithium is unique in several ways. It combines a stable nitride that readily decomposes to ammonia with an ideal solid electrolyte interphase, balancing reagents at the reactive interface. We propose descriptors based on simulated formation and binding energies of key intermediates and further on hard and soft acids and bases (HSAB principle) to generalize such features. The survey will help the community toward electrochemical systems beyond Li for nitrogen fixation.
Collapse
Affiliation(s)
- Romain Tort
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Alexander Bagger
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
- Department
of Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Olivia Westhead
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Yasuyuki Kondo
- Osaka
University, SANKEN (The Institute of Scientific and Industrial Research),
Mihogaoka, Osaka, Ibaraki 567-0047, Japan
| | - Artem Khobnya
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Anna Winiwarter
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | | | - Aron Walsh
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | - Yu Katayama
- Osaka
University, SANKEN (The Institute of Scientific and Industrial Research),
Mihogaoka, Osaka, Ibaraki 567-0047, Japan
| | - Yuki Yamada
- Osaka
University, SANKEN (The Institute of Scientific and Industrial Research),
Mihogaoka, Osaka, Ibaraki 567-0047, Japan
| | - Mary P. Ryan
- Department
of Materials, Imperial College London, London SW7 2AZ, U.K.
| | | | | |
Collapse
|
3
|
Zhang W, Zhan S, Xiao J, Petit T, Schlesiger C, Mellin M, Hofmann JP, Heil T, Müller R, Leopold K, Oschatz M. Coordinative Stabilization of Single Bismuth Sites in a Carbon-Nitrogen Matrix to Generate Atom-Efficient Catalysts for Electrochemical Nitrate Reduction to Ammonia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302623. [PMID: 37544912 PMCID: PMC10558634 DOI: 10.1002/advs.202302623] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Electrochemical nitrate reduction to ammonia powered by renewable electricity is not only a promising alternative to the established energy-intense and non-ecofriendly Haber-Bosch reaction for ammonia generation but also a future contributor to the ever-more important denitrification schemes. Nevertheless, this reaction is still impeded by the lack of understanding for the underlying reaction mechanism on the molecular scale which is necessary for the rational design of active, selective, and stable electrocatalysts. Herein, a novel single-site bismuth catalyst (Bi-N-C) for nitrate electroreduction is reported to produce ammonia with maximum Faradaic efficiency of 88.7% and at a high rate of 1.38 mg h-1 mgcat -1 at -0.35 V versus reversible hydrogen electrode (RHE). The active center (described as BiN2 C2 ) is uncovered by detailed structural analysis. Coupled density functional theory calculations are applied to analyze the reaction mechanism and potential rate-limiting steps for nitrate reduction based on the BiN2 C2 model. The findings highlight the importance of model catalysts to utilize the potential of nitrate reduction as a new-generation nitrogen-management technology based on the construction of efficient active sites.
Collapse
Affiliation(s)
- Wuyong Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang ProvinceQianwan Institute of CNITECHNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201P. R. China
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Institute for Technical Chemistry and Environmental ChemistryFriedrich‐Schiller‐University JenaPhilosophenweg 7a07743JenaGermany
| | - Shaoqi Zhan
- Department of Chemistry‐BMCUppsala UniversityBMC Box 576UppsalaS‐751 23Sweden
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3QZUK
| | - Jie Xiao
- Helmholtz‐Zentrum Berlin für Materialien und Energie GmbHAlbert‐Einstein‐Straße 1512489BerlinGermany
| | - Tristan Petit
- Helmholtz‐Zentrum Berlin für Materialien und Energie GmbHAlbert‐Einstein‐Straße 1512489BerlinGermany
| | - Christopher Schlesiger
- Institute for Optics and Atomic PhysicsTechnische Universität BerlinHardenbergstr. 3610623BerlinGermany
| | - Maximilian Mellin
- Surface Science LaboratoryDepartment of Materials and Earth SciencesTechnical University of DarmstadtOtto‐Berndt‐Straße 364287DarmstadtGermany
| | - Jan P. Hofmann
- Surface Science LaboratoryDepartment of Materials and Earth SciencesTechnical University of DarmstadtOtto‐Berndt‐Straße 364287DarmstadtGermany
| | - Tobias Heil
- Max Planck Institute of Colloids and InterfacesDepartment of Colloid ChemistryAm Mühlenberg 114476PotsdamGermany
| | - Riccarda Müller
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Kerstin Leopold
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert‐Einstein‐Allee 1189081UlmGermany
| | - Martin Oschatz
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Institute for Technical Chemistry and Environmental ChemistryFriedrich‐Schiller‐University JenaPhilosophenweg 7a07743JenaGermany
| |
Collapse
|
4
|
Zhang YZ, Li PH, Ren YN, He Y, Zhang CX, Hu J, Cao XQ, Leung MKH. Metal-Based Electrocatalysts for Selective Electrochemical Nitrogen Reduction to Ammonia. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2580. [PMID: 37764608 PMCID: PMC10535433 DOI: 10.3390/nano13182580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Ammonia (NH3) plays a significant role in the manufacture of fertilizers, nitrogen-containing chemical production, and hydrogen storage. The electrochemical nitrogen reduction reaction (e-NRR) is an attractive prospect for achieving clean and sustainable NH3 production, under mild conditions driven by renewable energy. The sluggish cleavage of N≡N bonds and poor selectivity of e-NRR are the primary challenges for e-NRR, over the competitive hydrogen evolution reaction (HER). The rational design of e-NRR electrocatalysts is of vital significance and should be based on a thorough understanding of the structure-activity relationship and mechanism. Among the various explored e-NRR catalysts, metal-based electrocatalysts have drawn increasing attention due to their remarkable performances. This review highlighted the recent progress and developments in metal-based electrocatalysts for e-NRR. Different kinds of metal-based electrocatalysts used in NH3 synthesis (including noble-metal-based catalysts, non-noble-metal-based catalysts, and metal compound catalysts) were introduced. The theoretical screening and the experimental practice of rational metal-based electrocatalyst design with different strategies were systematically summarized. Additionally, the structure-function relationship to improve the NH3 yield was evaluated. Finally, current challenges and perspectives of this burgeoning area were provided. The objective of this review is to provide a comprehensive understanding of metal-based e-NRR electrocatalysts with a focus on enhancing their efficiency in the future.
Collapse
Affiliation(s)
- Yi-Zhen Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.-Z.Z.)
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Peng-Hui Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.-Z.Z.)
| | - Yi-Nuo Ren
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.-Z.Z.)
| | - Yun He
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430024, China
| | - Cheng-Xu Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jue Hu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiao-Qiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.-Z.Z.)
| | - Michael K. H. Leung
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Faqeeh AH, Symes MD. A Standard Electrolyzer Test Cell Design for Evaluating Catalysts and Cell Components for Anion Exchange Membrane Water Electrolysis. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
6
|
The role of HBA structure of deep eutectic solvents consisted of ethylene glycol and chlorides of a choline family for improving the ammonia capture performance. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Zhang W, Zhan S, Qin Q, Heil T, Liu X, Hwang J, Ferber TH, Hofmann JP, Oschatz M. Electrochemical Generation of Catalytically Active Edge Sites in C 2 N-Type Carbon Materials for Artificial Nitrogen Fixation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204116. [PMID: 36114151 DOI: 10.1002/smll.202204116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The electrochemical nitrogen reduction reaction (NRR) to ammonia (NH3 ) is a potentially carbon-neutral and decentralized supplement to the established Haber-Bosch process. Catalytic activation of the highly stable dinitrogen molecules remains a great challenge. Especially metal-free nitrogen-doped carbon catalysts do not often reach the desired selectivity and ammonia production rates due to their low concentration of NRR active sites and possible instability of heteroatoms under electrochemical potential, which can even contribute to false positive results. In this context, the electrochemical activation of nitrogen-doped carbon electrocatalysts is an attractive, but not yet established method to create NRR catalytic sites. Herein, a metal-free C2 N material (HAT-700) is electrochemically etched prior to application in NRR to form active edge-sites originating from the removal of terminal nitrile groups. Resulting activated metal-free HAT-700-A shows remarkable catalytic activity in electrochemical nitrogen fixation with a maximum Faradaic efficiency of 11.4% and NH3 yield of 5.86 µg mg-1 cat h-1 . Experimental results and theoretical calculations are combined, and it is proposed that carbon radicals formed during activation together with adjacent pyridinic nitrogen atoms play a crucial role in nitrogen adsorption and activation. The results demonstrate the possibility to create catalytically active sites on purpose by etching labile functional groups prior to NRR.
Collapse
Affiliation(s)
- Wuyong Zhang
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Institute for Technical Chemistry and Environmental Chemistry, Friedrich-Schiller-University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Shaoqi Zhan
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Qing Qin
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Tobias Heil
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Xiyu Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinyeon Hwang
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Thimo H Ferber
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Jan P Hofmann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Martin Oschatz
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Institute for Technical Chemistry and Environmental Chemistry, Friedrich-Schiller-University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
8
|
Centi G, Perathoner S. Redesign chemical processes to substitute the use of fossil fuels: A viewpoint of the implications on catalysis. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Wang Q, Fan S, Liu L, Wen X, Wu Y, Yao R, Zhao Q, Li J, Liu G. Boosting electrochemical nitrogen reduction to ammonia with high efficiency using a LiNb 3O 8 electrocatalyst in neutral media. Dalton Trans 2021; 51:1131-1136. [PMID: 34939636 DOI: 10.1039/d1dt03284d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nitrogen reduction reaction (NRR) has great potential as a method to replace the industrial Haber-Bosch process for ammonia synthesis. Nevertheless, the efficiency of the NRR is mainly dependent on the rational design of highly efficient and active electrocatalysts on account of the high energy of N2 and HER as a competitive reaction. Herein, a simple solid-phase synthesis method is adopted to design and synthesize a LiNb3O8 (LNO) electrocatalyst, which proves that the synergistic effect of electron-rich Nb and Li elements can effectively improve the NRR activity of commercial Nb2O5 and Li2CO3. The resultant LNO electrocatalyst presents an ammonia yield rate of 7.85 μg h-1 mgcat.-1 with a faradaic efficiency of 82.83% at -0.4 V vs. RHE under ambient conditions, which are much higher than those of commercial Nb2O5 (1.67 μg h-1 mgcat.-1, 13.51%) and Li2CO3 (1.93 μg h-1 mgcat.-1, 8.41%). Detailed characterizations demonstrate that the obtained LNO electrocatalyst has a larger specific surface area of electrochemical activity and more active sites to promote the activity of the NRR. Moreover, the synergistic effect of Li and Nb elements greatly improves the hydrophobicity of the material, which is more conducive to the occurrence of the NRR. This work highlights the enormous potential of the LNO electrocatalyst with a hydrophobic surface and easy activation of NN for highly efficient ammonia synthesis under ambient conditions.
Collapse
Affiliation(s)
- Qi Wang
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China.
| | - Shuhui Fan
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China.
| | - Leran Liu
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China.
| | - Xiaojiang Wen
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China.
| | - Yun Wu
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China.
| | - Rui Yao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China.
| | - Qiang Zhao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China.
| | - Jinping Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China.
| | - Guang Liu
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, PR China.
| |
Collapse
|
10
|
Centi G, Perathoner S. Nanocarbon for Energy Material Applications: N 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007055. [PMID: 33682312 DOI: 10.1002/smll.202007055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Nanocarbons are an important class of energy materials and one relevant application is for the nitrogen reduction reaction, i.e., the direct synthesis of NH3 from N2 and H2 O via photo- and electrocatalytic approaches. Ammonia is also a valuable energy or hydrogen vector. This perspective paper analyses developments in the field, limiting discussion to nanocarbon-based electrodes. These aspects are discussed: i) active sites related to charge density differences on C atoms associated to defects/strains, ii) doping with heteroatoms, iii) introduction of isolated metal ions, iv) creation and in situ dynamics of metal oxide(hydroxide)/nanocarbon boundaries, and v) nanocarbon characteristics to control the interface. Discussion is focused on the performances and mechanistic aspects. Aim is not a systematic state-of-the-art report but to highlight the need to use a different perspective in studying this challenging reaction by using selected papers. Notwithstanding the large differences in the proposed nature of the active sites, fall all within a restricted range of performances, far from the targets. A holistic approach is emphasized to make a breakthrough advance.
Collapse
Affiliation(s)
- Gabriele Centi
- Departments ChiBioFarAm and MIFT, University of Messina and ERIC aisbl, V.le F. Stagno D'Alcontres 31, Messina, 98166, Italy
| | - Siglinda Perathoner
- Departments ChiBioFarAm and MIFT, University of Messina and ERIC aisbl, V.le F. Stagno D'Alcontres 31, Messina, 98166, Italy
| |
Collapse
|
11
|
Wang R, He C, Chen W, Fu L, Zhao C, Huo J, Sun C. Design strategies of two-dimensional metal-organic frameworks toward efficient electrocatalysts for N 2 reduction: cooperativity of transition metals and organic linkers. NANOSCALE 2021; 13:19247-19254. [PMID: 34787144 DOI: 10.1039/d1nr06366a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) serve as emerging electrocatalysts due to their high conductivity, chemical tunability, and accessibility of active sites. We herein proposed a series of 2D MOFs with different metal atoms and organic linkers with the formula M3C12X12 (M = Cr, Mo, and W; X = NH, O, S, and Se) to design efficient nitrogen reduction reaction (NRR) electrocatalysts. Our theoretical calculations showed that metal atoms in M3C12X12 can efficiently capture and activate N2 molecules. Among these candidates, W3C12X12 (X = O, S, and Se) show the best NRR performance due to their high activity and selectivity as well as low limiting potential (-0.59 V, -0.14 V, and -0.01 V, respectively). Moreover, we proposed a d-band center descriptor strategy to screen out the high activity and selectivity of M3C12X12 for the NRR. Therefore, our work not only demonstrates a class of promising electrocatalysts for the NRR but also provides a strategy for further predicting the catalytic activity of 2D MOFs.
Collapse
Affiliation(s)
- Ran Wang
- Institute of Environmental and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Chaozheng He
- Institute of Environmental and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Weixing Chen
- Institute of Environmental and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Ling Fu
- College of Resources and Environmental Engineering, Tianshui Normal University, Tianshui 741001, China
| | - Chenxu Zhao
- Institute of Environmental and Energy Catalysis, Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Jinrong Huo
- School of Sciences, Xi'an Technological University, Xi'an, Shaanxi 710021, China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Faculty of Science Engineering & Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122 Australia
| |
Collapse
|
12
|
Wu Q, Yu B, Deng Z, Li T, Li H, Jia B, Li P, Sun W, Song XM, Sun Y, Ma T. Synergy of Bi 2 O 3 and RuO 2 Nanocatalysts for Low-Overpotential and Wide pH-Window Electrochemical Ammonia Synthesis. Chemistry 2021; 27:17395-17401. [PMID: 34647375 DOI: 10.1002/chem.202103143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Indexed: 11/12/2022]
Abstract
Electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions is still seriously impeded by the inferior NH3 yield and low Faradaic efficiency, especially at low overpotentials. Herein, we report the synthesis of nano-sized RuO2 and Bi2 O3 particles grown on functionalized exfoliated graphene (FEG) through in situ electrodeposition, denoted as RuO2 -Bi2 O3 /FEG. The prepared self-supporting RuO2 -Bi2 O3 /FEG hybrid with a Bi mass loading of 0.70 wt% and Ru mass loading of 0.04 wt% shows excellent NRR performance at low overpotentials in acidic, neutral and alkaline electrolytes. It achieves a large NH3 yield of 4.58±0.16 μgNH3 h-1 cm-2 with a high Faradaic efficiency of 14.6 % at -0.2 V versus reversible hydrogen electrode in 0.1 M Na2 SO4 electrolyte. This performance benefits from the synergistic effect between Bi2 O3 and RuO2 which respectively have a fairly strong interaction of Bi 6p orbitals with the N 2p band and abundant supply of *H, as well as the binder-free characteristic and the convenient electron transfer via graphene nanosheets. This work highlights a new electrocatalyst design strategy that combines transition and main-group metal elements, which may provide some inspirations for designing low-cost and high-performance NRR electrocatalysts in the future.
Collapse
Affiliation(s)
- Qiaoling Wu
- College of Chemistry, Institute of Clean Energy Chemistry Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, Liaoning University, Shenyang, 110036, P. R. China
| | - Bing Yu
- School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, P. R. China
| | - Zizhao Deng
- College of Chemistry, Institute of Clean Energy Chemistry Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, Liaoning University, Shenyang, 110036, P. R. China
| | - Tianyan Li
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hui Li
- College of Chemistry, Institute of Clean Energy Chemistry Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, Liaoning University, Shenyang, 110036, P. R. China
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Peng Li
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xi-Ming Song
- College of Chemistry, Institute of Clean Energy Chemistry Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, Liaoning University, Shenyang, 110036, P. R. China
| | - Ying Sun
- College of Chemistry, Institute of Clean Energy Chemistry Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, Liaoning University, Shenyang, 110036, P. R. China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
13
|
Preparation and functionalization of free-standing nitrogen-doped carbon-based catalyst electrodes for electrocatalytic N2 fixation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Wu X, He X, Li Z, Yin F. Cerium Zirconium Solid Solution with High Faradaic Efficiency for Electrochemical Nitrogen Reduction Reaction under Ambient Condition. ChemElectroChem 2021. [DOI: 10.1002/celc.202101060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiang Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 P. R. China
| | - Xiaobo He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 P. R. China
| | - Zhichun Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 P. R. China
| | - Fengxiang Yin
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering Changzhou University Changzhou 213164 P. R. China
| |
Collapse
|
15
|
Mallamace D, Papanikolaou G, Perathoner S, Centi G, Lanzafame P. Comparing Molecular Mechanisms in Solar NH 3 Production and Relations with CO 2 Reduction. Int J Mol Sci 2020; 22:E139. [PMID: 33375617 PMCID: PMC7795446 DOI: 10.3390/ijms22010139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Molecular mechanisms for N2 fixation (solar NH3) and CO2 conversion to C2+ products in enzymatic conversion (nitrogenase), electrocatalysis, metal complexes and plasma catalysis are analyzed and compared. It is evidenced that differently from what is present in thermal and plasma catalysis, the electrocatalytic path requires not only the direct coordination and hydrogenation of undissociated N2 molecules, but it is necessary to realize features present in the nitrogenase mechanism. There is the need for (i) a multi-electron and -proton simultaneous transfer, not as sequential steps, (ii) forming bridging metal hydride species, (iii) generating intermediates stabilized by bridging multiple metal atoms and (iv) the capability of the same sites to be effective both in N2 fixation and in COx reduction to C2+ products. Only iron oxide/hydroxide stabilized at defective sites of nanocarbons was found to have these features. This comparison of the molecular mechanisms in solar NH3 production and CO2 reduction is proposed to be a source of inspiration to develop the next generation electrocatalysts to address the challenging transition to future sustainable energy and chemistry beyond fossil fuels.
Collapse
Affiliation(s)
| | | | | | - Gabriele Centi
- Departments ChiBioFarAm and MIFT, University of Messina, ERIC aisbl, INSTM/CASPE, V. le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (D.M.); (G.P.); (S.P.)
| | - Paola Lanzafame
- Departments ChiBioFarAm and MIFT, University of Messina, ERIC aisbl, INSTM/CASPE, V. le F. Stagno D’Alcontres 31, 98166 Messina, Italy; (D.M.); (G.P.); (S.P.)
| |
Collapse
|
16
|
Sun Y, Deng Z, Song XM, Li H, Huang Z, Zhao Q, Feng D, Zhang W, Liu Z, Ma T. Bismuth-Based Free-Standing Electrodes for Ambient-Condition Ammonia Production in Neutral Media. NANO-MICRO LETTERS 2020; 12:133. [PMID: 34138093 PMCID: PMC7770657 DOI: 10.1007/s40820-020-00444-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/10/2020] [Indexed: 05/03/2023]
Abstract
Electrocatalytic nitrogen reduction reaction is a carbon-free and energy-saving strategy for efficient synthesis of ammonia under ambient conditions. Here, we report the synthesis of nanosized Bi2O3 particles grown on functionalized exfoliated graphene (Bi2O3/FEG) via a facile electrochemical deposition method. The obtained free-standing Bi2O3/FEG achieves a high Faradaic efficiency of 11.2% and a large NH3 yield of 4.21 ± 0.14 [Formula: see text] h-1 cm-2 at - 0.5 V versus reversible hydrogen electrode in 0.1 M Na2SO4, better than that in the strong acidic and basic media. Benefiting from its strong interaction of Bi 6p band with the N 2p orbitals, binder-free characteristic, and facile electron transfer, Bi2O3/FEG achieves superior catalytic performance and excellent long-term stability as compared with most of the previous reported catalysts. This study is significant to design low-cost, high-efficient Bi-based electrocatalysts for electrochemical ammonia synthesis.
Collapse
Affiliation(s)
- Ying Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zizhao Deng
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Xi-Ming Song
- Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Hui Li
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Zihang Huang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Qin Zhao
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Daming Feng
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Wei Zhang
- Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Zhaoqing Liu
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Tianyi Ma
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
17
|
Chen S, Perathoner S, Ampelli C, Wei H, Abate S, Zhang B, Centi G. Direct Synthesis of Ammonia from N
2
and H
2
O on Different Iron Species Supported on Carbon Nanotubes using a Gas‐Phase Electrocatalytic Flow Reactor. ChemElectroChem 2020. [DOI: 10.1002/celc.202000514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shiming Chen
- Dept. ChimBioFarAm V.le F. Stagno D'Alcontres 31 98166 Messina Italy
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road 116023 Dalian China
| | | | - Claudio Ampelli
- Dept. ChimBioFarAm V.le F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Hua Wei
- Dept. ChimBioFarAm V.le F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Salvatore Abate
- Dept. ChimBioFarAm V.le F. Stagno D'Alcontres 31 98166 Messina Italy
| | - Bingsen Zhang
- Catalysis and Materials DivisionInstitute of Metal Research Chinese Academy of Sciences (IMR CAS) 72 Wenhua Road 110016 Shenyang China
| | - Gabriele Centi
- Dept. MIFT (Industrial Chemistry)University of Messina, ERIC aisbl and INSTM/CASPE V.le F. Stagno D'Alcontres 31 98166 Messina Italy
| |
Collapse
|