1
|
Webb S, Veliju A, Maroni P, Apfel UP, Happe T, Milton RD. Mesoporous Electrodes Enhance the Electrocatalytic Performance of [FeFe]-Hydrogenase. Angew Chem Int Ed Engl 2024:e202416658. [PMID: 39530332 DOI: 10.1002/anie.202416658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The metalloenzyme [FeFe]-hydrogenase is of interest to future biotechnologies targeting the production of "green" hydrogen (H2). We recently developed a simple two-step functionalized procedure to immobilize the [FeFe]-hydrogenase from Clostridium pasteurianum ("CpI") on mesoporous indium tin oxide (ITO) electrodes to achieve elevated H2 production with high operational stability and current densities of 8 mA cm-2. Here, we use a combination of atomic force microscopy (AFM), scanning electron microscopy (SEM) and electrochemical quartz crystal microbalance (EQCM) to understand how mesoporous ITO stabilizes and activates CpI for electroenzymatic H2 production. Examination of the topography and morphology of the mesoporous ITO surface revealed a hierarchical morphology containing cavities and well-defined nanoparticle agglomerates. Any potential effect of mesoporosity was investigated by comparing the stability and electroenzymatic activity of CpI on mesoporous 'nanoITO' and planar ITO, where we determined that CpI has a higher turnover frequency and adsorbs with greater stability (with respect to electroenzymatic activity over time) to nanoITO surfaces.
Collapse
Affiliation(s)
- Sophie Webb
- Department of Inorganic and Analytical Chemistry, University of Geneva, Faculty of Sciences, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| | - Astrit Veliju
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Germany
| | - Plinio Maroni
- Department of Inorganic and Analytical Chemistry, University of Geneva, Faculty of Sciences, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
| | - Ulf-Peter Apfel
- Inorganic Chemistry 1, Ruhr University Bochum, Germany
- Department of Electrosynthesis, Fraunhofer UMSICHT, Oberhausen, Germany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, Germany
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, University of Geneva, Faculty of Sciences, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| |
Collapse
|
2
|
Gao Y, Wang SJ, Guo Z, Wang YZ, Qu YP, Zhao PH. Covalent versus noncovalent attachments of [FeFe]‑hydrogenase models onto carbon nanotubes for aqueous hydrogen evolution reaction. J Inorg Biochem 2024; 259:112665. [PMID: 39018746 DOI: 10.1016/j.jinorgbio.2024.112665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
In an effort to develop the biomimetic chemistry of [FeFe]‑hydrogenases for catalytic hydrogen evolution reaction (HER) in aqueous environment, we herein report the integrations of diiron dithiolate complexes into carbon nanotubes (CNTs) through three different strategies and compare the electrochemical HER performances of the as-resulted 2Fe2S/CNT hybrids in neutral aqueous medium. That is, three new diiron dithiolate complexes [{(μ-SCH2)2N(C6H4CH2C(O)R)}Fe2(CO)6] (R = N-oxylphthalimide (1), NHCH2pyrene (2), and NHCH2Ph (3)) were prepared and could be further grafted covalently to CNTs via an amide bond (this 2Fe2S/CNT hybrid is labeled as H1) as well as immobilized noncovalently to CNTs via π-π stacking interaction (H2) or via simple physisorption (H3). Meanwhile, the molecular structures of 1-3 are determined by elemental analysis and spectroscopic as well as crystallographic techniques, whereas the structures and morphologies of H1-H3 are characterized by various spectroscopies and scanning electronic microscopy. Further, the electrocatalytic HER activity trend of H1 > H2 ≈ H3 is observed in 0.1 M phosphate buffer solution (pH = 7) through different electrochemical measurements, whereas the degradation processes of H1-H3 lead to their electrocatalytic deactivation in the long-term electrolysis as proposed by post operando analysis. Thus, this work is significant to extend the potential application of carbon electrode materials engineered with diiron molecular complexes as heterogeneous HER electrocatalysts for water splitting to hydrogen.
Collapse
Affiliation(s)
- Yan Gao
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Shao-Jie Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Zhen Guo
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Yan-Zhong Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Yong-Ping Qu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Pei-Hua Zhao
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
3
|
Zamader A, Reuillard B, Pérard J, Billon L, Berggren G, Artero V. Synthetic styrene-based bioinspired model of the [FeFe]-hydrogenase active site for electrocatalytic hydrogen evolution. SUSTAINABLE ENERGY & FUELS 2023; 7:4967-4976. [PMID: 38013894 PMCID: PMC10521030 DOI: 10.1039/d3se00409k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/30/2023] [Indexed: 11/29/2023]
Abstract
Integration of molecular catalysts inside polymeric scaffolds has gained substantial attention over the past decade, as it provides a path towards generating systems with enhanced stability as well as enzyme-like morphologies and properties. In the context of solar fuels research and chemical energy conversion, this approach has been found to improve both rates and energy efficiencies of a range of catalytic reactions. However, system performance still needs to be improved to reach technologically relevant currents and stability, parameters that are heavily influenced by the nature of the incorporated molecular catalyst. Here, we have focused on the integration of a biomimetic {Fe2(μ-adt)(CO)6} (-CH2NHCH2S-, azadithiolate or adt2-) based active site ("[2Fe2S]adt"), inspired by the catalytic cofactor of [FeFe] hydrogenases, within a synthetic polymeric scaffold using free radical polymerization. The resulting metallopolymers [2Fe2S]adtk[DMAEMA]l[PyBMA]m (DMAEMA = dimethylaminoethyl methacrylate as water soluble monomer; PyBMA = 4-(pyren-1-yl)-butyl methacrylate as hydrophobic anchor for heterogenization) were found to be active for electrochemical H2 production in neutral aqueous media. The pyrene content was varied to optimize durability and activity. Following immobilization on multiwalled carbon nanotubes (MWNT) the most active metallopolymer, containing ∼2.3 mol% of PyBMA, could reach a turnover number for hydrogen production (TONH2) of ∼0.4 ×105 over 20 hours of electrolysis at an overpotential of 0.49 V, two orders of magnitude higher than the isolated catalyst counterpart. The study provides a synthetic methodology for incorporating catalytic units featuring second coordination sphere functional groups, and highlights the benefit of the confinement within the polymer matrix for catalytic performance.
Collapse
Affiliation(s)
- Afridi Zamader
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs 38000 Grenoble France
- Department of Chemistry - Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Bertrand Reuillard
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs 38000 Grenoble France
| | - Julien Pérard
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs 38000 Grenoble France
| | - Laurent Billon
- Universite de Pau et Pays de l'Adour, E2S UPPA, IPREM, Bio-inspired Materials Group: Functionalities & Self-Assembly 2 avenue Angot 64053 Pau France
| | - Gustav Berggren
- Department of Chemistry - Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Vincent Artero
- Univ Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux 17 rue des Martyrs 38000 Grenoble France
| |
Collapse
|
4
|
Substituent effects in carbon-nanotube-supported diiron monophosphine complexes for hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Sun L, Duboc C, Shen K. Bioinspired Molecular Electrocatalysts for H 2 Production: Chemical Strategies. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lili Sun
- Université Grenoble Alpes, CNRS, UMR 5250 DCM, F-38000 Grenoble, France
| | - Carole Duboc
- Université Grenoble Alpes, CNRS, UMR 5250 DCM, F-38000 Grenoble, France
| | - Kaiji Shen
- Université Grenoble Alpes, CNRS, UMR 5250 DCM, F-38000 Grenoble, France
| |
Collapse
|
6
|
Nayek A, Ahmed ME, Samanta S, Dinda S, Patra S, Dey SG, Dey A. Bioinorganic Chemistry on Electrodes: Methods to Functional Modeling. J Am Chem Soc 2022; 144:8402-8429. [PMID: 35503922 DOI: 10.1021/jacs.2c01842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One of the major goals of bioinorganic chemistry has been to mimic the function of elegant metalloenzymes. Such functional modeling has been difficult to attain in solution, in particular, for reactions that require multiple protons and multiple electrons (nH+/ne-). Using a combination of heterogeneous electrochemistry, electrode and molecule design one may control both electron transfer (ET) and proton transfer (PT) of these nH+/ne- reactions. Such control can allow functional modeling of hydrogenases (H+ + e- → 1/2 H2), cytochrome c oxidase (O2 + 4 e- + 4 H+ → 2 H2O), monooxygenases (RR'CH2 + O2 + 2 e- + 2 H+ → RR'CHOH + H2O) and dioxygenases (S + O2 → SO2; S = organic substrate) in aqueous medium and at room temperatures. In addition, these heterogeneous constructs allow probing unnatural bioinspired reactions and estimation of the inner- and outer-sphere reorganization energy of small molecules and proteins.
Collapse
Affiliation(s)
- Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Md Estak Ahmed
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Souvik Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| |
Collapse
|
7
|
Sun L, Adam SM, Mokdad W, David R, Milet A, Artero V, Duboc C. A bio-inspired heterodinuclear hydrogenase CoFe complex. Faraday Discuss 2022; 234:34-41. [PMID: 35188161 DOI: 10.1039/d1fd00085c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a new heterobimetallic CoFe complex is reported with the aim of comparing its performance in terms of H2 production within a series of related MFe complexes (M = Ni, Fe). The fully oxidized [(LN2S2)CoII(CO)FeIICp]+ complex (CoIIFeII, LN2S2 2- = 2,2'-(2,2'-bipyridine-6,6'-diyl)bis(1,1'-diphenylethanethiolate), Cp- = cyclopentadienyl anion) can be (electro)chemically reduced to its CoIFeII form, and both complexes have been isolated and fully characterized by means of classic spectroscopic techniques and theoretical calculations. The redox properties of CoIIFeII have been investigated in DMF, revealing that this complex is the easiest to reduce by one-electron among the analogous MFe complexes (M = Ni, Fe, Co). Nevertheless, it displays no electrocatalytic activity for H2 production, contrary to the FeFe and NiFe analogs, which have proven remarkable performance.
Collapse
Affiliation(s)
- Lili Sun
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France.
| | - Suzanne M Adam
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France. .,Univ. Grenoble Alpes, CNRS, CEA, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Walaa Mokdad
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France.
| | - Rolf David
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France.
| | - Anne Milet
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France.
| | - Vincent Artero
- Univ. Grenoble Alpes, CNRS, CEA, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Carole Duboc
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France.
| |
Collapse
|