1
|
Lakhan MN, Hanan A, Hussain A, Ali Soomro I, Wang Y, Ahmed M, Aftab U, Sun H, Arandiyan H. Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives. Chem Commun (Camb) 2024; 60:5104-5135. [PMID: 38625567 DOI: 10.1039/d3cc06015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Water electrolysis is a promising method for efficiently producing hydrogen and oxygen, crucial for renewable energy conversion and fuel cell technologies. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are two key electrocatalytic reactions occurring during water splitting, necessitating the development of active, stable, and low-cost electrocatalysts. Transition metal (TM)-based electrocatalysts, spanning noble metals and TM oxides, phosphides, nitrides, carbides, borides, chalcogenides, and dichalcogenides, have garnered significant attention due to their outstanding characteristics, including high electronic conductivity, tunable valence electron configuration, high stability, and cost-effectiveness. This timely review discusses developments in TM-based electrocatalysts for the HER and OER in alkaline media in the last 10 years, revealing that the exposure of more accessible surface-active sites, specific electronic effects, and string effects are essential for the development of efficient electrocatalysts towards electrochemical water splitting application. This comprehensive review serves as a guide for designing and constructing state-of-the-art, high-performance bifunctional electrocatalysts based on TMs, particularly for applications in water splitting.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Abdul Hanan
- Sunway Center for Electrochemical Energy and Sustainable Technology, SCEEST, Sunway University, Bandar Sunway, Malaysia
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Irfan Ali Soomro
- Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, P. R. China
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Mukhtiar Ahmed
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan.
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, 066004 Qinhuangdao, P. R. China
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia.
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Lin S, Habib MA, Joni MH, Dristy SA, Mandavkar R, Jeong JH, Chung YU, Lee J. CoFeBP Micro Flowers (MFs) for Highly Efficient Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:698. [PMID: 38668192 PMCID: PMC11053626 DOI: 10.3390/nano14080698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Hydrogen is one of the most promising green energy alternatives due to its high gravimetric energy density, zero-carbon emissions, and other advantages. In this work, a CoFeBP micro-flower (MF) electrocatalyst is fabricated as an advanced water-splitting electrocatalyst by a hydrothermal approach for hydrogen production with the highly efficient hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The fabrication process of the CoFeBP MF electrocatalyst is systematically optimized by thorough investigations on various hydrothermal synthesis and post-annealing parameters. The best optimized CoFeBP MF electrode demonstrates HER/OER overpotentials of 20 mV and 219 mV at 20 mA/cm2. The CoFeBP MFs also exhibit a low 2-electrode (2-E) cell voltage of 1.60 V at 50 mA/cm2, which is comparable to the benchmark electrodes of Pt/C and RuO2. The CoFeBP MFs demonstrate excellent 2-E stability of over 100 h operation under harsh industrial operational conditions at 60 °C in 6 M KOH at a high current density of 1000 mA/cm2. The flower-like morphology can offer a largely increased electrochemical active surface area (ECSA), and systematic post-annealing can lead to improved crystallinity in CoFeBP MFs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jae-Hun Jeong
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul 01897, Republic of Korea; (S.L.); (M.A.H.); (M.H.J.); (S.A.D.); (R.M.)
| | - Young-Uk Chung
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul 01897, Republic of Korea; (S.L.); (M.A.H.); (M.H.J.); (S.A.D.); (R.M.)
| | - Jihoon Lee
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul 01897, Republic of Korea; (S.L.); (M.A.H.); (M.H.J.); (S.A.D.); (R.M.)
| |
Collapse
|
3
|
Manohar EM, Dhandapani HN, Roy S, Pełka R, Rams M, Konieczny P, Tothadi S, Kundu S, Dey A, Das S. Tetranuclear Co II4O 4 Cubane Complex: Effective Catalyst Toward Electrochemical Water Oxidation. Inorg Chem 2024; 63:4883-4897. [PMID: 38494956 DOI: 10.1021/acs.inorgchem.3c03956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The reaction of Co(OAc)2·6H2O with 2,2'-[{(1E,1'E)-pyridine-2,6-diyl-bis(methaneylylidene)bis(azaneylylidene)}diphenol](LH2) a multisite coordination ligand and Et3N in a 1:2:3 stoichiometric ratio forms a tetranuclear complex Co4(L)2(μ-η1:η1-OAc)2(η2-OAc)2]· 1.5 CH3OH· 1.5 CHCl3 (1). Based on X-ray diffraction investigations, complex 1 comprises a distorted Co4O4 cubane core consisting of two completely deprotonated ligands [L]2- and four acetate ligands. Two distinct types of CoII centers exist in the complex, where the Co(2) center has a distorted octahedral geometry; alternatively, Co(1) has a distorted pentagonal-bipyramidal geometry. Analysis of magnetic data in 1 shows predominant antiferromagnetic coupling (J = -2.1 cm-1), while the magnetic anisotropy is the easy-plane type (D1 = 8.8, D2 = 0.76 cm-1). Furthermore, complex 1 demonstrates an electrochemical oxygen evolution reaction (OER) with an overpotential of 325 mV and Tafel slope of 85 mV dec-1, required to attain a current density of 10 mA cm-2 and moderate stability under alkaline conditions (pH = 14). Electrochemical impedance spectroscopy studies reveal that compound 1 has a charge transfer resistance (Rct) of 2.927 Ω, which is comparatively lower than standard Co3O4 (5.242 Ω), indicating rapid charge transfer kinetics between electrode and electrolyte solution that enhances higher catalytic activity toward OER kinetics.
Collapse
Affiliation(s)
- Ezhava Manu Manohar
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure, Technology, Research, and Management, Near Khokhra Circle, Maninagar East, Ahmedabad, Gujarat 380026, India
| | - Hariharan N Dhandapani
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Soumalya Roy
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure, Technology, Research, and Management, Near Khokhra Circle, Maninagar East, Ahmedabad, Gujarat 380026, India
| | - Robert Pełka
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Krakow PL-31342, Poland
| | - Michał Rams
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, Kraków 30348, Poland
| | - Piotr Konieczny
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Krakow PL-31342, Poland
| | - Srinu Tothadi
- Analytical and Environmental Sciences Division and Centralized Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India
| | - Subrata Kundu
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Atanu Dey
- Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), NH 207, Nagadenehalli, Doddaballapur Taluk, Bengaluru, Karnataka 561203, India
| | - Sourav Das
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure, Technology, Research, and Management, Near Khokhra Circle, Maninagar East, Ahmedabad, Gujarat 380026, India
| |
Collapse
|
4
|
Saravanan L, Anand P, Fu YP, Ma YR, Yeh WC. Enhancing the Hydrogen Evolution Performance of Tungsten Diphosphide on Carbon Fiber through Ruthenium Modification. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38419190 DOI: 10.1021/acsami.3c17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Hydrogen-based energy systems hold promise for sustainable development and carbon neutrality, minimizing environmental impact with electrolysis as the preferred fossil-fuel-free hydrogen generation method. Effective electrocatalysts are required to reduce energy consumption and improve kinetics, given the need for additional voltage (overpotential, η) despite the theoretical water splitting potential of 1.23 V. To date, platinum has been acknowledged as the most effective but expensive hydrogen evolution reaction (HER) catalyst. Hence, we introduce a cost-effective (∼2-fold cheaper) ruthenium-modified tungsten diphosphide (Ru/WP2) catalyst on carbon fiber for HER in ∼0.5 M H2SO4, with η ≈ 34 mV at -10 mA cm-2 which can be comparable (only ∼2-fold higher) to benchmark Pt/C (η ≈ 17 mV). The HER performance of WP2 can be enhanced through the modification of ruthenium, as indicated by the electrochemical characterizations. Considering the Tafel value of ∼40 ± 0.2 mV dec-1, it can be inferred that Ru/WP2 follows the Volmer-Heyrovsky reaction pathway for hydrogen generation. Furthermore, the Faradaic efficiency estimation indicates that Ru/WP2 demonstrates a minimal loss of electrons during the electrochemical reaction with an estimated value of ∼98.7 ± 1.4%. Therefore, this study could emphasize the potential of the Ru/WP2 electrode in advancing sustainable hydrogen production through water splitting.
Collapse
Affiliation(s)
- Lokesh Saravanan
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| | - Pandiyarajan Anand
- Department of Materials Science and Engineering, National Dong Hwa University, Hualien 97401, Taiwan
| | - Yen-Pei Fu
- Department of Materials Science and Engineering, National Dong Hwa University, Hualien 97401, Taiwan
| | - Yuan-Ron Ma
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| | - Wang-Chi Yeh
- Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| |
Collapse
|
5
|
Mijowska E, Pietrusewicz K, Maślana K. Highly Porous Carbon Flakes Derived from Cellulose and Nickel Phosphide Heterostructure towards Efficient Electrocatalysis of Oxygen Evolution Reaction. Molecules 2024; 29:352. [PMID: 38257265 PMCID: PMC10819855 DOI: 10.3390/molecules29020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
This study delves into the pressing challenges of climate change and the escalating carbon dioxide (CO2) emissions by exploring hydrogen technology as a sustainable alternative. In particular, there is focus on nickel phosphide-based electrocatalysts, known for their promising performance in hydrogen evolution reactions (HERs) and oxygen evolution reactions (OERs). Therefore, here we have designed a facile strategy to deliver highly porous carbon flakes derived from cellulose fibers via carbonization at 850 °C, yielding highly porous structures and outstanding specific surface area (SSAcel_carb_850_act = 3164 m2/g) after activation. As-fabricated carbon was utilized as a support for Ni12P5 with an optimized mass ratio. Electrochemical testing revealed that the composite of Ni12P5 and carbon flakes with a ratio of 100:1, respectively, exhibited the most favorable kinetics for the oxygen evolution reaction (OER). Importantly, the durability tests of this sample demonstrated the most stable behavior and lowest potential change under high current density among the studied samples, making it a promising candidate in practical applications. Moreover, the analysis of electrocatalysts after an OER does not show any changes, indicating that the sample does not undergo undesired intermediate reactions and that unwanted products are not released, explaining its stable behavior. This provides a straightforward approach for creating a cellulose-derived composite with enhanced electroactivity and durability.
Collapse
Affiliation(s)
- Ewa Mijowska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastow Ave. 45, 70-311 Szczecin, Poland
- Center for Advanced Materials and Manufacturing Process Engineering (CAMMPE), West Pomeranian University of Technology, 70-310 Szczecin, Poland
| | - Karolina Pietrusewicz
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastow Ave. 45, 70-311 Szczecin, Poland
| | - Klaudia Maślana
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastow Ave. 45, 70-311 Szczecin, Poland
- Center for Advanced Materials and Manufacturing Process Engineering (CAMMPE), West Pomeranian University of Technology, 70-310 Szczecin, Poland
| |
Collapse
|
6
|
Yang H, Ge L, Guan J, Ouyang B, Li H, Deng Y. Synergistic engineering of heteroatom doping and heterointerface construction in V-doped Ni(OH) 2/FeOOH to boost both oxygen evolution and urea oxidation reactions. J Colloid Interface Sci 2024; 653:721-729. [PMID: 37742431 DOI: 10.1016/j.jcis.2023.09.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
The exploitation of cost-effective and abundant non-noble metal electrocatalysts holds great significances in enhancing the efficiency of oxygen evolution reaction (OER) and/or urea oxidation reaction (UOR). Herein, we report an electrocatalyst with co-existing V-dopants and Ni(OH)2/FeOOH interfaces (referred to as A-NiFeV/NF, with "A" indicating "activated"). The electron coupling between Ni, Fe and V, analyzed through X-ray photoelectron spectroscopy, indicates that Ni and Fe both receive electrons from the V. Additionally, the Fe can also lead to a bias toward a lower valence of the Ni centers in Ni(OH)2. Further in situ Raman spectroscopy reveals that Ni2+(OH)2 inevitably undergoes transformation into amorphous Ni3+OOH during the activation process, however, the synergistic effects of V-dopants and Ni(OH)2/FeOOH interfaces keep the Ni centers mostly in a lower oxidation state of +2 even at high potential ranges. These low-valence Ni centers are proposed to be positively correlated with the optimized OER activity of the Ni-based electrocatalysts. As a result, the designed A-NiFeV/NF electrocatalyst exhibits low overpotentials of 234 and 313 mV to propel current densities of 10 and 100 mA/cm2, and a small Tafel slope of 37.8 mV/dec for OER in 1.0 M KOH. The catalyst demonstrates a stable OER activity for over 100 h at 100 mA/cm2. Additionally, it can be integrated with a solar cell to construct a solar-driven electrolytic OER device without additional electric input. Similarly, for the small molecule oxidation, UOR, only ∼1.33 and ∼1.39 V vs. RHE (RHE: reversible hydrogen electrode) are required to achieve 10 and 100 mA/cm2, respectively, in an electrolyte composed of 1.0 M KOH with 0.33 M urea.
Collapse
Affiliation(s)
- Hua Yang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Lihong Ge
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Jiexin Guan
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Bo Ouyang
- Department of Applied Physics and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huaming Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Deng
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Zhang L, Zhu HL, Li ZY, Zheng YQ. Assembly of highly efficient overall CO 2 + H 2O electrolysis cell with the matchup of CO 2 reduction and water oxidation catalyst. Dalton Trans 2023; 52:17273-17278. [PMID: 37937453 DOI: 10.1039/d3dt02599c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The exploitation of highly active and stable catalysts for reduction of CO2 and water oxidation is one of the approaches to facilitate scalable and sustainable CO2 reduction potentially at the industrial scale. Herein, a feasible strategy to rationally build an overall CO2 + H2O electrocatalytic reaction device is the preparation and matchup of a high-performance CO2 reduction catalyst and low-cost and highly active oxygen anode catalyst. A heterostructured nanosheet, γ-NiOOH/NiCO3/Ni(HCOO)2, exhibited superior catalytic activity in the oxygen evolution reaction, and was integrated with CoPc/Fe-N-C to build an overall CO2 + H2O cell with a current density of 10 mA cm-2 at a very low cell voltage of 1.97 V, and the faradaic deficiency of CO2 to CO was maintained at greater than 90% at 1.9 V.
Collapse
Affiliation(s)
- Li Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Hong-Lin Zhu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Zhong-Yi Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yue-Qing Zheng
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
8
|
Liang S, Ma Y, Luo H, Wu K, Chen J, Yang J. A Membrane-Free Decoupled Water Electrolyzer Operating at Simulated Fluctuating Renewables with Tri-Functional NiCo-P Electrode. Chemistry 2023; 29:e202302160. [PMID: 37434274 DOI: 10.1002/chem.202302160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Water electrolysis has been considered a promising technology for the conversion of renewables to hydrogen. However, preventing mixing of products (H2 and O2 ) and exploring cost-efficient electrolysis components remains challenging for conventional water electrolyzers. Herein, we designed a membrane-free decoupled water electrolysis system by using graphite felt supported nickel-cobalt phosphate (GF@Nix Coy -P) material as a tri-functional (redox mediator, hydrogen evolution reaction (HER), oxygen evolution reaction (OER)) electrode. The versatile GF@Ni1 Co1 -P electrode obtained by a one-step electrodeposition not only exhibits high specific capacity (176 mAh g-1 at 0.5 A g-1 ) and long cycle life (80 % capacity retention after 3000 cycles) as a redox mediator, but also has relatively outstanding catalytic activities for HER and OER. The excellent properties of the GF@Nix Coy -P electrode endow this decoupled system with more flexibility for H2 production by fluctuating renewable energies. This work provides guidance for multifunctional applications of transition metal compounds between energy storage and electrocatalysis.
Collapse
Affiliation(s)
- Shuaika Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuanyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Engineering Research Center of Advanced Glass Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, China
| | - Hongxia Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Kangxi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Engineering Research Center of Advanced Glass Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, China
| |
Collapse
|
9
|
Karmakar A, Jayan R, Das A, Kalloorkal A, Islam MM, Kundu S. Regulating Surface Charge by Embedding Ru Nanoparticles over 2D Hydroxides toward Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37243613 DOI: 10.1021/acsami.3c05512] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exploring highly active and earth-abundant electrocatalysts for the oxygen evolution reaction (OER) is considered one of the prime prerequisites for generating green hydrogen. Herein, a competent microwave-assisted decoration of Ru nanoparticles (NPs) over the bimetallic layered double hydroxide (LDH) material is proposed. The same has been used as an OER catalyst in a 1 M KOH solution. The catalyst shows an interesting Ru NP loading dependency toward the OER, and a concentration-dependent volcanic relationship between electronic charge and thermoneutral current densities has been observed. This volcanic relation shows that with an optimum concentration of Ru NPs, the catalyst could effectively catalyze the OER by obeying the Sabatier principle of ion adsorption. The optimized Ru@CoFe-LDH(3%) demands an overpotential value of only 249 mV to drive a current density value of 10 mA/cm2 with the highest TOF value of 14.4 s-1 as compared to similar CoFe-LDH-based materials. In situ impedance experiments and DFT studies demonstrated that incorporating the Ru NPs boosts the intrinsic OER activity of the CoFe-LDH on account of sufficient activated redox reactivities for both Co and lattice oxygen of the CoFe-LDH. As a result, compared with the pristine CoFe-LDH, the current density of Ru@CoFe-LDH(3%) at 1.55 V vs RHE normalized by ECSA increased by 86.58%. First-principles DFT analysis shows that the optimized Ru@CoFe-LDH(3%) possesses a lower d-band center that indicates weaker and more optimal binding characteristics for OER intermediates, improving the overall OER performance. Overall, this report displays an excellent correlation between the decorated concentration of NPs over the LDH surface which can tune the OER activity as verified by both experimental and theoretical calculations.
Collapse
Affiliation(s)
- Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Rahul Jayan
- Department of Mechanical Engineering, Wayne State University, Detroit 48201, Michigan, United States
| | - Ankit Das
- Center for Education (CFE), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Althaf Kalloorkal
- Center for Education (CFE), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Md Mahbubul Islam
- Department of Mechanical Engineering, Wayne State University, Detroit 48201, Michigan, United States
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
10
|
Madhu R, Karmakar A, Kundu S. Morphology-Dependent Electrocatalytic Behavior of Cobalt Chromite toward the Oxygen Evolution Reaction in Acidic and Alkaline Medium. Inorg Chem 2023; 62:2726-2737. [PMID: 36715550 DOI: 10.1021/acs.inorgchem.2c03840] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exploiting an affordable, durable, and high-performance electrocatalyst for the oxygen evolution reaction (OER) under lower pH condition (acidic) is highly challengeable and much attractive toward the hydrogen-based energy technologies. A spinel CoCr2O4 is observed as a potential noble-metal-free candidate for OER in alkaline medium. The presence of Cr further leads to electronic structure modulation of Co3O4 and thereby greatly increases the corrosive resistance toward OER in acidic environment. Herein, a typical CoCr2O4 with three different morphologies was synthesized for the very first time and employed as an electrocatalyst for OER in alkaline (1 M KOH) and acidic (0.5 M H2SO4) medium. Moreover, different morphologies display a different intrinsic exposed active site and thereby display different electrocatalytic activities. Likewise, the CoCr2O4 Mic (synthesized by the microwave heating method) displays a higher catalytic activity toward OER and delivers a low overpotential of 293 and 290 mV to attain 10 mA/cm2 current density and smaller Tafel slope values of 40 and 151 mV/dec, respectively, in alkaline and acidic environment than the synthesized CoCr2O4 Wet (wet-chemically synthesized) and CoCr2O4 Hyd (hydrothermally synthesized). Moreover, CoCr2O4 Mic exhibits a long-term durability of 24 h (1 M KOH) and 10.5 h (0.5 M H2SO4). The optimized Co-O bond energy in OER condition makes the CoCr2O4 Mic superior than the CoCr2O4 Hyd and CoCr2O4 Wet. Moreover, the substitution of Cr induces the electron delocalization around the Co active species and thereby, positive shifting of the redox potential leads to providing an optimal binding energy for OER intermediates. Also, interestingly, this work represents a catalytic activity trend by a simple experimental result without any complex theoretical calculation. The morphology-dependent electrocatalytic activity obtained in this work will provide a new strategy in the field of electrochemical conversion and energy storage application.
Collapse
Affiliation(s)
- Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi630003, Tamil Nadu, India
| |
Collapse
|
11
|
Construction of CoFe bimetallic phosphide microflowers electrocatalyst for highly efficient overall water splitting. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
12
|
Biswas R, Ahmed I, Manna P, Mahata P, Dhayal RS, Singh A, Lahtinen J, Haldar KK. Facile Fabrication of Ni 9 S 8 /Ag 2 S Intertwined Structures for Oxygen and Hydrogen Evolution Reactions. Chempluschem 2023; 88:e202200320. [PMID: 36625467 DOI: 10.1002/cplu.202200320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Here, we report the fabrication of the unique intertwined Ni9 S8 /Ag2 S composite structure with hexagonal shape from their molecular precursors by one-pot thermal decomposition. Various spectroscopic and microscopic techniques were utilized to confirm the Ni9 S8 /Ag2 S intertwined structure. Powder X-ray Powder Diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis suggest that there is an enrichment of Ni9 S8 phase in Ni9 S8 /Ag2 S. The presence of Ag2 S in Ni9 S8 /Ag2 S improves the conductivity by reducing the interfacial energy and charge transfer resistance. When Ni9 S8 /Ag2 S is employed as an electrocatalyst for electrochemical oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activity, it requires a low overpotential of 152 mV for HER and 277 mV for OER to obtain the geometrical current density of 10 mA cm-2 , which is definitely superior to that of its components Ni9 S8 and Ag2 S. This work provides a simple design route to develop an efficient and durable electrocatalyst with outstanding OER and HER performance and the present catalyst (Ni9 S8 /Ag2 S) deserves as a potential candidate in the field of energy conversion systems.
Collapse
Affiliation(s)
| | - Imtiaz Ahmed
- Department of Chemistry, Central University of Punjab, Bathinda, 151401, India
| | - Priyanka Manna
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Partha Mahata
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Rajendra S Dhayal
- Department of Chemistry, Central University of Punjab, Bathinda, 151401, India
| | - Amol Singh
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Jouko Lahtinen
- Department of Applied Physics, Aalto University School of Science, 00076, Aalto, Finland
| | | |
Collapse
|
13
|
N Dhandapani H, Karmakar A, Selvasundarasekar SS, Kumaravel S, Nagappan S, Madhu R, Ramesh Babu B, Kundu S. Modulating the Surface Electronic Structure of Active Ni Sites by Engineering Hierarchical NiFe-LDH/CuS over Cu Foam as an Efficient Electrocatalyst for Water Splitting. Inorg Chem 2022; 61:21055-21066. [PMID: 36523209 DOI: 10.1021/acs.inorgchem.2c03589] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Water electrolysis encounters a challenging problem in designing a highly efficient, long durable, non-noble metal-free electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, in our work, a two-step hydrothermal reaction was performed to construct a hierarchal NiFe-layer double hydroxide (LDH)/CuS over copper foam for the overall water splitting reaction. While employed the same as an anode material, the designed heterostructure electrode NiFe-LDH/CuS/Cu exhibits excellent OER performance and it demands 249 mV overpotential to reach a current density of 50 mA cm-2 with a lower Tafel slope value of 81.84 mV dec-1. While as a cathode material, the NiFe-LDH/CuS/Cu shows superior HER performance and it demands just 28 mV of overpotential value to reach a current density of 10 mA cm-2 and a lower Tafel slope value of 95.98 mV dec-1. Hence, the NiFe-LDH/CuS/Cu outperforms the commercial Pt/C and RuO2 in terms of activity in HER and OER, respectively. Moreover, when serving as both the cathode and anode catalysts in an electrolyzer for total water splitting, the synthesized electrode only needs a cell potential of 1.55 V versus RHE to reach a current density of 20 mA cm-2 and long-term durability for 25 h in alkaline media. To study the interfacial electron transfer, Mott-Schottky experiments were performed, representing that the electron is transferred from n-type NiFe-LDH to p-type CuS as a result of creating the p-n junction in NiFe-LDH/CuS/Cu. The formation of this p-n junction allows the LDH layer to be more active toward the OH- adsorption and thereby could allow the OER or HER with a less energy input. This work affords another route to a cost effective, highly efficient catalyst toward producing clean energy across the globe.
Collapse
Affiliation(s)
- Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sam Sankar Selvasundarasekar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - B Ramesh Babu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
14
|
Bera K, Madhu R, Dhandapani HN, Nagappan S, De A, Kundu S. Accelerating the Electrocatalytic Performance of NiFe-LDH via Sn Doping toward the Water Oxidation Reaction under Alkaline Condition. Inorg Chem 2022; 61:16895-16904. [PMID: 36221930 DOI: 10.1021/acs.inorgchem.2c02947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To generate green hydrogen by water electrolysis, it is vital to develop highly efficient electrocatalysts for the oxygen evolution reaction (OER). The utilization of various 3d transition metal-based layered double hydroxides (LDHs), especially NiFe-LDH, has gained vast attention for OER under alkaline conditions. However, the lack of a proper electronic structure of the NiFe-LDH and low stability under high-pH conditions limit its large-scale application. To overcome these difficulties, in this study, we constructed an Sn-doped NiFe-LDH material using a simple wet-chemical method. The doping of Sn will synergistically increase the active surface sites of NiFe-LDH. The highly active NiFe-LDH Sn0.015(M) shows excellent OER activity by requiring an overpotential of 250 mV to drive 10 mA/cm2 current density, whereas the bare NiFe-LDH required an overpotential of 295 mV at the same current density. Also, NiFe-LDH Sn0.015(M) shows excellent long-term stability for 50 h in 1 M KOH and also exhibits a higher TOF value of 0.495 s-1, which is almost five times higher than that of bare NiFe-LDH. This study highlights Sn doping as an effective strategy for the development of low-cost, effective, stable, self-supported electrocatalysts with a high current density for improved OER and other catalytic applications in the near future.
Collapse
Affiliation(s)
- Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Aditi De
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
15
|
Battiato S, Bruno L, Pellegrino AL, Terrasi A, Mirabella S. ×Optimized electroless deposition of NiCoP electrocalysts for enhanced water splitting. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Selvasundarasekar SS, Bijoy TK, Kumaravel S, Karmakar A, Madhu R, Bera K, Nagappan S, Dhandapani HN, Lee SC, Kundu S. Constructing electrospun spinel NiFe 2O 4 nanofibers decorated with palladium ions as nanosheets heterostructure: boosting electrocatalytic activity of HER in alkaline water electrolysis. NANOSCALE 2022; 14:10360-10374. [PMID: 35708550 DOI: 10.1039/d2nr02203f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of efficient electrocatalysts for the water splitting process and understanding their fundamental catalytic mechanisms are highly essential to achieving high performance in energy conversion technologies. Herein, we have synthesised spinel nickel ferrite nanofibers (NiFe2O4-NFs) via an electrospinning (ES) method followed by a carbonization process. The resultant fiber was subjected to electrocatalytic water splitting reactions in alkaline medium. The catalytic efficiency of the NiFe2O4-NFs in OER was highly satisfactory. But it is not high enough to catalyse the HER process. Hence, palladium ions were decorated as nanosheets on NiFe2O4-NFs as a heterostructure to improve the catalytic efficiency for HER. Density functional theory (DFT) confirms that the addition of palladium to NiFe2O4-NFs helps to reduce the effect of catalyst poisoning and improve the efficiency of the catalyst. In an alkaline hybrid electrolyser, the required cell voltage was observed as 1.51 V at a fixed current density of 10 mA cm-2.
Collapse
Affiliation(s)
- Sam Sankar Selvasundarasekar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - T K Bijoy
- Indo-Korea Science and Technology Center (IKST), Jakkur, Bengaluru-560065, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| | - Seung-Cheol Lee
- Indo-Korea Science and Technology Center (IKST), Jakkur, Bengaluru-560065, India
- Electronic Materials Research Center, KIST, Seoul 136-791, South Korea
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India
| |
Collapse
|
17
|
Adegbemiga Yusuf B, Xia C, Xie M, Yaseen W, Xie J, Xu Y. Scalable fabrication of Ru-Mo2C composite catalytic material with carbon-based core-shell structure and its remarkable application for hydrogen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Bera K, Karmakar A, Kumaravel S, Sam Sankar S, Madhu R, N Dhandapani H, Nagappan S, Kundu S. Vanadium-Doped Nickel Cobalt Layered Double Hydroxide: A High-Performance Oxygen Evolution Reaction Electrocatalyst in Alkaline Medium. Inorg Chem 2022; 61:4502-4512. [PMID: 35230844 DOI: 10.1021/acs.inorgchem.2c00093] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vast attention from researchers is being given to the development of suitable oxygen evolution reaction (OER) electrocatalysts via water electrolysis. Being highly abundant, the use of transition-metal-based OER catalysts has been attractive more recently. Among the various transition-metal-based electrocatalysts, the use of layered double hydroxides (LDHs) has gained special attention from researchers owing to their high stability under OER conditions. In this work, we have reported the synthesis of trimetallic NiCoV-LDH via a simple wet-chemical method. The synthesized NiCoV-LDH possesses aggregated sheet-like structures and is screened for OER studies in alkaline medium. In the study of OER activity, the as-prepared catalyst demanded 280 mV overpotential and this was 42 mV less than the overpotential essential for pristine NiCo-LDH. Moreover, doping of a third metal into the NiCo-LDH system might lead to an increase in TOF values by almost three times. Apart from this, the electronic structural evaluation confirms that the doping of V3+ into NiCo-LDH could synergistically favor the electron transfer among the metal ions, which in turn increases the activity of the prepared catalyst toward the OER.
Collapse
Affiliation(s)
- Krishnendu Bera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sangeetha Kumaravel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Selvasundarasekar Sam Sankar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Hariharan N Dhandapani
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|