1
|
Liu M, Arias-Aranda LR, Li H, Bouffier L, Kuhn A, Sojic N, Salinas G. Wireless Multimodal Light-Emitting Arrays Operating on the Principles of LEDs and ECL. Chemphyschem 2024; 25:e202400133. [PMID: 38624189 DOI: 10.1002/cphc.202400133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Electrochemistry-based light-emitting devices have gained considerable attention in different applications such as sensing and optical imaging. In particular, such systems are an interesting alternative for the development of multimodal light-emitting platforms. Herein we designed a multicolor light-emitting array, based on the electrochemical switch-on of light-emitting diodes (LEDs) with a different intrinsic threshold voltage. Thermodynamically and kinetically favored coupled redox reactions, i. e. the oxidation of Mg and the reduction of protons on Pt, act as driving force to power the diodes. Moreover, this system enables to trigger an additional light emission based on the interfacial reductive-oxidation electrochemiluminescence (ECL) mechanism of the Ru(bpy)3 2+/S2O8 2- system. The synergy between these light-emission pathways offers a multimodal platform for the straightforward optical readout of physico-chemical information based on composition changes of the solution.
Collapse
Affiliation(s)
- Miaoxia Liu
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ISM, Site ENSMAC, 33607, Pessac, France
| | - Leslie R Arias-Aranda
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ISM, Site ENSMAC, 33607, Pessac, France
| | - Haidong Li
- College of Chemistry and Chemical Engineering. Yangzhou University, 225002, Yangzhou, China
| | - Laurent Bouffier
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ISM, Site ENSMAC, 33607, Pessac, France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ISM, Site ENSMAC, 33607, Pessac, France
| | - Neso Sojic
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ISM, Site ENSMAC, 33607, Pessac, France
| | - Gerardo Salinas
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, ISM, Site ENSMAC, 33607, Pessac, France
| |
Collapse
|
2
|
Boukarkour Y, Reculusa S, Sojic N, Kuhn A, Salinas G. Wireless Light-Emitting Electrode Arrays for the Evaluation of Electrocatalytic Activity. Chemistry 2024; 30:e202400078. [PMID: 38470292 DOI: 10.1002/chem.202400078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
Water splitting has become a sustainable and clean alternative for hydrogen production. Commonly, the efficiency of such reactions is intimately related to the physico-chemical properties of the catalysts that constitute the electrolyzer. Thus, the development of simple and fast methods to evaluate the electrocatalytic efficiency of an electrolyzer is highly required. In this work, we present an unconventional method based on the combination of bipolar electrochemistry and light-emitting diodes, which allows the evaluation of the electrocatalytic performance of the two types of catalysts, composing an electrolyzer, namely for oxygen and hydrogen evolution reactions, respectively. The integrated light emission of the diode acts as an optical readout of the electrocatalytic information, which simultaneously depends on the composition of the anode and the cathode. The electrocatalytic activity of Au, Pt, and Ni electrodes, connected to the LED in multiple anode/cathode configurations, towards the water splitting reactions has been evaluated. The efficiency of the electrolyzer can be represented in terms of the onset electric field (ϵonset) for light emission, obtaining variations that are in agreement with data reported with conventional electrochemistry. This work introduces a straightforward method for evaluating electrocatalysts and underscores the importance of material characterization in developing efficient electrolyzers for hydrogen production.
Collapse
Affiliation(s)
| | - Stephane Reculusa
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Gerardo Salinas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| |
Collapse
|
3
|
Lu X, Bao J, Wei Y, Zhang S, Liu W, Wu J. Emerging Roles of Microrobots for Enhancing the Sensitivity of Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2902. [PMID: 37947746 PMCID: PMC10650336 DOI: 10.3390/nano13212902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
To meet the increasing needs of point-of-care testing in clinical diagnosis and daily health monitoring, numerous cutting-edge techniques have emerged to upgrade current portable biosensors with higher sensitivity, smaller size, and better intelligence. In particular, due to the controlled locomotion characteristics in the micro/nano scale, microrobots can effectively enhance the sensitivity of biosensors by disrupting conventional passive diffusion into an active enrichment during the test. In addition, microrobots are ideal to create biosensors with functions of on-demand delivery, transportation, and multi-objective detections with the capability of actively controlled motion. In this review, five types of portable biosensors and their integration with microrobots are critically introduced. Microrobots can enhance the detection signal in fluorescence intensity and surface-enhanced Raman scattering detection via the active enrichment. The existence and quantity of detection substances also affect the motion state of microrobots for the locomotion-based detection. In addition, microrobots realize the indirect detection of the bio-molecules by functionalizing their surfaces in the electrochemical current and electrochemical impedance spectroscopy detections. We pay a special focus on the roles of microrobots with active locomotion to enhance the detection performance of portable sensors. At last, perspectives and future trends of microrobots in biosensing are also discussed.
Collapse
Affiliation(s)
- Xiaolong Lu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; (J.B.); (Y.W.); (S.Z.)
- Biomedical Engineering Fusion Laboratory, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Jinhui Bao
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; (J.B.); (Y.W.); (S.Z.)
- Biomedical Engineering Fusion Laboratory, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Ying Wei
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; (J.B.); (Y.W.); (S.Z.)
- Biomedical Engineering Fusion Laboratory, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Shuting Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; (J.B.); (Y.W.); (S.Z.)
| | - Wenjuan Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China;
| |
Collapse
|
4
|
Liu M, Salinas G, Yu J, Cornet A, Li H, Kuhn A, Sojic N. Endogenous and exogenous wireless multimodal light-emitting chemical devices. Chem Sci 2023; 14:10664-10670. [PMID: 37829015 PMCID: PMC10566513 DOI: 10.1039/d3sc03678b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
Multimodal imaging is a powerful and versatile approach that integrates and correlates multiple optical modalities within a single device. This concept has gained considerable attention due to its potential applications ranging from sensing to medicine. Herein, we develop several wireless multimodal light-emitting chemical systems by coupling two light sources based on different physical principles: electrochemiluminescence (ECL) occurring at the electrode interface and a light-emitting diode (LED) switched on by an electrochemically triggered electron flow. Endogenous (thermodynamically spontaneous redox process) and exogenous (requiring an external power source) bipolar electrochemistry acts as a driving force to trigger both light emissions at different wavelengths. The results presented here interconnect optical imaging and electrochemical reactions, providing a novel and so far unexplored alternative to design autonomous hybrid systems with multimodal and multicolor optical readouts for complex bio-chemical systems.
Collapse
Affiliation(s)
- Miaoxia Liu
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Gerardo Salinas
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Jing Yu
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Antoine Cornet
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Haidong Li
- College of Chemistry and Chemical Engineering, Yangzhou University 225002 Yangzhou China
| | - Alexander Kuhn
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Neso Sojic
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| |
Collapse
|
5
|
Beladi-Mousavi SM, Salinas G, Bouffier L, Sojic N, Kuhn A. Wireless electrochemical light emission in ultrathin 2D nanoconfinements. Chem Sci 2022; 13:14277-14284. [PMID: 36545138 PMCID: PMC9749134 DOI: 10.1039/d2sc04670a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/20/2022] [Indexed: 11/22/2022] Open
Abstract
Spatial confinement of chemical reactions or physical effects may lead to original phenomena and new properties. Here, the generation of electrochemiluminescence (ECL) in confined free-standing 2D spaces, exemplified by surfactant-based air bubbles is reported. For this, the ultrathin walls of the bubbles (typically in the range of 100-700 nm) are chosen as a host where graphene sheets, acting as bipolar ECL-emitting electrodes, are trapped and dispersed. The proposed system demonstrates that the required potential for the generation of ECL is up to three orders of magnitude smaller compared to conventional systems, due to the nanoconfinement of the potential drop. This proof-of-concept study demonstrates the key advantages of a 2D environment, allowing a wireless activation of ECL at rather low potentials, compatible with (bio)analytical systems.
Collapse
Affiliation(s)
| | - Gerardo Salinas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP33607 PessacFrance
| | - Laurent Bouffier
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP33607 PessacFrance
| | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP33607 PessacFrance
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP33607 PessacFrance
| |
Collapse
|
6
|
Salinas G, Beladi-Mousavi SM, Gerasimova L, Bouffier L, Kuhn A. Wireless Imaging of Transient Redox Activity Based on Bipolar Light-Emitting Electrode Arrays. Anal Chem 2022; 94:14317-14321. [PMID: 36190826 DOI: 10.1021/acs.analchem.2c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bipolar electrochemistry (BE) is a wireless electrochemical technique, which enables asymmetric electroactivity on the surface of conducting objects. This technique has been extensively studied for different electrochemical applications, including synthesis, separation, sensing, and surface modification. Here, we employ BE for imaging the transient electrochemical activity of different redox species with high accuracy via an array of light-emitting diodes having different lengths. Such a gradient allows the differentiation of redox systems due to their intrinsic difference in thermodynamic potential and the evaluation of their diffusional behavior based on the intensity of light emission. The result is an instantaneous optical readout of analytical information, equivalent to classic electrochemical scanning techniques, such as linear sweep voltammetry.
Collapse
Affiliation(s)
- Gerardo Salinas
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac, France
| | | | - Liubov Gerasimova
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac, France
| | - Laurent Bouffier
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac, France
| | - Alexander Kuhn
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, 33607 Pessac, France
| |
Collapse
|
7
|
Wang Z, Shang L, Gao Z, Chan KK, Gong C, Wang C, Xu T, Liu T, Feng S, Chen YC. Motor-like microlasers functioning in biological fluids. LAB ON A CHIP 2022; 22:3668-3675. [PMID: 36062924 DOI: 10.1039/d2lc00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microlasers integrated with biological systems have received tremendous attention for their intense light intensity and narrow linewidth recently, serving as a powerful tool for studying complex dynamics and interactions in scattered biological micro-environments. However, manipulation of microlasers with controllable motions and versatile functions remains elusive. Herein, we introduce the concept of motor-like microlasers formed by magnetic-doped liquid crystal droplets, in which the direction and velocity could be controlled by altering internal magnetic nanoparticles or external magnetic fields. Both translational and rotatory motions of the lasing resonator could be continually changed in real-time. Lasing-encoded motors carrying different functions and lasing wavelengths were also achieved. Finally, we demonstrate the potential of motor-like microlasers by functioning as a localized stimulation emission light source to stimulate or illuminate living cells, providing a novel approach for switching on/off light emissions and subcellular imaging. Laser emitting micromotors offer a facile system for precise manipulation of microlasers in biological fluids, providing new insight into the development of programmable on-chip laser devices and laser-emitting intelligent systems.
Collapse
Affiliation(s)
- Ziyihui Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore.
| | - Linwei Shang
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore.
| | - Zehang Gao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai, 200050, China.
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangdong 510150, China
| | - Kok Ken Chan
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore.
| | - Chaoyang Gong
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore.
| | - Chenlu Wang
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore.
| | - Tianhua Xu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Tiegen Liu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai, 200050, China.
| | - Yu-Cheng Chen
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore.
| |
Collapse
|
8
|
Salinas G, Bonetti G, Cirilli R, Benincori T, Kuhn A, Arnaboldi S. Wireless light-emitting device for the determination of chirality in real samples. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Rebeccani S, Zanut A, Santo CI, Valenti G, Paolucci F. A Guide Inside Electrochemiluminescent Microscopy Mechanisms for Analytical Performance Improvement. Anal Chem 2021; 94:336-348. [PMID: 34908412 PMCID: PMC8756390 DOI: 10.1021/acs.analchem.1c05065] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sara Rebeccani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna 40127, Italy
| | - Alessandra Zanut
- Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Claudio Ignazio Santo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna 40127, Italy
| | - Giovanni Valenti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna 40127, Italy
| | - Francesco Paolucci
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna 40127, Italy
| |
Collapse
|
10
|
Salinas G, Arnaboldi S, Bonetti G, Cirilli R, Benincori T, Kuhn A. Hybrid light-emitting devices for the straightforward readout of chiral information. Chirality 2021; 33:875-882. [PMID: 34617330 DOI: 10.1002/chir.23370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/11/2022]
Abstract
Bipolar electrochemistry has gained increasing attention in recent years as an attractive transduction concept in analytical chemistry in general and, more specifically, in the frame of chiral recognition. Herein, we use this concept of wireless electrochemistry, based on the combination of the enantioselective oxidation of a chiral probe with the emission of light from a light-emitting diode (LED), as an alternative for an easy and straightforward readout of the presence of chiral molecules in solution. A hybrid polymer-microelectronic device was designed, using an inherently chiral oligomer, that is, oligo-(3,3'-dibenzothiophene) and a polypyrrole strip as the anode and cathode of a miniaturized LED. The wireless induced redox reactions trigger light emission when the probe with the right chirality is present in solution, whereas no light emission is observed for the opposite enantiomer. The average light intensity shows a linear correlation with the analyte concentration, and the concept opens the possibility to quantify the enantiomeric excess in mixtures of the molecular antipodes.
Collapse
Affiliation(s)
- Gerardo Salinas
- Univ. Bordeaux, ISM CNRS UMR 5255, Bordeaux INP, Pessac, France
| | - Serena Arnaboldi
- Univ. Bordeaux, ISM CNRS UMR 5255, Bordeaux INP, Pessac, France.,Dip. Di Chimica, Univ. degli Studi di Milano, Milan, Italy
| | - Giorgia Bonetti
- Dip. di Scienza e Alta Tecnologia, Univ. degli Studi dell'Insubria, Como, Italy
| | - Roberto Cirilli
- Istituto Superiore di Sanità, Centro Nazionale per il Controllo e la Valutazione dei Farmaci, Rome, Italy
| | - Tiziana Benincori
- Dip. di Scienza e Alta Tecnologia, Univ. degli Studi dell'Insubria, Como, Italy
| | - Alexander Kuhn
- Univ. Bordeaux, ISM CNRS UMR 5255, Bordeaux INP, Pessac, France
| |
Collapse
|
11
|
Pavel IA, Salinas G, Mierzwa M, Arnaboldi S, Garrigue P, Kuhn A. Cooperative Chemotaxis of Magnesium Microswimmers for Corrosion Spotting. Chemphyschem 2021; 22:1321-1325. [PMID: 33939868 DOI: 10.1002/cphc.202100236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/03/2021] [Indexed: 01/02/2023]
Abstract
Numerous artificial micro- and nanomotors, as well as various swimmers have been inspired by living organisms that are able to move in a coordinated manner. Their cooperation has also gained a lot of attention because the resulting clusters are able to adapt to changes in their environment and to perform complex tasks. However, mimicking such a collective behavior remains a challenge. In the present work, magnesium microparticles are used as chemotactic swimmers with pronounced collective features, allowing the gradual formation of macroscopic agglomerates. The formed clusters act like a single swimmer able to follow pH gradients. This dynamic behavior can be used to spot localized corrosion events in a straightforward way. The autonomous docking of the swimmers to the corrosion site leads to the formation of a local protection layer, thus increasing corrosion resistance and triggering partial self-healing.
Collapse
Affiliation(s)
| | - Gerardo Salinas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607, Pessac, France
| | - Maciej Mierzwa
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607, Pessac, France
| | - Serena Arnaboldi
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607, Pessac, France
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607, Pessac, France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607, Pessac, France
| |
Collapse
|