1
|
Gao R, Deng M, Yan Q, Fang Z, Li L, Shen H, Chen Z. Structural Variations of Metal Oxide-Based Electrocatalysts for Oxygen Evolution Reaction. SMALL METHODS 2021; 5:e2100834. [PMID: 34928041 DOI: 10.1002/smtd.202100834] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/21/2021] [Indexed: 06/14/2023]
Abstract
Electrocatalytic oxygen evolution reaction (OER), an important electrode reaction in electrocatalytic and photoelectrochemical cells for a carbon-free energy cycle, has attracted considerable attention in the last few years. Metal oxides have been considered as good candidates for electrocatalytic OER because they can be easily synthesized and are relatively stable during the OER process. However, inevitable structural variations still occur to them due to the complex reaction steps and harsh working conditions of OER, thus impending the further insight into the catalytic mechanism and rational design of highly efficient electrocatalysts. The aim of this review is to disclose the current research progress toward the structural variations of metal oxide-based OER electrocatalysts. The origin of structural variations of metal oxides is discussed. Based on some typical oxides performing OER activity, the external and internal factors that influence the structural stability are summarized and then some general approaches to regulate the structural variation process are provided. Some operando methods are also concluded to monitor the structural variation processes and to identify the final active structure. Additionally, the unresolved problems and challenges are presented in an attempt to get further insight into the mechanism of structural variations and establish a rational structure-catalysis relationship.
Collapse
Affiliation(s)
- Ruiqin Gao
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Meng Deng
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Qing Yan
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Zhenxing Fang
- College of Science and Technology, Ningbo University, 521 Wenwei Road, Ningbo, 315100, P. R. China
| | - Lichun Li
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Roady, Hangzhou, 310032, P. R. China
| | - Haoyu Shen
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| | - Zhengfei Chen
- School of Biological and Chemical Engineering, NingboTech University, No.1 South Qianhu Road, Ningbo, 315100, P. R. China
| |
Collapse
|
2
|
Pala RGS. Should All Electrochemical Energy Materials Be Isomaterially Heterostructured to Optimize Contra and Co-varying Physicochemical Properties? Front Chem 2020; 8:515. [PMID: 32637396 PMCID: PMC7318990 DOI: 10.3389/fchem.2020.00515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/19/2020] [Indexed: 11/13/2022] Open
Abstract
Sustainable energy and chemical/material transformation constrained by limited greenhouse gas generation impose a grand challenge and posit outstanding opportunities to electrochemical material devices. Dramatic advancements in experimental and computational methodologies have captured detailed insights into the working of these material devices at a molecular scale and have brought to light some fundamental constraints that impose bounds on efficiency. We propose that the coupling of molecular events in the material device gives rise to contra-varying or co-varying properties and efficiency improving partial decoupling of such properties can be achieved via introducing engineered heterogeneities. A specific class of engineered heterogeneity is in the form of isomaterial heterostructures comprised of non-native and native polymorphs. The non-native polymorph differs from their native/ground state bulk polymorph in terms of its discrete translational symmetry and we anticipate specific symmetry relationships exist between non-native and native structures that enable the formation of interfaces that enhance efficiency. We present circumstantial evidence and provide speculative mechanisms for such an approach with the hope that a more comprehensive delineation of proposed material design will be undertaken.
Collapse
Affiliation(s)
- Raj Ganesh S Pala
- Department of Chemical Engineering and the Materials Science Programme, Indian Institute of Technology, Kanpur, India
| |
Collapse
|
3
|
Exner KS. Universality in Oxygen Evolution Electrocatalysis: High‐Throughput Screening and a Priori Determination of the Rate‐Determining Reaction Step. ChemCatChem 2020. [DOI: 10.1002/cctc.201902363] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kai S. Exner
- Sofia University Faculty of Chemistry and PharmacyDepartment of Physical Chemistry 1 James Bourchier Avenue 1164 Sofia Bulgaria
| |
Collapse
|
4
|
Exner KS. Overpotential‐Dependent Volcano Plots to Assess Activity Trends in the Competing Chlorine and Oxygen Evolution Reactions. ChemElectroChem 2020. [DOI: 10.1002/celc.202000120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kai S. Exner
- Sofia University Faculty of Chemistry and Pharmacy Department of Physical Chemistry 1 James Bourchier Avenue 1164 Sofia Bulgaria
| |
Collapse
|