1
|
Asakura S, Kaneko K, Kawano K, Shobako M, Xu C, Sato M, Kurabayashi A, Suzuki H, Ito A, Higuchi Y, Nakayama R, Takahashi H, Ohinata K. Characterization of rice endosperm-derived antidepressant-like peptide (REAP): An orally active novel tridecapeptide derived from rice protein. Peptides 2024; 177:171184. [PMID: 38432550 DOI: 10.1016/j.peptides.2024.171184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
It is ideal to ingest bioactive substances from daily foods to stay healthy. Rice is the staple food for almost half of the human population. We found that an orally administered enzymatic digest of rice endosperm protein exhibits antidepressant-like effects in the tail suspension test (TST) using mice. A comprehensive peptide analysis of the digest using liquid chromatography-tandem mass spectrometry was performed, and a tridecapeptide QQFLPEGQSQSQK, detected in the digest, was chemosynthesized. Oral administration of the tridecapeptide exhibited antidepressant-like effects at a low dose comparable to classical antidepressant in the TST. This also exhibited anti-depressant-like effect in the forced swim test. We named it rice endosperm-derived antidepressant-like peptide (REAP). Intriguingly, intraperitoneal administration had no effect. Orally administered REAP(8-13) but not REAP(1-7) exhibited antidepressant-like activity, suggesting that the C-terminal structure is important for the antidepressant-like effect. We confirmed the presence of REAP, corresponding to rice glutelin type B4(130-142) and B5(130-142), in the digest. The effects of REAP were blocked by both dopamine D1 and D2 antagonists. These results suggest that it exerts its antidepressant-like activity through activation of the dopamine system. Taken together, oral administration of a novel tridecapeptide exhibited antidepressant-like effects via the dopamine system. This is the first report of a rice-derived peptide that exhibits antidepressant-like effects.
Collapse
Affiliation(s)
- Saho Asakura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Kentaro Kaneko
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Kohei Kawano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Maiko Shobako
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Chendong Xu
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Masaru Sato
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Chiba, Kisarazu 292-0818, Japan
| | - Atsushi Kurabayashi
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Chiba, Kisarazu 292-0818, Japan
| | - Hideyuki Suzuki
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Chiba, Kisarazu 292-0818, Japan
| | - Akira Ito
- Rice Research Institute, Kameda Seika CO., LTD., 3-1-1Kameda-kogyodanchi, Konan, Niigata 950-0198, Japan
| | - Yuki Higuchi
- Rice Research Institute, Kameda Seika CO., LTD., 3-1-1Kameda-kogyodanchi, Konan, Niigata 950-0198, Japan
| | - Ryoko Nakayama
- Rice Research Institute, Kameda Seika CO., LTD., 3-1-1Kameda-kogyodanchi, Konan, Niigata 950-0198, Japan
| | - Hajime Takahashi
- Rice Research Institute, Kameda Seika CO., LTD., 3-1-1Kameda-kogyodanchi, Konan, Niigata 950-0198, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
2
|
Yang Y, Liu X, Shi X, Ma J, Zeng X, Zhu Z, Li F, Zhou M, Guo X, Liu X. A High-Quality, Chromosome-Level Genome Provides Insights Into Determinate Flowering Time and Color of Cotton Rose ( Hibiscus mutabilis). FRONTIERS IN PLANT SCIENCE 2022; 13:818206. [PMID: 35251086 PMCID: PMC8896357 DOI: 10.3389/fpls.2022.818206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Hibiscus mutabilis (cotton rose) is a deciduous shrub or small tree of the Malvaceae family. Here, we report a chromosome-scale assembly of the H. mutabilis genome based on a combination of single-molecule sequencing and Hi-C technology. We obtained an optimized assembly of 2.68 Gb with a scaffold N50 length of 54.7 Mb. An integrated strategy of homology-based, de novo, and transcriptome-based gene predictions identified 118,222 protein-coding genes. Repetitive DNA sequences made up 58.55% of the genome, and LTR retrotransposons were the most common repetitive sequence type, accounting for 53.15% of the genome. Through the use of Hi-C data, we constructed a chromosome-scale assembly in which Nanopore scaffolds were assembled into 46 pseudomolecule sequences. We identified important genes involved in anthocyanin biosynthesis and documented copy number variation in floral regulators. Phylogenetic analysis indicated that H. mutabilis was closely related to H. syriacus, from which it diverged approximately 15.3 million years ago. The availability of cotton rose genome data increases our understanding of the species' genetic evolution and will support further biological research and breeding in cotton rose, as well as other Malvaceae species.
Collapse
Affiliation(s)
| | | | | | - Jiao Ma
- Chengdu Botanical Garden, Chengdu, China
| | | | | | - Fangwen Li
- Chengdu Botanical Garden, Chengdu, China
| | - Mengyan Zhou
- Novogene Bioinformatics Institute, Beijing, China
| | - Xiaodan Guo
- Novogene Bioinformatics Institute, Beijing, China
| | - Xiaoli Liu
- Chengdu Botanical Garden, Chengdu, China
| |
Collapse
|
3
|
Dong X, Nou IS, Yi H, Hur Y. Suppression of ASKβ (AtSK32), a Clade III Arabidopsis GSK3, Leads to the Pollen Defect during Late Pollen Development. Mol Cells 2015; 38:506-17. [PMID: 25997736 PMCID: PMC4469908 DOI: 10.14348/molcells.2015.2323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 11/27/2022] Open
Abstract
Arabidopsis Shaggy-like protein kinases (ASKs) are Arabidopsis thaliana homologs of glycogen synthase kinase 3/SHAGGY-like kinases (GSK3/SGG), which are comprised of 10 genes with diverse functions. To dissect the function of ASKβ (AtSK32), ASKβ antisense transgenic plants were generated, revealing the effects of ASKβ down-regulation in Arabidopsis. Suppression of ASKβ expression specifically interfered with pollen development and fertility without altering the plants' vegetative phenotypes, which differed from the phenotypes reported for Arabidopsis plants defective in other ASK members. The strength of these phenotypes showed an inverse correlation with the expression levels of ASKβ and its co-expressed genes. In the aborted pollen of ASKβ antisense plants, loss of nuclei and shrunken cytoplasm began to appear at the bicellular stage of microgametogenesis. The in silico analysis of promoter and the expression characteristics implicate ASKβ is associated with the expression of genes known to be involved in sperm cell differentiation. We speculate that ASKβ indirectly affects the transcription of its co-expressed genes through the phosphorylation of its target proteins during late pollen development.
Collapse
Affiliation(s)
- Xiangshu Dong
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Jeonnam 540-742,
Korea
| | - Hankuil Yi
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| | - Yoonkang Hur
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764,
Korea
| |
Collapse
|
4
|
Cho YI, Ahn YK, Tripathi S, Kim JH, Lee HE, Kim DS. Comparative analysis of disease-linked single nucleotide polymorphic markers from Brassica rapa for their applicability to Brassica oleracea. PLoS One 2015; 10:e0120163. [PMID: 25790283 PMCID: PMC4366180 DOI: 10.1371/journal.pone.0120163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/12/2015] [Indexed: 11/18/2022] Open
Abstract
Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH—developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP—based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS—derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species.
Collapse
Affiliation(s)
- Young-Il Cho
- Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Yul-Kyun Ahn
- Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon, Republic of Korea
- * E-mail:
| | - Swati Tripathi
- Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Jeong-Ho Kim
- Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Hye-Eun Lee
- Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Suwon, Republic of Korea
| |
Collapse
|
5
|
Saha G, Park JI, Jung HJ, Ahmed NU, Kayum MA, Chung MY, Hur Y, Cho YG, Watanabe M, Nou IS. Genome-wide identification and characterization of MADS-box family genes related to organ development and stress resistance in Brassica rapa. BMC Genomics 2015; 16:178. [PMID: 25881193 PMCID: PMC4422603 DOI: 10.1186/s12864-015-1349-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 02/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MADS-box transcription factors (TFs) are important in floral organ specification as well as several other aspects of plant growth and development. Studies on stress resistance-related functions of MADS-box genes are very limited and no such functional studies in Brassica rapa have been reported. To gain insight into this gene family and to elucidate their roles in organ development and stress resistance, we performed genome-wide identification, characterization and expression analysis of MADS-box genes in B. rapa. RESULTS Whole-genome survey of B. rapa revealed 167 MADS-box genes, which were categorized into type I (Mα, Mβ and Mγ) and type II (MIKC(c) and MIKC*) based on phylogeny, protein motif structure and exon-intron organization. Expression analysis of 89 MIKC(c) and 11 MIKC* genes was then carried out. In addition to those with floral and vegetative tissue expression, we identified MADS-box genes with constitutive expression patterns at different stages of flower development. More importantly, from a low temperature-treated whole-genome microarray data set, 19 BrMADS genes were found to show variable transcript abundance in two contrasting inbred lines of B. rapa. Among these, 13 BrMADS genes were further validated and their differential expression was monitored in response to cold stress in the same two lines via qPCR expression analysis. Additionally, the set of 19 BrMADS genes was analyzed under drought and salt stress, and 8 and 6 genes were found to be induced by drought and salt, respectively. CONCLUSION The extensive annotation and transcriptome profiling reported in this study will be useful for understanding the involvement of MADS-box genes in stress resistance in addition to their growth and developmental functions, which ultimately provides the basis for functional characterization and exploitation of the candidate genes for genetic engineering of B. rapa.
Collapse
Affiliation(s)
- Gopal Saha
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-742, Republic of Korea.
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-742, Republic of Korea.
| | - Hee-Jeong Jung
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-742, Republic of Korea.
| | - Nasar Uddin Ahmed
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-742, Republic of Korea.
| | - Md Abdul Kayum
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-742, Republic of Korea.
| | - Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-742, Republic of Korea.
| | - Yoonkang Hur
- Department of Biology, Chungnam National University, 96 Daehangno, Gung-dong, Yuseong-gu, Daejeon, 305-764, Republic of Korea.
| | - Yong-Gu Cho
- Department of Crop Science, Chungbuk National University, 410 Seongbongro, Heungdokgu, Cheongju, 361-763, Republic of Korea.
| | - Masao Watanabe
- Laboratory of Plant Reproductive Genetics, Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-742, Republic of Korea.
| |
Collapse
|
6
|
Li X, Ramchiary N, Dhandapani V, Choi SR, Hur Y, Nou IS, Yoon MK, Lim YP. Quantitative trait loci mapping in Brassica rapa revealed the structural and functional conservation of genetic loci governing morphological and yield component traits in the A, B, and C subgenomes of Brassica species. DNA Res 2012; 20:1-16. [PMID: 23223793 PMCID: PMC3576654 DOI: 10.1093/dnares/dss029] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Brassica rapa is an important crop species that produces vegetables, oilseed, and fodder. Although many studies reported quantitative trait loci (QTL) mapping, the genes governing most of its economically important traits are still unknown. In this study, we report QTL mapping for morphological and yield component traits in B. rapa and comparative map alignment between B. rapa, B. napus, B. juncea, and Arabidopsis thaliana to identify candidate genes and conserved QTL blocks between them. A total of 95 QTL were identified in different crucifer blocks of the B. rapa genome. Through synteny analysis with A. thaliana, B. rapa candidate genes and intronic and exonic single nucleotide polymorphisms in the parental lines were detected from whole genome resequenced data, a few of which were validated by mapping them to the QTL regions. Semi-quantitative reverse transcriptase PCR analysis showed differences in the expression levels of a few genes in parental lines. Comparative mapping identified five key major evolutionarily conserved crucifer blocks (R, J, F, E, and W) harbouring QTL for morphological and yield components traits between the A, B, and C subgenomes of B. rapa, B. juncea, and B. napus. The information of the identified candidate genes could be used for breeding B. rapa and other related Brassica species.
Collapse
Affiliation(s)
- Xiaonan Li
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Gung-Dong, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kim JA, Kim JS, Hong JK, Lee YH, Choi BS, Seol YJ, Jeon CH. Comparative mapping, genomic structure, and expression analysis of eight pseudo-response regulator genes in Brassica rapa. Mol Genet Genomics 2012; 287:373-88. [PMID: 22466714 DOI: 10.1007/s00438-012-0682-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 02/15/2012] [Indexed: 12/30/2022]
Abstract
Circadian clocks regulate plant growth and development in response to environmental factors. In this function, clocks influence the adaptation of species to changes in location or climate. Circadian-clock genes have been subject of intense study in models such as Arabidopsis thaliana but the results may not necessarily reflect clock functions in species with polyploid genomes, such as Brassica species, that include multiple copies of clock-related genes. The triplicate genome of Brassica rapa retains high sequence-level co-linearity with Arabidopsis genomes. In B. rapa we had previously identified five orthologs of the five known Arabidopsis pseudo-response regulator (PRR) genes that are key regulators of the circadian clock in this species. Three of these B. rapa genes, BrPRR1, BrPPR5, and BrPPR7, are present in two copies each in the B. rapa genome, for a total of eight B. rapa PRR (BrPRR) orthologs. We have now determined sequences and expression characteristics of the eight BrPRR genes and mapped their positions in the B. rapa genome. Although both members of each paralogous pair exhibited the same expression pattern, some variation in their gene structures was apparent. The BrPRR genes are tightly linked to several flowering genes. The knowledge about genome location, copy number variation and structural diversity of these B. rapa clock genes will improve our understanding of clock-related functions in this important crop. This will facilitate the development of Brassica crops for optimal growth in new environments and under changing conditions.
Collapse
Affiliation(s)
- Jin A Kim
- Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration, Suinro Gwonseon-gu, Suwon, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Li H, Chen X, Yang Y, Xu J, Gu J, Fu J, Qian X, Zhang S, Wu J, Liu K. Development and genetic mapping of microsatellite markers from whole genome shotgun sequences in Brassica oleracea. MOLECULAR BREEDING 2011. [PMID: 0 DOI: 10.1007/s11032-010-9509-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|
9
|
Wang X, Torres MJ, Pierce G, Lemke C, Nelson LK, Yuksel B, Bowers JE, Marler B, Xiao Y, Lin L, Epps E, Sarazen H, Rogers C, Karunakaran S, Ingles J, Giattina E, Mun JH, Seol YJ, Park BS, Amasino RM, Quiros CF, Osborn TC, Pires JC, Town C, Paterson AH. A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations. BMC Genomics 2011; 12:470. [PMID: 21955929 PMCID: PMC3193055 DOI: 10.1186/1471-2164-12-470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/28/2011] [Indexed: 11/17/2022] Open
Abstract
Background Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, Arabidopsis thaliana, provides means to explore their genomic complexity. Results A genome-wide physical map of a rapid-cycling strain of B. oleracea was constructed by integrating high-information-content fingerprinting (HICF) of Bacterial Artificial Chromosome (BAC) clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences) to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of B. oleracea and Arabidopsis thaliana, a relatively high level of genomic change since their divergence. Comparison of the B. oleracea physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity. Conclusions A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes. All the physical mapping data is freely shared at a WebFPC site (http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/; Temporarily password-protected: account: pgml; password: 123qwe123.
Collapse
Affiliation(s)
- Xiyin Wang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Park TH, Park BS, Kim JA, Hong JK, Jin M, Seol YJ, Mun JH. Construction of random sheared fosmid library from Chinese cabbage and its use for Brassica rapa genome sequencing project. J Genet Genomics 2011; 38:47-53. [PMID: 21338952 DOI: 10.1016/j.jcg.2010.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/27/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
As a part of the Multinational Genome Sequencing Project of Brassica rapa, linkage group R9 and R3 were sequenced using a bacterial artificial chromosome (BAC) by BAC strategy. The current physical contigs are expected to cover approximately 90% euchromatins of both chromosomes. As the project progresses, BAC selection for sequence extension becomes more limited because BAC libraries are restriction enzyme-specific. To support the project, a random sheared fosmid library was constructed. The library consists of 97536 clones with average insert size of approximately 40 kb corresponding to seven genome equivalents, assuming a Chinese cabbage genome size of 550 Mb. The library was screened with primers designed at the end of sequences of nine points of scaffold gaps where BAC clones cannot be selected to extend the physical contigs. The selected positive clones were end-sequenced to check the overlap between the fosmid clones and the adjacent BAC clones. Nine fosmid clones were selected and fully sequenced. The sequences revealed two completed gap filling and seven sequence extensions, which can be used for further selection of BAC clones confirming that the fosmid library will facilitate the sequence completion of B. rapa.
Collapse
Affiliation(s)
- Tae-Ho Park
- Genomics and Functional Bio-Material Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Sarilar V, Marmagne A, Brabant P, Joets J, Alix K. BraSto, a Stowaway MITE from Brassica: recently active copies preferentially accumulate in the gene space. PLANT MOLECULAR BIOLOGY 2011; 77:59-75. [PMID: 21626236 DOI: 10.1007/s11103-011-9794-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/12/2011] [Indexed: 05/02/2023]
Abstract
We characterized a Brassica miniature inverted repeat transposable element (MITE) from the Stowaway superfamily, designated BraSto (Bra ssica Sto waway). BraSto copy number was assessed using real-time quantitative PCR in the two diploid species B. rapa (genome A) and B. oleracea (genome C) and the corresponding allotetraploid species B. napus (genome AC). Phylogenetic relationships among a set of 131 BraSto copies were then analyzed. BraSto appears to have been only moderately amplified in the Brassica genome and was still active recently with marks of proliferation in both diploid Brassica species, which diverged 3.75 million years ago, but also in the allotetraploid species after reuniting of the two differentiated genomes. We characterized insertion sites for low-divergence BraSto copies among the gene space of the B. rapa genome using bioinformatics approaches. For BraSto copies localized nearby or within genes, we observed frequent associations of BraSto with putative promoters and regulatory regions of genes, but exclusion from coding regions. In addition, BraSto was significantly similar to several Brassica expressed sequence tags (ESTs), including stress-induced ESTs. We also demonstrated the enrichment of BraSto sequences in binding sites for transcription factors and other regulatory elements. Our results lead to the question of a role for BraSto in the regulation of gene expression: this putative role, if further confirmed experimentally, would help to obtain a new insight into the significance of MITEs in the functional plant genome.
Collapse
Affiliation(s)
- Véronique Sarilar
- AgroParisTech/CNRS, UMR 0320/UMR 8120 Génétique Végétale INRA/Univ. Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
12
|
Hwang YJ, Lim KB. Development of microdissection and chromosome specific genomic library in Lilium tigrinum. Genes Genomics 2011. [DOI: 10.1007/s13258-010-0178-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Dhandapani V, Ramchiary N, Paul P, Kim J, Choi SH, Lee J, Hur Y, Lim YP. Identification of potential microRNAs and their targets in Brassica rapa L. Mol Cells 2011; 32:21-37. [PMID: 21647586 PMCID: PMC3887654 DOI: 10.1007/s10059-011-2313-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/06/2011] [Accepted: 04/14/2011] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are recently discovered, noncoding, small regulatory RNA molecules that negatively regulate gene expression. Although many miRNAs are identified and validated in many plant species, they remain largely unknown in Brassica rapa (AA 2n =, 20). B. rapa is an important Brassica crop with wide genetic and morphological diversity resulting in several subspecies that are largely grown for vegetables, oilseeds, and fodder crop production. In this study, we identified 186 miRNAs belonging to 55 families in B. rapa by using comparative genomics. The lengths of identified mature and pre-miRNAs ranged from 18 to 22 and 66 to 305 nucleotides, respectively. Comparison of 4 nucleotides revealed that uracil is the predominant base in the first position of B. rapa miRNA, suggesting that it plays an important role in miRNA-mediated gene regulation. Overall, adenine and guanine were predominant in mature miRNAs, while adenine and uracil were predominant in pre-miRNA sequences. One DNA sequence producing both sense and antisense mature miRNAs belonging to the BrMiR 399 family, which differs by 1 nucleotide at the, 20(th) position, was identified. In silico analyses, using previously established methods, predicted 66 miRNA target mRNAs for 33 miRNA families. The majority of the target genes were transcription factors that regulate plant growth and development, followed by a few target genes that are involved in fatty acid metabolism, glycolysis, biotic and abiotic stresses, and other cellular processes. Northern blot and qRT-PCR analyses of RNA samples prepared from different B. rapa tissues for 17 miRNA families revealed that miRNAs are differentially expressed both quantitatively and qualitatively in different tissues of B. rapa.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeongyeo Lee
- Department of Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Yoonkang Hur
- Department of Biology, Chungnam National University, Daejeon 305-764, Korea
| | | |
Collapse
|
14
|
Li X, Ramchiary N, Choi SR, Van Nguyen D, Hossain MJ, Yang HK, Lim YP. Development of a high density integrated reference genetic linkage map for the multinational Brassica rapa Genome Sequencing Project. Genome 2011; 53:939-47. [PMID: 21076509 DOI: 10.1139/g10-054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We constructed a high-density Brassica rapa integrated linkage map by combining a reference genetic map of 78 doubled haploid lines derived from Chiifu-401-42 × Kenshin (CKDH) and a new map of 190 F2 lines derived from Chiifu-401-42 × rapid cycling B. rapa (CRF2). The integrated map contains 1017 markers and covers 1262.0 cM of the B. rapa genome, with an average interlocus distance of 1.24 cM. High similarity of marker order and position was observed among the linkage groups of the maps with few short-distance inversions. In total, 155 simple sequence repeat (SSR) markers, anchored to 102 new bacterial artificial chromosomes (BACs) and 146 intron polymorphic (IP) markers were mapped in the integrated map, which would be helpful to align the sequenced BACs in the ongoing multinational Brassica rapa Genome Sequencing Project (BrGSP). Further, comparison of the B. rapa consensus map with the 10 B. juncea A-genome linkage groups by using 98 common IP markers showed high-degree colinearity between the A-genome linkage groups, except for few markers showing inversion or translocation. Suggesting that chromosomes are highly conserved between these Brassica species, although they evolved independently after divergence. The sequence information coming out of BrGSP would be useful for B. juncea breeding. and the identified Arabidopsis chromosomal blocks and known quantitative trait loci (QTL) information of B. juncea could be applied to improve other Brassica crops including B. rapa.
Collapse
Affiliation(s)
- Xiaonan Li
- Molecular Genetics and Genomics Lab, Department of Horticulture, Chungnam National University, Gung-Dong, Yuseong-Gu, Daejeon 305 764, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Promoters of three Brassica rapa FLOWERING LOCUS C differentially regulate gene expression during growth and development in Arabidopsis. Genes Genomics 2011. [DOI: 10.1007/s13258-010-0117-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Xu J, Qian X, Wang X, Li R, Cheng X, Yang Y, Fu J, Zhang S, King GJ, Wu J, Liu K. Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa. BMC Genomics 2010; 11:594. [PMID: 20969760 PMCID: PMC3091739 DOI: 10.1186/1471-2164-11-594] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/22/2010] [Indexed: 11/23/2022] Open
Abstract
Background The Multinational Brassica rapa Genome Sequencing Project (BrGSP) has developed valuable genomic resources, including BAC libraries, BAC-end sequences, genetic and physical maps, and seed BAC sequences for Brassica rapa. An integrated linkage map between the amphidiploid B. napus and diploid B. rapa will facilitate the rapid transfer of these valuable resources from B. rapa to B. napus (Oilseed rape, Canola). Results In this study, we identified over 23,000 simple sequence repeats (SSRs) from 536 sequenced BACs. 890 SSR markers (designated as BrGMS) were developed and used for the construction of an integrated linkage map for the A genome in B. rapa and B. napus. Two hundred and nineteen BrGMS markers were integrated to an existing B. napus linkage map (BnaNZDH). Among these mapped BrGMS markers, 168 were only distributed on the A genome linkage groups (LGs), 18 distrubuted both on the A and C genome LGs, and 33 only distributed on the C genome LGs. Most of the A genome LGs in B. napus were collinear with the homoeologous LGs in B. rapa, although minor inversions or rearrangements occurred on A2 and A9. The mapping of these BAC-specific SSR markers enabled assignment of 161 sequenced B. rapa BACs, as well as the associated BAC contigs to the A genome LGs of B. napus. Conclusion The genetic mapping of SSR markers derived from sequenced BACs in B. rapa enabled direct links to be established between the B. napus linkage map and a B. rapa physical map, and thus the assignment of B. rapa BACs and the associated BAC contigs to the B. napus linkage map. This integrated genetic linkage map will facilitate exploitation of the B. rapa annotated genomic resources for gene tagging and map-based cloning in B. napus, and for comparative analysis of the A genome within Brassica species.
Collapse
Affiliation(s)
- Jinsong Xu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hong JK, Kim JS, Kim JA, Lee SI, Lim MH, Park BS, Lee YH. Identification and characterization of SHI family genes from Brassica rapa L. ssp. pekinensis. Genes Genomics 2010. [DOI: 10.1007/s13258-010-0011-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Kong F, Ge C, Fang X, Snowdon RJ, Wang Y. Characterization of seedling proteomes and development of markers to distinguish the Brassica A and C genomes. J Genet Genomics 2010; 37:333-40. [PMID: 20513634 DOI: 10.1016/s1673-8527(09)60051-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/30/2010] [Accepted: 04/06/2010] [Indexed: 11/28/2022]
Abstract
The diploid species Brassica rapa (genome AA) and B. oleracea (genome CC) were compared by full-scale proteome analyses of seedling. A total of 28.2% of the proteins was common to both species, indicating the existence of a basal or ubiquitous proteome. However, a number of discriminating proteins (32.0%) and specific proteins (39.8%) of the Brassica A and C genomes, respectively, were identified, which could represent potentially species-specific functions. Based on these A or C genome-specific proteins, a number of PCR-based markers to distinguish B. rapa and B. oleracea species were also developed.
Collapse
Affiliation(s)
- Fang Kong
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | | | | | | | | |
Collapse
|
19
|
Mittasch J, Mikolajewski S, Breuer F, Strack D, Milkowski C. Genomic microstructure and differential expression of the genes encoding UDP-glucose:sinapate glucosyltransferase (UGT84A9) in oilseed rape (Brassica napus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1485-1500. [PMID: 20087565 DOI: 10.1007/s00122-010-1270-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 12/12/2009] [Indexed: 05/28/2023]
Abstract
In oilseed rape (Brassica napus), the glucosyltransferase UGT84A9 catalyzes the formation of 1-O-sinapoyl-beta-glucose, which feeds as acyl donor into a broad range of accumulating sinapate esters, including the major antinutritive seed component sinapoylcholine (sinapine). Since down-regulation of UGT84A9 was highly efficient in decreasing the sinapate ester content, the genes encoding this enzyme were considered as potential targets for molecular breeding of low sinapine oilseed rape. B. napus harbors two distinguishable sequence types of the UGT84A9 gene designated as UGT84A9-1 and UGT84A9-2. UGT84A9-1 is the predominantly expressed variant, which is significantly up-regulated during the seed filling phase, when sinapate ester biosynthesis exhibits strongest activity. In the allotetraploid genome of B. napus, UGT84A9-1 is represented by two loci, one derived from the Brassica C-genome (UGT84A9a) and one from the Brassica A-genome (UGT84A9b). Likewise, for UGT84A9-2 two loci were identified in B. napus originating from both diploid ancestor genomes (UGT84A9c, Brassica C-genome; UGT84A9d, Brassica A-genome). The distinct UGT84A9 loci were genetically mapped to linkage groups N15 (UGT84A9a), N05 (UGT84A9b), N11 (UGT84A9c) and N01 (UGT84A9d). All four UGT84A9 genomic loci from B. napus display a remarkably low micro-collinearity with the homologous genomic region of Arabidopsis thaliana chromosome III, but exhibit a high density of transposon-derived sequence elements. Expression patterns indicate that the orthologous genes UGT84A9a and UGT84A9b should be considered for mutagenesis inactivation to introduce the low sinapine trait into oilseed rape.
Collapse
Affiliation(s)
- Juliane Mittasch
- Department of Secondary Metabolism, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
20
|
Mun JH, Kwon SJ, Yang TJ, Seol YJ, Jin M, Kim JA, Lim MH, Kim JS, Baek S, Choi BS, Yu HJ, Kim DS, Kim N, Lim KB, Lee SI, Hahn JH, Lim YP, Bancroft I, Park BS. Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 2009; 10:R111. [PMID: 19821981 PMCID: PMC2784326 DOI: 10.1186/gb-2009-10-10-r111] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 08/09/2009] [Accepted: 10/12/2009] [Indexed: 02/01/2023] Open
Abstract
Euchromatic regions of the Brassica rapa genome were sequenced and mapped onto the corresponding regions in the Arabidopsis thaliana genome. Background Brassica rapa is one of the most economically important vegetable crops worldwide. Owing to its agronomic importance and phylogenetic position, B. rapa provides a crucial reference to understand polyploidy-related crop genome evolution. The high degree of sequence identity and remarkably conserved genome structure between Arabidopsis and Brassica genomes enables comparative tiling sequencing using Arabidopsis sequences as references to select the counterpart regions in B. rapa, which is a strong challenge of structural and comparative crop genomics. Results We assembled 65.8 megabase-pairs of non-redundant euchromatic sequence of B. rapa and compared this sequence to the Arabidopsis genome to investigate chromosomal relationships, macrosynteny blocks, and microsynteny within blocks. The triplicated B. rapa genome contains only approximately twice the number of genes as in Arabidopsis because of genome shrinkage. Genome comparisons suggest that B. rapa has a distinct organization of ancestral genome blocks as a result of recent whole genome triplication followed by a unique diploidization process. A lack of the most recent whole genome duplication (3R) event in the B. rapa genome, atypical of other Brassica genomes, may account for the emergence of B. rapa from the Brassica progenitor around 8 million years ago. Conclusions This work demonstrates the potential of using comparative tiling sequencing for genome analysis of crop species. Based on a comparative analysis of the B. rapa sequences and the Arabidopsis genome, it appears that polyploidy and chromosomal diploidization are ongoing processes that collectively stabilize the B. rapa genome and facilitate its evolution.
Collapse
Affiliation(s)
- Jeong-Hwan Mun
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, 150 Suin-ro, Gwonseon-gu, Suwon 441-707, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kim H, Choi SR, Bae J, Hong CP, Lee SY, Hossain MJ, Van Nguyen D, Jin M, Park BS, Bang JW, Bancroft I, Lim YP. Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics 2009; 10:432. [PMID: 19751531 PMCID: PMC2761421 DOI: 10.1186/1471-2164-10-432] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 09/15/2009] [Indexed: 11/10/2022] Open
Abstract
Background In view of the immense value of Brassica rapa in the fields of agriculture and molecular biology, the multinational Brassica rapa Genome Sequencing Project (BrGSP) was launched in 2003 by five countries. The developing BrGSP has valuable resources for the community, including a reference genetic map and seed BAC sequences. Although the initial B. rapa linkage map served as a reference for the BrGSP, there was ambiguity in reconciling the linkage groups with the ten chromosomes of B. rapa. Consequently, the BrGSP assigned each of the linkage groups to the project members as chromosome substitutes for sequencing. Results We identified simple sequence repeat (SSR) motifs in the B. rapa genome with the sequences of seed BACs used for the BrGSP. By testing 749 amplicons containing SSR motifs, we identified polymorphisms that enabled the anchoring of 188 BACs onto the B. rapa reference linkage map consisting of 719 loci in the 10 linkage groups with an average distance of 1.6 cM between adjacent loci. The anchored BAC sequences enabled the identification of 30 blocks of conserved synteny, totaling 534.9 cM in length, between the genomes of B. rapa and Arabidopsis thaliana. Most of these were consistent with previously reported duplication and rearrangement events that differentiate these genomes. However, we were able to identify the collinear regions for seven additional previously uncharacterized sections of the A genome. Integration of the linkage map with the B. rapa cytogenetic map was accomplished by FISH with probes representing 20 BAC clones, along with probes for rDNA and centromeric repeat sequences. This integration enabled unambiguous alignment and orientation of the maps representing the 10 B. rapa chromosomes. Conclusion We developed a second generation reference linkage map for B. rapa, which was aligned unambiguously to the B. rapa cytogenetic map. Furthermore, using our data, we confirmed and extended the comparative genome analysis between B. rapa and A. thaliana. This work will serve as a basis for integrating the genetic, physical, and chromosome maps of the BrGSP, as well as for studies on polyploidization, speciation, and genome duplication in the genus Brassica.
Collapse
Affiliation(s)
- Hyeran Kim
- Plant Genomics Institute, Chungnam National University, Daejeon, 305-764 Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Feng J, Primomo V, Li Z, Zhang Y, Jan CC, Tulsieram L, Xu SS. Physical localization and genetic mapping of the fertility restoration gene Rfo in canola (Brassica napus L.). Genome 2009; 52:401-7. [PMID: 19370095 DOI: 10.1139/g09-016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ogu cytoplasm for male sterility and its fertility restorer gene Rfo in canola (Brassica napus L.) were originally introgressed from radish (Raphanus sativus L.) and have been widely used for canola hybrid production and breeding. The objective of this study was to determine the physical location of the Rfo locus in the canola genome using fluorescence in situ hybridization and genetic mapping. For physical localization of the Rfo gene, two bacterial artificial chromosome (BAC) clones, G62 and B420, which were closely linked to the Rfo gene, were used as probes to hybridize with the somatic metaphase chromosomes of a canola hybrid variety, PHI-46 (46H02), containing the Rfo fragment. The results showed that both clones were physically located at the end of one large metacentric chromosome. By simultaneous use of two BAC clones and 45S rDNA repeated sequences as the probes, we demonstrated that the large metacentric chromosome probed with the two BAC clones did not carry 45S rDNA repeated sequences. The chromosome was 3.65 +/- 0.74 microm in average length (20 cells) and ranked second in size among the chromosomes without 45S rDNAs. The centromere index of the chromosome (20 cells) was calculated as 43.74 +/- 4.19. A comparison with previously reported putative karyotypes of B. napus (AACC) and its diploid ancestors Brassica rapa L. (AA) and Brassica oleracea L. (CC) suggests that the chromosome carrying the Rfo fragment might belong to one of three large metacentric chromosomes of the C genome. Genetic mapping has confirmed the localization of the Rfo fragment to the distal region of linkage group N19, which corresponds to the C genome in B. napus. This study has provided the evidence of the location of the Rfo gene on canola chromosomes and established a basic framework for further physical mapping and manipulation of the gene.
Collapse
Affiliation(s)
- Jiuhuan Feng
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58105, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Zang YX, Kim HU, Kim JA, Lim MH, Jin M, Lee SC, Kwon SJ, Lee SI, Hong JK, Park TH, Mun JH, Seol YJ, Hong SB, Park BS. Genome-wide identification of glucosinolate synthesis genes in Brassica rapa. FEBS J 2009; 276:3559-74. [PMID: 19456863 DOI: 10.1111/j.1742-4658.2009.07076.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glucosinolates play important roles in plant defense against herbivores and microbes, as well as in human nutrition. Some glucosinolate-derived isothiocyanate and nitrile compounds have been clinically proven for their anticarcinogenic activity. To better understand glucosinolate biosynthesis in Brassica rapa, we conducted a comparative genomics study with Arabidopsis thaliana and identified total 56 putative biosynthetic and regulator genes. This established a high colinearity in the glucosinolate biosynthesis pathway between Arabidopsis and B. rapa. Glucosinolate genes in B. rapa share 72-94% nucleotide sequence identity with the Arabidopsis orthologs and exist in different copy numbers. The exon/intron split pattern of B. rapa is almost identical to that of Arabidopsis, although inversion, insertion, deletion and intron size variations commonly occur. Four genes appear to be nonfunctional as a result of the presence of a frame shift mutation and retrotransposon insertion. At least 12 paralogs of desulfoglucosinolate sulfotransferase were found in B. rapa, whereas only three were found in Arabidopsis. The expression of those paralogs was not tissue-specific but varied greatly depending on B. rapa tissue types. Expression was also developmentally regulated in some paralogs but not in other paralogs. Most of the regulator genes are present as triple copies. Accordingly, glucosinolate synthesis and regulation in B. rapa appears to be more complex than that of Arabidopsis. With the isolation and further characterization of the endogenous genes, health-beneficial vegetables or desirable animal feed crops could be developed by metabolically engineering the glucosinolate pathway.
Collapse
Affiliation(s)
- Yun-Xiang Zang
- Genomics Division, Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Park TH, Jin MN, Lee SC, Hong JK, Kim JS, Kim JA, Kwon SJ, Zang YX, Park YD, Park BS. Genetic mapping and sequence analysis of Phi class Glutathione S-transferases (BrGSTFs) candidates from Brassica rapa. ACTA ACUST UNITED AC 2008. [DOI: 10.5010/jpb.2008.35.4.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Lysak MA, Koch MA, Beaulieu JM, Meister A, Leitch IJ. The dynamic ups and downs of genome size evolution in Brassicaceae. Mol Biol Evol 2008; 26:85-98. [PMID: 18842687 DOI: 10.1093/molbev/msn223] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Crucifers (Brassicaceae, Cruciferae) are a large family comprising some 338 genera and c. 3,700 species. The family includes important crops as well as several model species in various fields of plant research. This paper reports new genome size (GS) data for more than 100 cruciferous species in addition to previously published C-values (the DNA amount in the unreplicated gametic nuclei) to give a data set comprising 185 Brassicaceae taxa, including all but 1 of the 25 tribes currently recognized. Evolution of GS was analyzed within a phylogenetic framework based on gene trees built from five data sets (matK, chs, adh, trnLF, and ITS). Despite the 16.2-fold variation across the family, most Brassicaceae species are characterized by very small genomes with a mean 1C-value of 0.63 pg. The ancestral genome size (ancGS) for Brassicaceae was reconstructed as (anc)1C=0.50 pg. Approximately 50% of crucifer taxa analyzed showed a decrease in GS compared with the ancGS. The remaining species showed an increase in GS although this was generally moderate, with significant increases in C-value found only in the tribes Anchonieae and Physarieae. Using statistical approaches to analyze GS, evolutionary gains or losses in GS were seen to have accumulated disproportionately faster within longer branches. However, we also found that GS has not changed substantially through time and most likely evolves passively (i.e., a tempo that cannot be distinguished between neutral evolution and weak forms of selection). The data reveal an apparent paradox between the narrow range of small GSs over long evolutionary time periods despite evidence of dynamic genomic processes that have the potential to lead to genome obesity (e.g., transposable element amplification and polyploidy). To resolve this, it is suggested that mechanisms to suppress amplification and to eliminate amplified DNA must be active in Brassicaceae although their control and mode of operation are still poorly understood.
Collapse
Affiliation(s)
- Martin A Lysak
- Department of Functional Genomics and Proteomics, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
26
|
Hong CP, Kwon SJ, Kim JS, Yang TJ, Park BS, Lim YP. Progress in understanding and sequencing the genome of Brassica rapa. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2008; 2008:582837. [PMID: 18288250 PMCID: PMC2233773 DOI: 10.1155/2008/582837] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 11/21/2007] [Indexed: 05/24/2023]
Abstract
Brassica rapa, which is closely related to Arabidopsis thaliana, is an important crop and a model plant for studying genome evolution via polyploidization. We report the current understanding of the genome structure of B. rapa and efforts for the whole-genome sequencing of the species. The tribe Brassicaceae, which comprises ca. 240 species, descended from a common hexaploid ancestor with a basic genome similar to that of Arabidopsis. Chromosome rearrangements, including fusions and/or fissions, resulted in the present-day "diploid" Brassica species with variation in chromosome number and phenotype. Triplicated genomic segments of B. rapa are collinear to those of A. thaliana with InDels. The genome triplication has led to an approximately 1.7-fold increase in the B. rapa gene number compared to that of A. thaliana. Repetitive DNA of B. rapa has also been extensively amplified and has diverged from that of A. thaliana. For its whole-genome sequencing, the Brassica rapa Genome Sequencing Project (BrGSP) consortium has developed suitable genomic resources and constructed genetic and physical maps. Ten chromosomes of B. rapa are being allocated to BrGSP consortium participants, and each chromosome will be sequenced by a BAC-by-BAC approach. Genome sequencing of B. rapa will offer a new perspective for plant biology and evolution in the context of polyploidization.
Collapse
Affiliation(s)
- Chang Pyo Hong
- Department of Horticulture,
College of Agriculture and Life Science,
Chungnam National University,
Daejeon 305764,
South Korea
| | - Soo-Jin Kwon
- Brassica Genomics Team,
National Institute of Agricultural Biotechnology (NIAB),
Rural Development Administration (RDA),
Suwon 441707,
South Korea
| | - Jung Sun Kim
- Brassica Genomics Team,
National Institute of Agricultural Biotechnology (NIAB),
Rural Development Administration (RDA),
Suwon 441707,
South Korea
| | - Tae-Jin Yang
- Department of Plant Science,
College of Agriculture and Life Sciences,
Seoul National University,
Seoul 151921,
South Korea
| | - Beom-Seok Park
- Brassica Genomics Team,
National Institute of Agricultural Biotechnology (NIAB),
Rural Development Administration (RDA),
Suwon 441707,
South Korea
| | - Yong Pyo Lim
- Department of Horticulture,
College of Agriculture and Life Science,
Chungnam National University,
Daejeon 305764,
South Korea
| |
Collapse
|
27
|
Razi H, Howell EC, Newbury HJ, Kearsey MJ. Does sequence polymorphism of FLC paralogues underlie flowering time QTL in Brassica oleracea? TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:179-92. [PMID: 17938878 DOI: 10.1007/s00122-007-0657-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 09/21/2007] [Indexed: 05/09/2023]
Abstract
Previous locations of flowering time (FT) QTL in several Brassica species, coupled with Arabidopsis synteny, suggest that orthologues of the genes FLC, FY or CONSTANS might be the candidates. We focused on FLC, and cloned paralogous copies in Brassica oleracea, obtained their genomic DNA sequences, and confirmed their locations relative to those of known FT-QTL by genetical mapping. They varied in total length mainly due to the variable size of the first and last introns. A high level of identity was observed among Brassica FLC genes at the amino acid level but non-synonymous differences were present. Comparative analysis of the promoter and intragenic regions of BoFLC paralogues with Arabidopsis FLC revealed extensive differences in overall structure and organisation but showed high conservation within those segments known to be essential in regulating FLC expression. Four B. oleracea FLC copies (BoFLC1, BoFLC3, BoFLC4 and BoFLC5) were located to their respective linkage groups based on allelic sequence variation in lines from a doubled haploid population. All except BoFLC4 were within the confidence intervals of known FT-QTL. Sequence data indicated that relevant non-synonymous polymorphisms were present between parents A12DHd and GDDH33 for BoFLC genes. However, BoFLC alleles segregated independently of FT in backcrosses while the study provided evidence that BoFLC4 and BoFLC5 contain premature stop codons and so could not contribute to flowering time variation. Therefore, there is strong evidence against any of the 4 BoFLC being FT-QTL candidates in this population.
Collapse
Affiliation(s)
- H Razi
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | |
Collapse
|
28
|
Kwon SJ, Kim DH, Lim MH, Long Y, Meng JL, Lim KB, Kim JA, Kim JS, Jin M, Kim HI, Ahn SN, Wessler SR, Yang TJ, Park BS. Terminal repeat retrotransposon in miniature (TRIM) as DNA markers in Brassica relatives. Mol Genet Genomics 2007; 278:361-70. [PMID: 17690909 DOI: 10.1007/s00438-007-0249-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 05/11/2007] [Indexed: 11/24/2022]
Abstract
We have developed a display system using a unique sequence of terminal repeat retrotransposon in miniature (TRIM) elements, which were recently identified from gene-rich regions of Brassica rapa. The technique, named TRIM display, is based on modification of the AFLP technique using an adapter primer for the restriction fragments of BfaI and a primer derived from conserved terminal repeat sequences of TRIM elements, Br1 and Br2. TRIM display using genomic DNA produced 50-70 bands ranging from 100 to 700 bp in all the species of the family Brassicaceae. TRIM display using B. rapa cDNA produced about 20 bands. Sequences of 11 randomly selected bands, 7 from genomic DNA and 4 from cDNA, begin with about 104 bp of the terminal repeat sequences of TRIM elements Br1 or Br2 and end with unique sequences indicating that all bands are derived from unique insertion sites of TRIM elements. Furthermore, 7 of the 11 unique sequences showed significant similarity with expressed gene. Most of the TRIM display bands were polymorphic between genera and about 55% (132 of 239 bands) are polymorphic among 19 commercial F1 hybrid cultivars. Analysis of phylogenetic relationships shows clear-cut lineage among the 19 cultivars. Furthermore, a combination of 11 polymorphic bands derived from only one primer combination can clearly distinguish one cultivar from the others. TRIM display bands were reproducible and inheritable through successive generations that is revealed by genetic mapping of 6 out of 27 polymorphic TRIM markers on the genetic map of Brassica napus. Collective data provide evidence that TRIM display can provide useful DNA markers in Brassica relatives because these markers are distributed in gene-rich regions, and are sometimes involved in the restructuring of genes.
Collapse
Affiliation(s)
- Soo-Jin Kwon
- Brassica Genomics Team, National Institute of Agricultural Biotechnology, RDA, Suwon, 441-707, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yang TJ, Kwon SJ, Choi BS, Kim JS, Jin M, Lim KB, Park JY, Kim JA, Lim MH, Kim HI, Lee HJ, Lim YP, Paterson AH, Park BS. Characterization of terminal-repeat retrotransposon in miniature (TRIM) in Brassica relatives. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:627-36. [PMID: 17160537 DOI: 10.1007/s00122-006-0463-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 11/11/2006] [Indexed: 05/12/2023]
Abstract
We have newly identified five Terminal-repeat retrotransposon in miniature (TRIM) families, four from Brassica and one from Arabidopsis. A total of 146 elements, including three Arabidopsis families reported before, are extracted from genomics data of Brassica and Arabidopsis, and these are grouped into eight distinct lineages, Br1 to Br4 derived from Brassica and At1 to At4 derived from Arabidopsis. Based on the occurrence of TRIM elements in 434 Mb of B. oleracea shotgun sequences and 96 Mb of B. rapa BAC end sequences, total number of TRIM members of Br1, Br2, Br3, and Br4 families are roughly estimated to be present in 660 and 530 copies in B. oleracea and B. rapa genomes, respectively. Studies on insertion site polymorphisms of four elements across taxa in the tribe Brassiceae infer the taxonomic lineage and dating of the insertion time. Active roles of the TRIM elements for evolution of the duplicated genes are inferred in the highly replicated Brassica genome.
Collapse
Affiliation(s)
- Tae-Jin Yang
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JY, Kwon SJ, Kim J, Choi BS, Lim MH, Jin M, Kim HI, de Jong H, Bancroft I, Lim Y, Park BS. Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:173-83. [PMID: 17156411 DOI: 10.1111/j.1365-313x.2006.02952.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report the identification and characterization of the major repeats in the centromeric and peri-centromeric heterochromatin of Brassica rapa. The analysis involved the characterization of 88 629 bacterial artificial chromosomes (BAC) end sequences and the complete sequences of two BAC clones. We identified centromere-specific retrotransposons of Brassica (CRB) and various peri-centromere-specific retrotransposons (PCRBr). Three copies of the CRB were identified in one BAC clone as nested insertions within a tandem array of 24 copies of a 176 bp centromeric repeat, CentBr. A complex mosaic structure consisting of nine PCRBr elements and large blocks of 238 bp degenerate tandem repeats (TR238) were found in or near a derivative of 5S-25S rDNA sequences. The chromosomal positions of selected repeats were determined using in situ hybridization. These revealed that CRB is a major component of all centromeres in three diploid Brassica species and their allotetraploid relatives. However, CentBr was not detected in the most distantly related of the diploid species analyzed, B. nigra. PCRBr and TR238 were found to be major components in the peri-centromeric heterochromatin blocks of four chromosomes of B. rapa. These repetitive elements were not identified in B. oleracea or B. nigra, indicating that they are A-genome-specific. GenBank accession numbers: KBrH001P13 (AC 166739); KBrH015B20 (AC 166740); end sequences of KBrH BAC library (CW 978640 - CW 988843); end sequences of KBrS BAC library (DU 826965 - DU 835595); end sequences of KBrB BAC library (DX 010661 - DX 083363).
Collapse
MESH Headings
- Brassica/genetics
- Brassica rapa/genetics
- Centromere/genetics
- Chromosome Banding
- Chromosomes, Artificial, Bacterial/genetics
- Chromosomes, Plant/genetics
- Cloning, Molecular
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Genome, Plant
- In Situ Hybridization, Fluorescence
- Models, Biological
- Molecular Sequence Data
- Polyploidy
- Retroelements/genetics
- Sequence Analysis, DNA
- Tandem Repeat Sequences
Collapse
Affiliation(s)
- Ki-Byung Lim
- National Institute of Agricultural Biotechnology (NIAB), Rural Development Administration (RDA), Suwon 441-707 [corrected] Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kim JS, Chung TY, King GJ, Jin M, Yang TJ, Jin YM, Kim HI, Park BS. A sequence-tagged linkage map of Brassica rapa. Genetics 2006; 174:29-39. [PMID: 16988107 PMCID: PMC1569789 DOI: 10.1534/genetics.106.060152] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A detailed genetic linkage map of Brassica rapa has been constructed containing 545 sequence-tagged loci covering 1287 cM, with an average mapping interval of 2.4 cM. The loci were identified using a combination of 520 RFLP and 25 PCR-based markers. RFLP probes were derived from 359 B. rapa EST clones and amplification products of 11 B. rapa and 26 Arabidopsis. Including 21 SSR markers provided anchors to previously published linkage maps for B. rapa and B. napus and is followed as the referenced mapping of R1-R10. The sequence-tagged markers allowed interpretation of the pattern of chromosome duplications within the B. rapa genome and comparison with Arabidopsis. A total of 62 EST markers showing a single RFLP band were mapped through 10 linkage groups, indicating that these can be valuable anchoring markers for chromosome-based genome sequencing of B. rapa. Other RFLP probes gave rise to 2-5 loci, inferring that B. rapa genome duplication is a general phenomenon through 10 chromosomes. The map includes five loci of FLC paralogues, which represent the previously reported BrFLC-1, -2, -3, and -5 and additionally identified BrFLC3 paralogues derived from local segmental duplication on R3.
Collapse
Affiliation(s)
- Jung Sun Kim
- National Institute of Agricultural Biotechnology (NIAB), Rural Development Administration, Suwon, 441-707, Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim HI, Lim YP, Kang JJ, Hong JH, Kim CB, Bhak J, Bancroft I, Park BS. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. THE PLANT CELL 2006; 18:1339-47. [PMID: 16632644 PMCID: PMC1475497 DOI: 10.1105/tpc.105.040535] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Strong evidence exists for polyploidy having occurred during the evolution of the tribe Brassiceae. We show evidence for the dynamic and ongoing diploidization process by comparative analysis of the sequences of four paralogous Brassica rapa BAC clones and the homologous 124-kb segment of Arabidopsis thaliana chromosome 5. We estimated the times since divergence of the paralogous and homologous lineages. The three paralogous subgenomes of B. rapa triplicated 13 to 17 million years ago (MYA), very soon after the Arabidopsis and Brassica divergence occurred at 17 to 18 MYA. In addition, a pair of BACs represents a more recent segmental duplication, which occurred approximately 0.8 MYA, and provides an exception to the general expectation of three paralogous segments within the B. rapa genome. The Brassica genome segments show extensive interspersed gene loss relative to the inferred structure of the ancestral genome, whereas the Arabidopsis genome segment appears little changed. Representatives of all 32 genes in the Arabidopsis genome segment are represented in Brassica, but the hexaploid complement of 96 has been reduced to 54 in the three subgenomes, with compression of the genomic region lengths they occupy to between 52 and 110 kb. The gene content of the recently duplicated B. rapa genome segments is identical, but intergenic sequences differ.
Collapse
Affiliation(s)
- Tae-Jin Yang
- Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-707, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Schranz ME, Mitchell-Olds T. Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. THE PLANT CELL 2006; 18:1152-65. [PMID: 16617098 PMCID: PMC1456871 DOI: 10.1105/tpc.106.041111] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recent studies have elucidated the ancient polyploid history of the Arabidopsis thaliana (Brassicaceae) genome. The studies concur that there was at least one polyploidy event occurring some 14.5 to 86 million years ago (Mya), possibly near the divergence of the Brassicaceae from its sister family, Cleomaceae. Using a comparative genomics approach, we asked whether this polyploidy event was unique to members of the Brassicaceae, shared with the Cleomaceae, or an independent polyploidy event in each lineage. We isolated and sequenced three genomic regions from diploid Cleome spinosa (Cleomaceae) that are each homoeologous to a duplicated region shared between At3 and At5, centered on the paralogs of SEPALLATA (SEP) and CONSTANS (CO). Phylogenetic reconstructions and analysis of synonymous substitution rates support the hypothesis that a genomic triplication in Cleome occurred independently of and more recently than the duplication event in the Brassicaceae. There is a strong correlation in the copy number (single versus duplicate) of individual genes, suggesting functionally consistent influences operating on gene copy number in these two independently evolving lineages. However, the amount of gene loss in Cleome is greater than in Arabidopsis. The genome of C. spinosa is only 1.9 times the size of A. thaliana, enabling comparative genome analysis of separate but related polyploidy events.
Collapse
Affiliation(s)
- M Eric Schranz
- Department of Genetics and Evolution, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.
| | | |
Collapse
|
34
|
Schranz ME, Mitchell-Olds T. Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae. THE PLANT CELL 2006; 18:1152-1165. [PMID: 16617098 DOI: 10.1105/tpc.106.041111.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent studies have elucidated the ancient polyploid history of the Arabidopsis thaliana (Brassicaceae) genome. The studies concur that there was at least one polyploidy event occurring some 14.5 to 86 million years ago (Mya), possibly near the divergence of the Brassicaceae from its sister family, Cleomaceae. Using a comparative genomics approach, we asked whether this polyploidy event was unique to members of the Brassicaceae, shared with the Cleomaceae, or an independent polyploidy event in each lineage. We isolated and sequenced three genomic regions from diploid Cleome spinosa (Cleomaceae) that are each homoeologous to a duplicated region shared between At3 and At5, centered on the paralogs of SEPALLATA (SEP) and CONSTANS (CO). Phylogenetic reconstructions and analysis of synonymous substitution rates support the hypothesis that a genomic triplication in Cleome occurred independently of and more recently than the duplication event in the Brassicaceae. There is a strong correlation in the copy number (single versus duplicate) of individual genes, suggesting functionally consistent influences operating on gene copy number in these two independently evolving lineages. However, the amount of gene loss in Cleome is greater than in Arabidopsis. The genome of C. spinosa is only 1.9 times the size of A. thaliana, enabling comparative genome analysis of separate but related polyploidy events.
Collapse
Affiliation(s)
- M Eric Schranz
- Department of Genetics and Evolution, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.
| | | |
Collapse
|
35
|
Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E. A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci U S A 2005; 103:236-41. [PMID: 16371470 PMCID: PMC1324985 DOI: 10.1073/pnas.0507127103] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants, although sessile, can reorient growth axes in response to changing environmental conditions. Phototropism and gravitropism represent adaptive growth responses induced by changes in light direction and growth axis orientation relative to gravitational direction, respectively. The nearly 80-year-old Cholodny-Went theory [Went, F. W. & Thimann, K. V. (1937) Phytohormones (Macmillan, New York)] predicts that formation of a gradient of the plant morphogen auxin is central to the establishment of tropic curvature. Loss of tropic responses in seedling stems of Arabidopsis thaliana mutants lacking the auxin-regulated transcriptional activator NPH4/ARF7 has further suggested that a gradient of gene expression represents an essential output from the auxin gradient. Yet the molecular identities of such output components, which are likely to encode proteins directly involved in growth control, have remained elusive. Here we report the discovery of a suite of tropic stimulus-induced genes in Brassica oleracea that are responsive to an auxin gradient and exhibit morphologically graded expression concomitant with, or before, observable curvature responses. These results provide compelling molecular support for the Cholodny-Went theory and suggest that morphologically graded transcription represents an important mechanism for interpreting tropically stimulated gradients of auxin. Intriguingly, two of the tropic stimulus-induced genes, EXPA1 and EXPA8, encode enzymes involved in cell wall extension, a response prerequisite for differential growth leading to curvatures, and are up-regulated before curvature in the flank that will elongate. This observation suggests that morphologically graded transcription likely leads to the graded expression of proteins whose activities can directly regulate the establishment and modulation of tropic curvatures.
Collapse
Affiliation(s)
- C Alex Esmon
- Division of Biological Sciences and Department of Statistics, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
36
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2447491 DOI: 10.1002/cfg.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|