1
|
Guyon L, Ladaycia A, Bosio A, Lemaire L, Franconi F, Lelièvre B, Lautram N, Pigeon P, Jaouen G, Passirani C, Lepeltier E. Self-assemblies of cell-penetrating peptides and ferrocifens: design and biological evaluation of an innovative platform for lung cancer treatment. NANOSCALE 2025. [PMID: 40105246 DOI: 10.1039/d5nr00643k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Chemotherapy, currently used for lung cancer treatment, often consists in a combination of drugs with a moderate efficacy and severe side effects. A major drawback of the classical inorganic drugs used is their hydrophobicity, leading to a very low blood availability and weak efficacy. To overcome this constraint, a nanoplatform was set up in order to vectorize a ferrocifen drug, an organometallic tamoxifen derivative known for its really potent in vitro activity, but as well for its poor water solubility. Two different ferrocifens were tested: P54 and P819. The covalent conjugation of a cell-penetrating peptide (CPP) to the ferrocifen was performed, leading to an amphiphilic prodrug, potentially able to self-assemble. The CPPs used in this study are polyarginines and RLW. Moreover, in order to bring stealth and mucopenetration properties, polyethylene glycol (PEG) was incorporated into the nanostructure. The co-nanoprecipitation of CPP-ferrocifen and PEG-ferrocifen was investigated to achieve self-assemblies. A comparison of the biological activities of different suspensions was performed in vitro on a healthy cell line and on two different lung cancer cell lines. The biological activity of P54 was increased by a factor of 9 with the Arg9-P54 suspension by increasing the cell internalization. Moreover, the P54-based-self-assemblies were chosen to test their in vivo activity on mice bearing lung tumors. The results showed that the intratracheal nebulization of Arg9-P54/PEG-P54 or Arg9-P54 suspensions slowed up significantly the evolution of lung cancer in mice: the suspension with PEG brought an additional comfort to the animal during the administration.
Collapse
Affiliation(s)
- Léna Guyon
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| | | | - Agnese Bosio
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| | - Laurent Lemaire
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
- Univ Angers, Univ Rennes, INRAE, Inserm, CNRS, PRISM, Biogenouest, F-49000 Angers, Rennes, France
| | - Florence Franconi
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
- Univ Angers, Univ Rennes, INRAE, Inserm, CNRS, PRISM, Biogenouest, F-49000 Angers, Rennes, France
| | - Bénédicte Lelièvre
- Centre régional de pharmacovigilance, Laboratoire de pharmacologie-toxicologie, CHU Angers, 4 rue Larrey, F-49100 Angers, France
| | - Nolwenn Lautram
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| | - Pascal Pigeon
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- PSL, Chimie ParisTech, 11 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Gérard Jaouen
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- PSL, Chimie ParisTech, 11 Rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Elise Lepeltier
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
- Institut Universitaire de France (IUF), France
| |
Collapse
|
2
|
Zhang XZ, Li G, Hu GY, Wang CL, Fang YQ, Li Y, Qi XJ, Duan L. Ferrocenyl-Substituted Curcumin Derivatives as Potential SHP-2 Inhibitors for Anticolorectal Cancer: Design, Synthesis and In Vitro Evaluation. ACS OMEGA 2024; 9:51701-51718. [PMID: 39758657 PMCID: PMC11696753 DOI: 10.1021/acsomega.4c10629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025]
Abstract
A panel of ferrocenyl-substituted curcumin derivatives has been designed and synthesized as protein tyrosine phosphatase proto-oncogene SHP-2 inhibitors. Antiproliferative activities of the synthesized compounds were tested against colorectal cancer cell lines (including RKO, SW480, and CT26). Compound 3f showed excellent activities against the tested cell lines with IC50 values of 5.72, 3.71, and 1.42 μM. The cytotoxicity of compound 3f was investigated on human normal colon epithelial cell line NCM460 with IC50 values of 929 μM compared to curcumin with IC50 values of 431 μM. The Western blot analysis approved that the expression level of SHP-2 in the CT26 and SW480 cell lines after being treated with 3f was decreased, meanwhile it also affected the SHP-2 in tumor-associated macrophages (THP-1 and RAW264.7), which may support the suggested mechanism of 3f as an SHP-2 inhibitor. Besides, 3f could also inhibit the activation of the PI3K-Akt pathway in SW480 and CT26 cell lines and the tumor microenvironment (TME) by reducing the expression of PI3K and Akt proteins. Some cytokines (Arg-1, TGF-β, and IL-10) and chemokines (chemokine receptors and CC and CXC chemokine subfamilies) in the TME were also inhibited by 3f. Finally, 3f could increase the expression level of cell cycle-related and mitophagy-related proteins p27, PINK1, and Parkin and decrease the expression level of CDK1 and Cyclin-D1 proteins in CT26 and SW480 cells, which proved that 3f could inhibit the proliferation of CRC cells through multiple pathways. Molecular docking studies against ALDH1 (PDB ID: 5ABM) revealed the good binding modes of the newly synthesized compounds.
Collapse
Affiliation(s)
- Xing-Ze Zhang
- Tianjin
Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine,
School of Chinese Materia Medica, Tianjin
University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Gen Li
- Tianjin
Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine,
School of Chinese Materia Medica, Tianjin
University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Gao-Yong Hu
- State
Key Laboratory of Component-based Chinese Medicine, Research Center
of Traditional Chinese Medicine, Tianjin
University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Chen-Lin Wang
- Tianjin
Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine,
School of Chinese Materia Medica, Tianjin
University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Yu-Qiu Fang
- Tianjin
Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine,
School of Chinese Materia Medica, Tianjin
University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Yuye Li
- Binhai
New Area Hospital of TCM, Tianjin 300451, China
| | - Xue-Jie Qi
- Tianjin
Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine,
School of Chinese Materia Medica, Tianjin
University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- State
Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, P. R. China
| | - Lili Duan
- Tianjin
Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine,
School of Chinese Materia Medica, Tianjin
University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| |
Collapse
|
3
|
Ferenczi E, Keglevich P, Tayeb BA, Minorics R, Papp D, Schlosser G, Zupkó I, Hazai L, Csámpai A. Synthesis and Antiproliferative Effect of New Alkyne-Tethered Vindoline Hybrids Containing Pharmacophoric Fragments. Int J Mol Sci 2024; 25:7428. [PMID: 39000534 PMCID: PMC11242353 DOI: 10.3390/ijms25137428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
In the frame of our diversity-oriented research on multitarget small molecule anticancer agents, utilizing convergent synthetic sequences terminated by Sonogashira coupling reactions, a preliminary selection of representative alkyne-tethered vindoline hybrids was synthesized. The novel hybrids with additional pharmacophoric fragments of well-documented anticancer agents, including FDA-approved tyrosine-kinase inhibitors (imatinib and erlotinib) or ferrocene or chalcone units, were evaluated for their antiproliferative activity on malignant cell lines MDA-MB-231 (triple negative breast cancer), A2780 (ovarian cancer), HeLa (human cervical cancer), and SH-SY5Y (neuroblastoma) as well as on human embryonal lung fibroblast cell line MRC-5, which served as a reference non-malignant cell line for the assessment of the therapeutic window of the tested hybrids. The biological assays identified a trimethoxyphenyl-containing chalcone-vindoline hybrid (36) as a promising lead compound exhibiting submicromolar activity on A2780 cells with a marked therapeutic window.
Collapse
Affiliation(s)
- Etelka Ferenczi
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Pázmány P. sétány 1/A, H-1117 Budapest, Hungary;
- Hevesy György PhD School of Chemistry, Pázmány P. sétány 1/A, H-1117 Budapest, Hungary;
| | - Péter Keglevich
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.K.); (L.H.)
| | - Bizhar Ahmed Tayeb
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.A.T.); (R.M.); (I.Z.)
| | - Renáta Minorics
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.A.T.); (R.M.); (I.Z.)
| | - Dávid Papp
- Hevesy György PhD School of Chemistry, Pázmány P. sétány 1/A, H-1117 Budapest, Hungary;
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary;
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary;
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (B.A.T.); (R.M.); (I.Z.)
| | - László Hazai
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.K.); (L.H.)
| | - Antal Csámpai
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Pázmány P. sétány 1/A, H-1117 Budapest, Hungary;
| |
Collapse
|
4
|
Sadanala BD, Trivedi R. Ferrocenyl Azoles: Versatile N-Containing Heterocycles and their Anticancer Activities. CHEM REC 2024; 24:e202300347. [PMID: 38984727 DOI: 10.1002/tcr.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/04/2024] [Indexed: 07/11/2024]
Abstract
The medicinal chemistry of ferrocene has gained its momentum after the discovery of biological activities of ferrocifen and ferroquine. These ferrocenyl drugs have been designed by replacing the aromatic moiety of the organic drugs, tamoxifen and chloroquine respectively, with a ferrocenyl unit. The promising biological activities of these ferrocenyl drugs have paved a path to explore the medicinal applications of several ferrocenyl conjugates. In these conjugates, the ferrocenyl moiety has played a vital role in enhancing or imparting the anticancer activity to the molecule. The ferrocenyl conjugates induce the cytotoxicity by generating reactive oxygen species and thereby damaging the DNA. In medicinal chemistry, the five membered nitrogen heterocycles (azoles) play a significant role due to their rigid ring structure and hydrogen bonding ability with the biomolecules. Several potent drug candidates with azole groups have been in use as chemotherapeutics. Considering the importance of ferrocenyl moiety and azole groups, several ferrocenyl azole conjugates have been synthesized and screened for their biological activities. Hence, in the view of a wide scope in the development of potent drugs based on ferrocenyl azole conjugates, herein we present the details of synthesis and the anticancer activities of ferrocenyl compounds bearing azole groups such as imidazole, triazoles, thiazole and isoxazoles.
Collapse
Affiliation(s)
- Bhavya Deepthi Sadanala
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
- Present address, Department of Chemistry, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Rajiv Trivedi
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research, AcSIR, Headquarters, CSIR-HRDC campus Sector 19, Kamala Nehru Nagar, Ghaziabad, U.P., 201 002, India
| |
Collapse
|
5
|
Gos M, Cebula J, Goszczyński TM. Metallacarboranes in Medicinal Chemistry: Current Advances and Future Perspectives. J Med Chem 2024; 67:8481-8501. [PMID: 38769934 DOI: 10.1021/acs.jmedchem.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Metallacarboranes, exemplified by cobalt bis(dicarbollide) ([COSAN]-), have excelled their historical metallocene analogue label to become promising in drug design, medical studies, and fundamental biological research. Serving as a unique platform for conjugation with biomolecules, they also constitute an auspicious building block for biologically active derivatives and a carrier for cellular transport of membrane-impermeable cargos. Modified [COSAN]- exhibits specific antimicrobial, antiviral, and anticancer actions showing promise for preclinical trials. Contributing to the ongoing development in medicinal chemistry, metallacarboranes offer desirable physicochemical properties and low acute toxicity. This article presents a critical look at metallacarboranes in the context of their application in medicinal chemistry, emphasizing [COSAN]- as a potential game-changer in drug design and biomedical sciences. As medicinal chemistry seeks innovative building blocks, metallacarboranes emerge as an important novelty with versatile solutions and promising implications.
Collapse
Affiliation(s)
- Michalina Gos
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Jakub Cebula
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Tomasz M Goszczyński
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| |
Collapse
|
6
|
Sghyar R, Bentama A, Haoudi A, Mazzah A, Mague JT, Hökelek T, EL Hadrami EM, Sebbar NK. Crystal structure and Hirshfeld surface analysis of ( Z)- N-{chloro-[(4-ferrocenylphen-yl)imino]-meth-yl}-4-ferrocenylaniline N, N-di-methyl-formamide monosolvate. Acta Crystallogr E Crystallogr Commun 2024; 80:262-266. [PMID: 38456046 PMCID: PMC10915674 DOI: 10.1107/s2056989024001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
The title mol-ecule, [Fe2(C5H5)2(C23H17ClN2)]·C3H7NO, is twisted end to end and the central N/C/N unit is disordered. In the crystal, several C-H⋯π(ring) inter-actions lead to the formation of layers, which are connected by further C-H⋯π(ring) inter-actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (60.2%) and H⋯C/C⋯H (27.0%) inter-actions. Hydrogen bonding, C-H⋯π(ring) inter-actions and van der Waals inter-actions dominate the crystal packing.
Collapse
Affiliation(s)
- Riham Sghyar
- Laboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty of Science And Technology, Road Immouzer, BP 2202 Fez, Morocco
| | - Abdeslem Bentama
- Laboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty of Science And Technology, Road Immouzer, BP 2202 Fez, Morocco
| | - Amal Haoudi
- Laboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty of Science And Technology, Road Immouzer, BP 2202 Fez, Morocco
| | - Ahmed Mazzah
- Science and Technology of Lille USR 3290, Villeneuve d’ascq cedex, France
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Tuncer Hökelek
- Department of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye
| | - El Mestafa EL Hadrami
- Laboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty of Science And Technology, Road Immouzer, BP 2202 Fez, Morocco
| | - Nada Kheira Sebbar
- Laboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
- Laboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta BP 1014 RP, Rabat, Morocco
| |
Collapse
|
7
|
Sindhu M, Kalaivani P, Prabusankar G, Sivasamy R, Prabhakaran R. Preparation of new organo-ruthenium(II) complexes and their nucleic acid/albumin binding efficiency and in vitro cytotoxicity studies. Dalton Trans 2024; 53:3075-3096. [PMID: 38235791 DOI: 10.1039/d3dt04017h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hetero-bimetallic ruthenium(II) complexes (PRAFIZ and PRBFIZ) containing acetyl ferrocene (AFIZ)/benzoyl ferrocene isonicotinic hydrazone ligands (BFIZ) were synthesized and characterized by various spectral and analytical techniques. The structure of acetyl ferrocene isonicotinic hydrazone (AFIZ) and the complex PRBFIZ was confirmed by X-ray crystallography. The hydrazide ligands coordinated in a bidentate monobasic fashion using their N1 hydrazinic nitrogen and enolic oxygen atoms. The binding interactions of the ligands and complexes were examined using Calf-Thymus DNA (CT-DNA) and bovine serum albumin (BSA). Scanning Electron Microscopic (SEM) experiments clarified the efficient binding interaction of the ligands and complexes with BSA. The results of in vitro cytotoxicity studies on MDA-MB-261 breast cancer cells and A549 human lung cancer cells and cell morphological analysis results through staining assays clearly indicated the cytotoxic nature of the complexes.
Collapse
Affiliation(s)
- M Sindhu
- Department of Chemistry, Nirmala College for Women, Bharathiar University, Coimbatore 641 018, India.
| | - P Kalaivani
- Department of Chemistry, Nirmala College for Women, Bharathiar University, Coimbatore 641 018, India.
| | - G Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502 285, India
| | - R Sivasamy
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, India
| | - R Prabhakaran
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
8
|
Dembo A, Ferenczi E, Jernei T, Bor A, Schelz Z, Zupkó I, Varga S, Csámpai A. CuAAC-Based Synthesis, Copper-Catalyzed Aldehyde-Forming Hydrolytic Fission and Antiproliferative Evaluation of Novel Ferrocenoylamino-Substituted Triazole-Tethered Quinine-Chalcone Hybrids. Molecules 2024; 29:375. [PMID: 38257289 PMCID: PMC10820026 DOI: 10.3390/molecules29020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
A series of novel triazole-tethered ferrocenoylamino-substituted cinchona-chalcone hybrids along with two representative benzoylamino-substituted reference compounds were prepared by three methods of CuAAC chemistry. In line with the limited success or complete failure of attempted conversions with low catalyst loadings, by means of DFT modeling studies, we demonstrated that a substantial part of the Cu(I) ions can be chelated and thus trapped in the aroylamino-substituted cinchona fragment and all of the accessible coordinating sites of the chalcone residues. Accordingly, increased amounts of catalysts were used to achieve acceptable yields; however, the cycloadditions with para-azidochalcones were accompanied by partial or complete aldehyde-forming hydrolytic fission of the enone C=C bond in a substituent-, solvent- and copper load-dependent manner. The experienced hydrolytic stability of the hybrids obtained by cycloadditions with ortho-azidochalcones was interpreted in terms of relative energetics, DFT reactivity indices and MO analysis of simplified models of two isomer copper-enone complexes. The novel hybrids were evaluated on HeLa, MDA-MB-231 and A2780 cell lines and showed substantial activity at low-to-submicromolar concentrations. An organometallic model carrying 3,4,5-trimethoxyphenyl residue in the enone part with a para-disubstituted benzene ring in the central skeletal region was identified as the most potent antiproliferative lead, characterized by submicromolar IC50 values measured on the three investigated cells. The biological assays also disclosed that this ferrocenoylamino-containing lead compound displays a ca. two- to five-fold more substantial antiproliferative effect than its benzoylamino-substituted counterpart.
Collapse
Affiliation(s)
- António Dembo
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Pázmány P. sétány 1/A, H-1117 Budapest, Hungary; (A.D.); (E.F.); (T.J.)
- Hevesy György PhD School of Chemistry, Pázmány P. sétány 1/A, H-1117 Budapest, Hungary
| | - Etelka Ferenczi
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Pázmány P. sétány 1/A, H-1117 Budapest, Hungary; (A.D.); (E.F.); (T.J.)
- Hevesy György PhD School of Chemistry, Pázmány P. sétány 1/A, H-1117 Budapest, Hungary
| | - Tamás Jernei
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Pázmány P. sétány 1/A, H-1117 Budapest, Hungary; (A.D.); (E.F.); (T.J.)
| | - Andrea Bor
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; (A.B.); (Z.S.); (I.Z.)
| | - Zsuzsanna Schelz
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; (A.B.); (Z.S.); (I.Z.)
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; (A.B.); (Z.S.); (I.Z.)
| | - Szilárd Varga
- HUN-REN Research Centre for Natural Sciences, Institute of Organic Chemistry, Magyar Tudósok Krt 2., H-1117 Budapest, Hungary;
| | - Antal Csámpai
- Department of Organic Chemistry, Eötvös Loránd University (ELTE), Pázmány P. sétány 1/A, H-1117 Budapest, Hungary; (A.D.); (E.F.); (T.J.)
| |
Collapse
|
9
|
Munnik BL, Kaschula CH, Harding CR, Chellan P. Investigation of new ferrocenyl-artesunate derivatives as antiparasitics. Dalton Trans 2023; 52:15786-15797. [PMID: 37681434 PMCID: PMC10628858 DOI: 10.1039/d3dt02254d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Artesunate (Ars) is a semisynthetic antimalarial drug and is a part of the artemisinin-based combination therapy arsenal employed for malaria treatment. The drug functions mainly by activation of its endoperoxide bridge leading to increased oxidative stress in malaria parasites. The purpose of this study was to ascertain the antiparasitic effects of combining ferrocene and Arsvia short or long chain ester or amide linkages (C1-C4). The compounds were evaluated for growth inhibition activity on the apicomplexan parasites, Plasmodium falciparum (P. falciparum) and Toxoplasma gondii (T. gondii). All the complexes demonstrated good activity against T. gondii with IC50 values in the low micromolar range (0.28-1.2 μM) and good to excellent antimalarial activity against a chloroquine sensitive strain of P. falciparum (NF54). Further investigations on T. gondii revealed that the likely mode of action (MoA) is through the generation of reactive oxygen species. Additionally, immunofluorescence microscopy suggested a novel change in the morphology of the parasite by complex C3, an artesunate-ferrocenyl ethyl amide complex. The complexes were not cytotoxic or showed low cytotoxicity to two normal cell lines tested.
Collapse
Affiliation(s)
- Brandon L Munnik
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Western Cape, South Africa.
| | - Catherine H Kaschula
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Western Cape, South Africa.
| | - Clare R Harding
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and inflammation, University of Glasgow, UK
| | - Prinessa Chellan
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, Western Cape, South Africa.
| |
Collapse
|
10
|
Dembitsky VM. Steroids Bearing Heteroatom as Potential Drugs for Medicine. Biomedicines 2023; 11:2698. [PMID: 37893072 PMCID: PMC10604304 DOI: 10.3390/biomedicines11102698] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Heteroatom steroids, a diverse class of organic compounds, have attracted significant attention in the field of medicinal chemistry and drug discovery. The biological profiles of heteroatom steroids are of considerable interest to chemists, biologists, pharmacologists, and the pharmaceutical industry. These compounds have shown promise as potential therapeutic agents in the treatment of various diseases, such as cancer, infectious diseases, cardiovascular disorders, and neurodegenerative conditions. Moreover, the incorporation of heteroatoms has led to the development of targeted drug delivery systems, prodrugs, and other innovative pharmaceutical approaches. Heteroatom steroids represent a fascinating area of research, bridging the fields of organic chemistry, medicinal chemistry, and pharmacology. The exploration of their chemical diversity and biological activities holds promise for the discovery of novel drug candidates and the development of more effective and targeted treatments.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
11
|
Salmain M, Gaschard M, Baroud M, Lepeltier E, Jaouen G, Passirani C, Vessières A. Thioredoxin Reductase and Organometallic Complexes: A Pivotal System to Tackle Multidrug Resistant Tumors? Cancers (Basel) 2023; 15:4448. [PMID: 37760418 PMCID: PMC10526406 DOI: 10.3390/cancers15184448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cancers classified as multidrug-resistant (MDR) are a family of diseases with poor prognosis despite access to increasingly sophisticated treatments. Several mechanisms explain these resistances involving both tumor cells and their microenvironment. It is now recognized that a multi-targeting approach offers a promising strategy to treat these MDR tumors. Inhibition of thioredoxin reductase (TrxR), a key enzyme in maintaining redox balance in cells, is a well-identified target for this approach. Auranofin was the first inorganic gold complex to be described as a powerful inhibitor of TrxR. In this review, we will first recall the main results obtained with this metallodrug. Then, we will focus on organometallic complexes reported as TrxR inhibitors. These include gold(I), gold(III) complexes and metallocifens, i.e., organometallic complexes of Fe and Os derived from tamoxifen. In these families of complexes, similarities and differences in the molecular mechanisms of TrxR inhibition will be highlighted. Finally, the possible relationship between TrxR inhibition and cytotoxicity will be discussed and put into perspective with their mode of action.
Collapse
Affiliation(s)
- Michèle Salmain
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu, F-75005 Paris, France; (M.S.); (M.G.); (G.J.); (A.V.)
| | - Marie Gaschard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu, F-75005 Paris, France; (M.S.); (M.G.); (G.J.); (A.V.)
| | - Milad Baroud
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, F-49000 Angers, France; (M.B.); (E.L.)
| | - Elise Lepeltier
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, F-49000 Angers, France; (M.B.); (E.L.)
| | - Gérard Jaouen
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu, F-75005 Paris, France; (M.S.); (M.G.); (G.J.); (A.V.)
| | - Catherine Passirani
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, F-49000 Angers, France; (M.B.); (E.L.)
| | - Anne Vessières
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 Place Jussieu, F-75005 Paris, France; (M.S.); (M.G.); (G.J.); (A.V.)
| |
Collapse
|
12
|
Kowalczyk K, Błauż A, Moscoh Ayine-Tora D, Hartinger CG, Rychlik B, Plażuk D. Design, Synthesis, and Evaluation of Biological Activity of Ferrocene-Ispinesib Hybrids: Impact of a Ferrocenyl Group on the Antiproliferative and Kinesin Spindle Protein Inhibitory Activity. Chemistry 2023; 29:e202300813. [PMID: 37332065 DOI: 10.1002/chem.202300813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
With the aim to combine more than one biologically-active component in a single molecule, derivatives of ispinesib and its (S) analogue were prepared that featured ferrocenyl moieties or bulky organic substituents. Inspired by the strong kinesin spindle protein (KSP) inhibitory activity of ispinesib, the compounds were investigated for their antiproliferative activity. Among these compounds, several derivatives demonstrated significantly higher antiproliferative activity than ispinesib with nanomolar IC50 values against cell lines. Further evaluation indicated that the antiproliferative activity is not directly correlated with their KSP inhibitory activity while docking suggested that several of the derivatives may bind in a manner similar to ispinesib. In order to investigate the mode of action further, cell cycle analysis and reactive oxygen species formation were investigated. The improved antiproliferative activity of the most active compounds may be assigned to synergic effects of various factors such as KSP inhibitory activity due to the ispinesib core and ability to generate ROS and induce mitotic arrest.
Collapse
Affiliation(s)
- Karolina Kowalczyk
- Laboratory of Molecular Spectroscopy, Department of Organic Chemistry Faculty of Chemistry, University of Lodz ul. Tamka 12, 91-403, Łódź, Poland
| | - Andrzej Błauż
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz ul. Pomorska 141/143, 90-236, Łódź, Poland
| | | | - Christian G Hartinger
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Błażej Rychlik
- Cytometry Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz ul. Pomorska 141/143, 90-236, Łódź, Poland
| | - Damian Plażuk
- Laboratory of Molecular Spectroscopy, Department of Organic Chemistry Faculty of Chemistry, University of Lodz ul. Tamka 12, 91-403, Łódź, Poland
| |
Collapse
|
13
|
Diaz de Greñu B, Fernández-Aroca DM, Organero JA, Durá G, Jalón FA, Sánchez-Prieto R, Ruiz-Hidalgo MJ, Rodríguez AM, Santos L, Albasanz JL, Manzano BR. Ferrozoles: Ferrocenyl derivatives of letrozole with dual effects as potent aromatase inhibitors and cytostatic agents. J Biol Inorg Chem 2023; 28:531-547. [PMID: 37458856 DOI: 10.1007/s00775-023-02006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/07/2023] [Indexed: 08/11/2023]
Abstract
In the treatment of hormone-dependent cancers, aromatase inhibitors (AI) are receiving increased attention due to some undesirable effects such as the risk of endometrial cancer and thromboembolism of SERMs (selective estrogen receptor modulators). Letrozole is the most active AI with 99% aromatase inhibition. Unfortunately, this compound also exhibits some adverse effects such as hot flashes and fibromyalgias. Therefore, there is an urgent need to explore new types of AIs that retain the same-or even increased-antitumor ability. Inspired by the letrozole structure, a set of new derivatives has been synthesized that include a ferrocenyl moiety and different heterocycles. The derivative that contains a benzimidazole ring, namely compound 6, exhibits a higher aromatase inhibitory activity than letrozole and it also shows potent cytostatic behavior when compared to other well-established aromatase inhibitors, as demonstrated by dose-response, cell cycle, apoptosis and time course experiments. Furthermore, 6 promotes the inhibition of cell growth in both an aromatase-dependent and -independent fashion, as indicated by the study of A549 and MCF7 cell lines. Molecular docking and molecular dynamics calculations on the interaction of 6 or letrozole with the aromatase binding site revealed that the ferrocene moiety increases the van der Waals and hydrophobic interactions, thus resulting in an increase in binding affinity. Furthermore, the iron atom of the ferrocene fragment can form a metal-acceptor interaction with a propionate fragment, and this results in a stronger coupling with the heme group-a possibility that is consistent with the strong aromatase inhibition of 6.
Collapse
Affiliation(s)
- Borja Diaz de Greñu
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Universidad de Castilla-La Mancha, Avda. C. J Cela, 10, 13071, Ciudad Real, Spain
| | - Diego M Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Albacete, Spain
| | - Juan A Organero
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímicas and INAMOL, Universidad de Castilla-La Mancha, 45071, Toledo, Spain
| | - Gema Durá
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Universidad de Castilla-La Mancha, Avda. C. J Cela, 10, 13071, Ciudad Real, Spain
| | - Felix Angel Jalón
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Universidad de Castilla-La Mancha, Avda. C. J Cela, 10, 13071, Ciudad Real, Spain
| | - Ricardo Sánchez-Prieto
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
- Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Albacete, Spain
| | - M José Ruiz-Hidalgo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Albacete, Spain
- Área de Bioquímica y Biología Molecular, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Ana María Rodríguez
- Departamento de Q. Inorgánica, Orgánica y Bioquímica, IRICA, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 3, 13071, Ciudad Real, Spain
| | - Lucia Santos
- Departamento de Q. Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, S/N, 13071, Ciudad Real, Spain
| | - José L Albasanz
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Regional Center of Biomedical Research (CRIB), University of Castilla-La Mancha (UCLM), 13071, Ciudad Real, Spain
| | - Blanca R Manzano
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, IRICA, Universidad de Castilla-La Mancha, Avda. C. J Cela, 10, 13071, Ciudad Real, Spain.
| |
Collapse
|
14
|
Ornelas C, Astruc D. Ferrocene-Based Drugs, Delivery Nanomaterials and Fenton Mechanism: State of the Art, Recent Developments and Prospects. Pharmaceutics 2023; 15:2044. [PMID: 37631259 PMCID: PMC10458437 DOI: 10.3390/pharmaceutics15082044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Ferrocene has been the most used organometallic moiety introduced in organic and bioinorganic drugs to cure cancers and various other diseases. Following several pioneering studies, two real breakthroughs occurred in 1996 and 1997. In 1996, Jaouen et al. reported ferrocifens, ferrocene analogs of tamoxifen, the chemotherapeutic for hormone-dependent breast cancer. Several ferrocifens are now in preclinical evaluation. Independently, in 1997, ferroquine, an analog of the antimalarial drug chloroquine upon the introduction of a ferrocenyl substituent in the carbon chain, was reported by the Biot-Brocard group and found to be active against both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. Ferroquine, in combination with artefenomel, completed phase IIb clinical evaluation in 2019. More than 1000 studies have been published on ferrocenyl-containing pharmacophores against infectious diseases, including parasitic, bacterial, fungal, and viral infections, but the relationship between structure and biological activity has been scarcely demonstrated, unlike for ferrocifens and ferroquines. In a majority of ferrocene-containing drugs, however, the production of reactive oxygen species (ROS), in particular the OH. radical, produced by Fenton catalysis, plays a key role and is scrutinized in this mini-review, together with the supramolecular approach utilizing drug delivery nanosystems, such as micelles, metal-organic frameworks (MOFs), polymers, and dendrimers.
Collapse
Affiliation(s)
- Catia Ornelas
- ChemistryX, R&D Department, R&D and Consulting Company, 9000-160 Funchal, Portugal
| | - Didier Astruc
- University of Bordeaux, ISM, UMR CNRS, No. 5255, 351 Cours de la Libération, CEDEX, 33405 Talence, France
| |
Collapse
|
15
|
Hashmi K, Gupta S, Siddique A, Khan T, Joshi S. Medicinal applications of vanadium complexes with Schiff bases. J Trace Elem Med Biol 2023; 79:127245. [PMID: 37406475 DOI: 10.1016/j.jtemb.2023.127245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Many transition metal complexes have been explored for their therapeutic properties after the discovery of cisplatin. Schiff bases have an efficient complexation tendency with the transition metals and several medicinal properties have been reported. However, fewer studies have reported the medicinal utility of vanadium and its Schiff base complexes. This paper provides a comprehensive overview of vanadium complexes with Schiff bases along with their mechanistic insight. Vanadium complexes in + 4 and + 5 oxidation states have exhibited well-defined geometry and found to be thermodynamically stable. The studies have reported the G0/G1 phase cell cycle arrest and decreased delta psi m, inducing mitochondrial membrane depolarization in cancer cell lines along with the alterations in the metabolism of the cancer cells upon dosing with the vanadium complexes. Cancer cell invasion and growth are also found to be markedly reduced by peroxo complexes of vanadium. The studies included in the review paper have been taken from leading indexing databases and focus was laid on recent reports in literature. The biological potential of vanadium complexes of Schiff bases opens new horizons for future interdisciplinary studies and investigation focussed on understanding the biochemistry of these complexes, along with designing new complexes which have better bioavailability, solubility and low or non-toxicity.
Collapse
Affiliation(s)
- Kulsum Hashmi
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Sakshi Gupta
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Armeen Siddique
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, UP 226026, India
| | - Seema Joshi
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India.
| |
Collapse
|
16
|
Zubair S, Badshah A, Patujo J, Khan M, Raheel A, Asghar F, Imtiaz S. New ferrocene integrated amphiphilic guanidines: Synthesis, spectroscopic elucidation, DFT calculation and in vitro α-amylase and α-glucosidase inhibition combined with molecular docking approach. Heliyon 2023; 9:e14919. [PMID: 37064477 PMCID: PMC10102212 DOI: 10.1016/j.heliyon.2023.e14919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Three N, N', N″-trisubstituted ferrocenyl guanidines (MG-10, MG-12 and MG-14) were synthesized, characterized by several analytical methods such as FT-IR, 1H and 13C NMR, elemental analysis and UV-visible spectroscopy. These compounds have long chain aliphatic groups therefore their aliphatic nature has been evaluated by determining their critical micelle concentration (CMC). CMC point decreases from 0.036 mM to 0.013 mM with increase in the aliphatic chain length. The quantum mechanical parameters such as the energy of frontier molecular orbitals (EHOMO and ELUMO) and the Mulliken charge distribution on the optimized structures were determined using a DFT/B3LYP method combined with the 6-31G (d,p) basis set in the gas phase. The in vitro antidiabetic activity of synthesized compounds showed that MG-12 has IC50value 23.10 μg/mL against α-amylase while MG-10 has IC50value 27.32 μg/mL against α-glucosidase with the respective standard Acarbose (IC50value 20.12 μg/mL). Theoretical docking analysis demonstrated that MG-10 and MG-12 interacted with α-amylase by 3 types of interaction, including hydrogen bonds, hydrophobic interactions and electrostatic interactions.
Collapse
Affiliation(s)
- Shumaila Zubair
- Coordination Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Pakistan Institute of Nuclear Science and Technology, Islamabad, Pakistan
- Corresponding author. Coordination Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| | - Amin Badshah
- Coordination Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Corresponding author.
| | - Jahangeer Patujo
- Institute of Chemistry, Shah Abdul Latif University, Khairpur, Pakistan
| | - Mehmand Khan
- Department of Biochemistry, Quaid-I-Azam University, 45320, Islamabad, Pakistan
| | - Ahmad Raheel
- Coordination Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Faiza Asghar
- Department of Chemistry, University of Wah, Quaid Avenue, Wah, 47000, Pakistan
| | - Shamila Imtiaz
- Pakistan Institute of Nuclear Science and Technology, Islamabad, Pakistan
| |
Collapse
|
17
|
Muhammad US, Erkan S, Kaya S. Analysis of Boronic Acids Containing Amino Ferrocene by DFT Approach and In Silico Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
18
|
Koszytkowska-Stawińska M, Buchowicz W. Ferrocene-triazole conjugates: do we know why they are biologically active? Dalton Trans 2023; 52:1501-1517. [PMID: 36651023 DOI: 10.1039/d2dt03161b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bioorganometallic chemistry of ferrocene has been gaining significance in recent years. This review presents ferrocene-triazole conjugates displaying significant biological properties. The conjugates have been synthesized via azide-alkyne cycloaddition reactions. The data are summarized according to the type of activity (anticancer, antibacterial and/or antifungal, antiprotozoal, and other effects). The results of studies concerning the understanding of the role of the ferrocene core in their biological activity are highlighted. While generally the mode of action of these organometallic species remains unclear, the importance of redox properties of ferrocene has been postulated in several cases.
Collapse
Affiliation(s)
- Mariola Koszytkowska-Stawińska
- Faculty of Chemistry, Chair of Organic Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Włodzimierz Buchowicz
- Faculty of Chemistry, Chair of Organic Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
19
|
Huang Z, Spivey JA, MacMillan SN, Wilson JJ. A ferrocene-containing analogue of the MCU inhibitor Ru265 with increased cell permeability. Inorg Chem Front 2023. [DOI: 10.1039/d2qi02183h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An analogue of the mitochondrial calcium uniporter (MCU) inhibitor Ru265 containing axial ferrocenecarboxylate ligands is reported. This new complex exhibits enhanced cellular uptake compared to the parent compound Ru265.
Collapse
Affiliation(s)
- Zhouyang Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Jesse A. Spivey
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
20
|
Hadj Mohamed A, Pinon A, Lagarde N, Goya Jorge E, Mouhsine H, Msaddek M, Liagre B, Sylla-Iyarreta Veitía M. Novel Set of Diarylmethanes to Target Colorectal Cancer: Synthesis, In Vitro and In Silico Studies. Biomolecules 2022; 13:54. [PMID: 36671439 PMCID: PMC9855432 DOI: 10.3390/biom13010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Distinctive structural, chemical, and physical properties make the diarylmethane scaffold an essential constituent of many active biomolecules nowadays used in pharmaceutical, agrochemical, and material sciences. In this work, 33 novel diarylmethane molecules aiming to target colorectal cancer were designed. Two series of functionalized olefinic and aryloxy diarylmethanes were synthesized and chemically characterized. The synthetic strategy of olefinic diarylmethanes involved a McMurry cross-coupling reaction as key step and the synthesis of aryloxy diarylmethanes included an O-arylation step. A preliminarily screening in human colorectal cancer cells (HT-29 and HCT116) and murine primary fibroblasts (L929) allowed the selection, for more detailed analyses, of the three best candidates (10a, 10b and 12a) based on their high inhibition of cancer cell proliferation and non-toxic effects on murine fibroblasts (<100 µM). The anticancer potential of these diarylmethane compounds was then assessed using apoptotic (phospho-p38) and anti-apoptotic (phospho-ERK, phospho-Akt) cell survival signaling pathways, by analyzing the DNA fragmentation capacity, and through the caspase-3 and PARP cleavage pro-apoptotic markers. Compound 12a (2-(1-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl) vinyl) pyridine, Z isomer) was found to be the most active molecule. The binding mode to five biological targets (i.e., AKT, ERK-1 and ERK-2, PARP, and caspase-3) was explored using molecular modeling, and AKT was identified as the most interesting target. Finally, compounds 10a, 10b and 12a were predicted to have appropriate drug-likeness and good Absorption, Distribution, Metabolism and Excretion (ADME) profiles.
Collapse
Affiliation(s)
- Ameni Hadj Mohamed
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528) Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, 75003 Paris, France
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39) Université de Monastir Avenue de l’Environnement, Monastir 5019, Tunisia
| | - Aline Pinon
- Univ. Limoges, LABCiS, UR 22722, Faculté de Pharmacie, F-87000 Limoges, France
| | - Nathalie Lagarde
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528) Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, 75003 Paris, France
| | - Elizabeth Goya Jorge
- Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Av. de Cureghem 10 (B43b), 4000 Liège, Belgium
| | - Hadley Mouhsine
- Peptinov, Pépinière Paris Santé Cochin, Hôpital Cochin, 29 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Moncef Msaddek
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39) Université de Monastir Avenue de l’Environnement, Monastir 5019, Tunisia
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, Faculté de Pharmacie, F-87000 Limoges, France
| | - Maité Sylla-Iyarreta Veitía
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528) Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, 75003 Paris, France
| |
Collapse
|
21
|
Farh MK, Louzi I, Abul-Futouh H, Görls H, Häfner N, Runnebaum IB, Weigand W. Platinum(II) and palladium(II) complexes mediated by β-hydroxy-dithioesters ferrocenyl derivatives: synthesis, characterization and antiproliferative activity. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2152285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Micheal K. Farh
- Department of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Jena, Germany
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
| | - Ikrame Louzi
- Department of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Jena, Germany
| | - Hassan Abul-Futouh
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Helmar Görls
- Department of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Jena, Germany
| | - Norman Häfner
- Department of Gynecology, Jena University Hospital- Friedrich Schiller University Jena, Jena, Germany
| | - Ingo B. Runnebaum
- Department of Gynecology, Jena University Hospital- Friedrich Schiller University Jena, Jena, Germany
| | - Wolfgang Weigand
- Department of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
22
|
Ling YY, Wang WJ, Hao L, Wu XW, Liang JH, Zhang H, Mao ZW, Tan CP. Self-Amplifying Iridium(III) Photosensitizer for Ferroptosis-Mediated Immunotherapy Against Transferrin Receptor-Overexpressing Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203659. [PMID: 36310137 DOI: 10.1002/smll.202203659] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Photoimmunotherapy is attractive for cancer treatment due to its spatial controllability and sustained responses. This work presents a ferrocene-containing Ir(III) photosensitizer (IrFc1) that can bind with transferrin and be transported into triple-negative breast cancer (TNBC) cells via a transferrin receptor-mediated pathway. When the ferrocene in IrFc1 is oxidized by reactive oxygen species, its capability to photosensitize both type I (electron transfer) and type II (energy transfer) pathways is activated through a self-amplifying process. Upon irradiation, IrFc1 induces the generation of lipid oxidation to cause ferroptosis in TNBC cells, which promotes immunogenic cell death (ICD) under both normoxia and hypoxia. In vivo, IrFc1 treatment elicits a CD8+ T-cell response, which activates ICD in TNBC resulting in enhanced anticancer immunity. In summary, this work reports a small molecule-based photosensitizer with enhanced cancer immunotherapeutic properties by eliciting ferroptosis through a self-amplifying process.
Collapse
Affiliation(s)
- Yu-Yi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Wen-Jin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiao-Wen Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jing-Hao Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
23
|
[3 + 2] Cycloadditions in Asymmetric Synthesis of Spirooxindole Hybrids Linked to Triazole and Ferrocene Units: X-ray Crystal Structure and MEDT Study of the Reaction Mechanism. Symmetry (Basel) 2022. [DOI: 10.3390/sym14102071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Derivatization of spirooxindole having triazole and ferrocene units was achieved by the [3 + 2] cycloaddition (32CA) reaction approach. Reacting the respective azomethine ylide (AY) intermediate generated in situ with the ethylene derivative produced novel asymmetric cycloadducts with four contiguous asymmetric carbons in an overall high chemical yield with excellent regioselectivity and diastereoselectivity. X-Ray single-crystal structure analyses revealed, with no doubt, the success of the synthesis of the target compounds. The 32CA reaction of AY 5b with ferrocene ethylene 1 has been studied within MEDT. This 32CA reaction proceeds via a two-stage one-step mechanism involving a high asynchronous transition state structure, resulting from the nucleophilic attack of AY 5b on the β-conjugated position of ferrocene ethylene 1. The supernucleophilic character of AY 5b and the strong electrophilic character of ferrocene ethylene 1 account for the high polar character of this 32CA reaction. Further, Hirshfeld analyses were used to describe the molecular packing of compounds 4b, 4e, 4h and 4i.
Collapse
|
24
|
A Molecular Electron Density Theory Study of the [3+2] Cycloaddition Reaction of an Azomethine Ylide with an Electrophilic Ethylene Linked to Triazole and Ferrocene Units. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196532. [PMID: 36235069 PMCID: PMC9571756 DOI: 10.3390/molecules27196532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
Abstract
The [3+2] cycloaddition (32CA) reaction of an azomethine ylide (AY) with an electrophilic ethylene linked to triazole and ferrocene units has been studied within the Molecular Electron Density Theory (MEDT) at the ωB97X-D/6-311G(d,p) level. The topology of the electron localization function (ELF) of this AY allows classifying it as a pseudo(mono)radical species characterized by the presence of two monosynaptic basins, integrating a total of 0.76 e, at the C1 carbon. While the ferrocene ethylene has a strong electrophilic character, the AY is a supernucleophile, suggesting that the corresponding 32CA reaction has a high polar character and a low activation energy. The most favorable ortho/endo reaction path presents an activation enthalpy of 8.7 kcal·mol-1, with the 32CA reaction being exergonic by -42.1 kcal·mol-1. This reaction presents a total endo stereoselectivity and a total ortho regioselectivity. Analysis of the global electron density transfer (GEDT) at the most favorable TS-on (0.23 e) accounts for the high polar character of this 32CA reaction, classified as forward electron density flux (FEDF). The formation of two intermolecular hydrogen bonds between the two interacting frameworks at the most favorable TS-on accounts for the unexpected ortho regioselectivity experimentally observed.
Collapse
|
25
|
Das S, Kulkarni S, Singh Y, Kumar P, Thareja S. Selective Estrogen Receptor Modulators (SERMs) for the Treatment of ER+ Breast Cancer: An Overview. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Rana M, Perotti A, Bisset LM, Smith JD, Lamden E, Khan Z, Ismail MK, Ellis K, Armstrong KA, Hodder SL, Bertoli C, Meneguello L, de Bruin RAM, Morris JR, Romero-Canelon I, Tucker JHR, Hodges NJ. A ferrocene-containing nucleoside analogue targets DNA replication in pancreatic cancer cells. Metallomics 2022; 14:mfac041. [PMID: 35689667 PMCID: PMC9320222 DOI: 10.1093/mtomcs/mfac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 11/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a disease that remains refractory to existing treatments including the nucleoside analogue gemcitabine. In the current study we demonstrate that an organometallic nucleoside analogue, the ferronucleoside 1-(S,Rp), is cytotoxic in a panel of PDAC cell lines including gemcitabine-resistant MIAPaCa2, with IC50 values comparable to cisplatin. Biochemical studies show that the mechanism of action is inhibition of DNA replication, S-phase cell cycle arrest and stalling of DNA-replication forks, which were directly observed at single molecule resolution by DNA-fibre fluorography. In agreement with this, transcriptional changes following treatment with 1-(S,Rp) include activation of three of the four genes (HUS1, RAD1, RAD17) of the 9-1-1 check point complex clamp and two of the three genes (MRE11, NBN) that form the MRN complex as well as activation of multiple downstream targets. Furthermore, there was evidence of phosphorylation of checkpoint kinases 1 and 2 as well as RPA1 and gamma H2AX, all of which are considered biochemical markers of replication stress. Studies in p53-deficient cell lines showed activation of CDKN1A (p21) and GADD45A by 1-(S,Rp) was at least partially independent of p53. In conclusion, because of its potency and activity in gemcitabine-resistant cells, 1-(S,Rp) is a promising candidate molecule for development of new treatments for PDAC.
Collapse
Affiliation(s)
- Marium Rana
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alessio Perotti
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Lucy M Bisset
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James D Smith
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emma Lamden
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zahra Khan
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Media K Ismail
- Department of pharmacy, college of pharmacy, Knowledge University, 44001 Erbil, Kurdistan Region, Iraq
| | - Katherine Ellis
- Institute of Cancer and Genomic Sciences, and The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Katie A Armstrong
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Samantha L Hodder
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Cosetta Bertoli
- MRC Laboratory or Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Leticia Meneguello
- MRC Laboratory or Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Robertus A M de Bruin
- MRC Laboratory or Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Joanna R Morris
- Institute of Cancer and Genomic Sciences, and The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Isolda Romero-Canelon
- School of Pharmacy, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James H R Tucker
- School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nikolas J Hodges
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
27
|
Khalaf MM, Abd El-Lateef HM, Gouda M, Sayed FN, Mohamed GG, Abu-Dief AM. Design, Structural Inspection and Bio-Medicinal Applications of Some Novel Imine Metal Complexes Based on Acetylferrocene. MATERIALS 2022; 15:ma15144842. [PMID: 35888309 PMCID: PMC9317992 DOI: 10.3390/ma15144842] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023]
Abstract
Some novel imine metal chelates with Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ cations were produced from 2-acetylferrocene and 3-aminophenol. The new acetylferrocene azomethine ligand ((Z)-cyclopenta-1,3-dien-1-yl(2-(1-((3-hydroxyphenyl)imino)ethyl)cyclopenta-2,4-dien-1-yl)iron) and its metal ion chelates were constructed and elucidated using FT-IR, UV/Vis, 1HNMR, DTA/TGA, CHNClM studies, mass spectrometry and SEM analysis. According to the TGA/DTG investigation, the ferrocene moiety spontaneously disintegrates to liberate FeO. The morphology of the free acetylferrocene azomethine via SEM analysis was net-shaped with a size of 64.73 nm, which differed in Cd(II) complex to be a spongy shape with a size of 42.43 nm. The quantum chemical features of the azomethine ligand (HL) were computed, and its electronic and molecular structure was refined theoretically. The investigated acetylferrocene imine ligand behaves as bidinetate ligand towards the cations under study to form octahedral geometries in case of all complexes except in case of Zn2+ is tetrahedral. Various microorganisms were used to investigate the anti-pathogenic effects of the free acetylferrocene azomethine ligand and its metal chelates. Moreover, the prepared ligand and its metal complexes were tested for anticancer activity utilizing four different concentrations against the human breast cancer cell line (MCF7) and the normal melanocyte cell line (HBF4). Furthermore, the binding of 3-aminophenol, 2-acetylferrocene, HL, Mn2+, Cu2+, and Cd2+ metal chelates to the receptor of breast cancer mutant oxidoreductase was discovered using molecular docking (PDB ID: 3HB5).
Collapse
Affiliation(s)
- Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt
- Correspondence: (M.M.K.); (H.M.A.E.-L.); (A.M.A.-D.)
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt
- Correspondence: (M.M.K.); (H.M.A.E.-L.); (A.M.A.-D.)
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Fatma N. Sayed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (F.N.S.); (G.G.M.)
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (F.N.S.); (G.G.M.)
- Nanoscience Department, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El Arab, Alexandria 21934, Egypt
| | - Ahmed M. Abu-Dief
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt
- Department of Chemistry, College of Science, Taibah University, Madinah 344, Saudi Arabia
- Correspondence: (M.M.K.); (H.M.A.E.-L.); (A.M.A.-D.)
| |
Collapse
|
28
|
Gaikwad M, Konkimalla VB, Salunke-Gawali S. Metal complexes as topoisomerase inhibitors. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Synthesis and Structure Elucidation of Novel Spirooxindole Linked to Ferrocene and Triazole Systems via [3 + 2] Cycloaddition Reaction. Molecules 2022; 27:molecules27134095. [PMID: 35807340 PMCID: PMC9268063 DOI: 10.3390/molecules27134095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/23/2022] Open
Abstract
In the present work, a novel heterocyclic hybrid of a spirooxindole system was synthesized via the attachment of ferrocene and triazole motifs into an azomethine ylide by [3 + 2] cycloaddition reaction protocol. The X-ray structure of the heterocyclic hybrid (1″R,2″S,3R)-2″-(1-(3-chloro-4-fluorophenyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-5-methyl-1″-(ferrocin-2-yl)-1″,2″,5″,6″,7″,7a″-hexahydrospiro[indoline-3,3″-pyrrolizin]-2-one revealed very well the expected structure, by using different analytical tools (FTIR and NMR spectroscopy). It crystallized in the triclinic-crystal system and the P-1-space group. The unit cell parameters are a = 9.1442(2) Å, b = 12.0872(3) Å, c = 14.1223(4) Å, α = 102.1700(10)°, β = 97.4190(10)°, γ = 99.1600(10)°, and V = 1484.81(7) Å3. There are two molecules per unit cell and one formula unit per asymmetric unit. Hirshfeld analysis was used to study the molecular packing of the heterocyclic hybrid. H···H (50.8%), H···C (14.2%), Cl···H (8.9%), O···H (7.3%), and N···H (5.1%) are the most dominant intermolecular contacts in the crystal structure. O···H, N···H, H···C, F···H, F···C, and O···O are the only contacts that have the characteristic features of short and significant interactions. AIM study indicated predominant covalent characters for the Fe–C interactions. Also, the electron density (ρ(r)) at the bond critical point correlated inversely with the Fe–C distances.
Collapse
|
30
|
Chemical alternative for cell identification and cross-contamination detection. 3 Biotech 2022; 12:78. [PMID: 35251881 PMCID: PMC8881561 DOI: 10.1007/s13205-022-03144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/09/2022] [Indexed: 11/01/2022] Open
Abstract
Misidentification of human cell lines has previously led to confusing results during cell culture experiments. Although several enzymatic as well as molecular analysis approaches have been developed for cell-line authentication, these methods remain costly. In the present paper, we describe a simple chemical alternative based on known compound cell cytotoxicity. In addition to cisplatin, a pool of eight tamoxifen derivative compounds was used to compare the cytotoxic effects on three different breast cancer cell lines: MCF-7, T47D and MDA-MB-231. Our results show that four out of the eight cytotoxic-related compounds allowed to distinguish the different cell lines based on their IC50 (the half maximal inhibitory concentration) values which are cell type dependent. The remaining chemicals, particularly the most cytotoxic P15, showed close IC50 values for all the cell lines. Interestingly, flow cytometry experiments have identified notable differences among the three cell lines treated with P15. T47D and MDA-MB231 cells were blocked in SubG1 phase and S phase, respectively, while no significant change in cell cycle profile was noticed for MCF-7 cells. Differences were also noted at the level of caspase-3 activity and cell proliferation in P15-treated cells.
Collapse
|
31
|
Ferrocene-functionalized anilines as potent anticancer and antidiabetic agents: Synthesis, spectroscopic elucidation, and DFT calculations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Mazur M, Ziemkiewicz K, Rawiak K, Kisiel K, Wińska P, Deresz K, Jarzembska KN, Buchowicz W. N ‐Allyl‐N‐ferrocenylmethylamines and ansa‐ferrocenylmethylamines: Synthesis, Structure, and Biological Evaluation. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Mazur
- Warsaw University of Technology: Politechnika Warszawska Faculty of Chemistry Noakowskiego 3Warsaw 00-664 Warsaw POLAND
| | - Kamil Ziemkiewicz
- Warsaw University of Technology: Politechnika Warszawska Faculty of Chemistry Noakowskiego 3Warsaw 00-664 Warsaw POLAND
| | - Karol Rawiak
- Warsaw University of Technology: Politechnika Warszawska Faculty of Chemistry Noakowskiego 3Warsaw 00-664 Warsaw POLAND
| | - Kacper Kisiel
- Warsaw University of Technology: Politechnika Warszawska Faculty of Chemistry Noakowskiego 3Warsaw 00-664 Warsaw POLAND
| | - Patrycja Wińska
- Warsaw University of Technology: Politechnika Warszawska Faculty of Chemistry Noakowskiego 3Warsaw 00-664 Warsaw POLAND
| | - Krystyna Deresz
- University of Warsaw: Uniwersytet Warszawski Department of Chemistry Zwirki i Wigury 101 02-089 Warsaw POLAND
| | - Katarzyna N. Jarzembska
- University of Warsaw: Uniwersytet Warszawski Department of Chemistry Zwirki i Wigury 101 02-089 Warsaw POLAND
| | - Włodzimierz Buchowicz
- Warsaw University of Technology Faculty of Chemistry Noakowskiego 3 00-664 Warszawa POLAND
| |
Collapse
|
33
|
Sanz Garcia J, Gaschard M, Navizet I, Sahihi M, Top S, Wang Y, Pigeon P, Vessières A, Salmain M, Jaouen G. Inhibition of cathepsin B by ferrocenyl indenes highlights a new pharmacological facet of ferrocifens. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juan Sanz Garcia
- Université Gustave Eiffel: Universite Gustave Eiffel MSME FRANCE
| | - Marie Gaschard
- Sorbonne Université: Sorbonne Universite Institut Parisien de Chimie Moléculaire FRANCE
| | - Isabelle Navizet
- Université Gustave Eiffel: Universite Gustave Eiffel MSME FRANCE
| | - Mehdi Sahihi
- Université Gustave Eiffel: Universite Gustave Eiffel MSME FRANCE
| | - Siden Top
- Sorbonne Université: Sorbonne Universite Institut Parisien de Chimie Moléculaire FRANCE
| | - Yong Wang
- Sorbonne Université: Sorbonne Universite Institut Parisien de Chimie Moléculaire FRANCE
| | - Pascal Pigeon
- PSL Research University: Universite PSL chimie Paristech FRANCE
| | - Anne Vessières
- Sorbonne Université: Sorbonne Universite Institut Parisien de Chimie Moléculaire FRANCE
| | - Michèle Salmain
- Sorbonne Université: Sorbonne Universite Institut Parisien de Chimie Moleculaire 4 place Jussieucase courrier 229 75005 Paris FRANCE
| | - Gerard Jaouen
- PSL Research University: Universite PSL chimie paristech FRANCE
| |
Collapse
|
34
|
Bongso A, Roswanda R, Syah YM. Recent advances of carbonyl olefination via McMurry coupling reaction. RSC Adv 2022; 12:15885-15909. [PMID: 35733659 PMCID: PMC9135011 DOI: 10.1039/d2ra00724j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/07/2022] [Indexed: 11/21/2022] Open
Abstract
McMurry coupling reaction utilizes the low-valent titanium reagents and carbonyl compounds to produce olefins. The wide synthetic application of McMurry reagents in intermolecular and intramolecular coupling reactions, tandem coupling reactions, and keto ester coupling reactions of carbonyl compounds for the last five years have been reviewed. The resulting coupling reaction produces natural and non-natural products, including strained olefins and unusual molecules as a candidate for nanomaterials, pharmaceuticals, electronic materials, and so forth. The advantages, scope, and limitations along with the improvement of the McMurry coupling reaction, including the addition of high functional group compatibility, McMurry reagents substitution, and several other treatments, have also been discussed. McMurry coupling reaction utilizes the low-valent titanium reagents and carbonyl compounds to produce olefins.![]()
Collapse
Affiliation(s)
- Anthony Bongso
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Robby Roswanda
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Yana Maolana Syah
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| |
Collapse
|
35
|
Nawaz S, Asghar F, Patujo J, Fatima S, Murtaza B, Munir S, Naz M, Badshah A, Butler IS. New ferrocene-integrated multifunctional guanidine surfactants: synthesis, spectroscopic elucidation, DNA interaction studies, and DFT calculations. NEW J CHEM 2022. [DOI: 10.1039/d1nj03424c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Investigation of three new ferrocene appended guanidines as potential surfactants, antioxidants and DNA binders with DFT measurements.
Collapse
Affiliation(s)
- Sameen Nawaz
- Department of Chemistry, Quaid-i-Azam University, Islamabad (45320), Pakistan
| | - Faiza Asghar
- Department of Chemistry, University of Wah, Quaid Avenue, Wah (47040), Pakistan
| | - Jahangeer Patujo
- Department of Chemistry, Quaid-i-Azam University, Islamabad (45320), Pakistan
| | - Saira Fatima
- Department of Chemistry, Quaid-i-Azam University, Islamabad (45320), Pakistan
| | - Babar Murtaza
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, 21000 Dijon, France
| | - Shamsa Munir
- School of Applied Sciences & Humanities (NUSASH), NUTECH, Islamabad, Pakistan
| | - Mehwish Naz
- Department of Chemistry, Quaid-i-Azam University, Islamabad (45320), Pakistan
| | - Amin Badshah
- Department of Chemistry, Quaid-i-Azam University, Islamabad (45320), Pakistan
| | - Ian S. Butler
- Department of Chemistry, McGill University, Montreal, QC H3A 2K6, Canada
| |
Collapse
|
36
|
Moriuchi T. Helical Chirality of Ferrocene Moieties in Cyclic Ferrocene‐Peptide Conjugates. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Toshiyuki Moriuchi
- Division of Molecular Materials Science Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| |
Collapse
|
37
|
Sharma B, Kumar V. Has Ferrocene Really Delivered Its Role in Accentuating the Bioactivity of Organic Scaffolds? J Med Chem 2021; 64:16865-16921. [PMID: 34792350 DOI: 10.1021/acs.jmedchem.1c00390] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ferrocene is an important structural core in bioorganometallic chemistry because of its inherent stability, excellent redox properties, and low toxicity. Ferroquine and ferrocifen are two of the most notable contributions of ferrocene to medicinal chemistry with remarkable antimalarial and anticancer properties. The improved medicinal properties of these drug candidates highlight the impact that ferrocene can have on the molecular and biological properties of the bioactive compounds. In this Perspective, we investigate the scope and limitations of ferrocene incorporation into organic compounds/natural products on their mode of action and biological activities. We have also discussed the detailed role of ferrocene modifications in influencing the anticancer, antimalarial, and antimicrobial properties of various bioactive moieties to design safer and promising ferrocene-based drugs.
Collapse
Affiliation(s)
- Bharvi Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| |
Collapse
|
38
|
Passirani C, Vessières A, La Regina G, Link W, Silvestri R. Modulating undruggable targets to overcome cancer therapy resistance. Drug Resist Updat 2021; 60:100788. [DOI: 10.1016/j.drup.2021.100788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/03/2022]
|
39
|
Vessières A, Quissac E, Lemaire N, Alentorn A, Domeracka P, Pigeon P, Sanson M, Idbaih A, Verreault M. Heterogeneity of Response to Iron-Based Metallodrugs in Glioblastoma Is Associated with Differences in Chemical Structures and Driven by FAS Expression Dynamics and Transcriptomic Subtypes. Int J Mol Sci 2021; 22:ijms221910404. [PMID: 34638742 PMCID: PMC8508975 DOI: 10.3390/ijms221910404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and deadliest primary brain cancer in adults, justifying the search for new treatments. Some members of the iron-based ferrocifen family have demonstrated a high cytotoxic effect on various cancer cell lines via innovative mechanisms of action. Here, we evaluated the antiproliferative activity by wst-1 assay of six ferrocifens in 15 molecularly diverse GBM patient-derived cell lines (PDCLs). In five out of six compounds, the half maximal inhibitory concentration (IC50) values varied significantly (10 nM < IC50 < 29.8 µM) while the remaining one (the tamoxifen-like complex) was highly cytotoxic against all PDCLs (mean IC50 = 1.28 µM). The pattern of response was comparable for the four ferrocifens bearing at least one phenol group and differed widely from those of the tamoxifen-like complex and the complex with no phenol group. An RNA sequencing differential analysis showed that response to the diphenol ferrocifen relied on the activation of the Death Receptor signaling pathway and the modulation of FAS expression. Response to this complex was greater in PDCLs from the Mesenchymal or Proneural transcriptomic subtypes compared to the ones from the Classical subtype. These results provide new information on the mechanisms of action of ferrocifens and highlight a broader diversity of behavior than previously suspected among members of this family. They also support the case for a molecular-based personalized approach to future use of ferrocifens in the treatment of GBM.
Collapse
Affiliation(s)
- Anne Vessières
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR CNRS 8232, 4 Place Jussieu, F-75005 Paris, France;
- Correspondence: (A.V.); (M.V.)
| | - Emie Quissac
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
| | - Nolwenn Lemaire
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
| | - Agusti Alentorn
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (A.A.); (M.S.); (A.I.)
| | - Patrycja Domeracka
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
| | - Pascal Pigeon
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR CNRS 8232, 4 Place Jussieu, F-75005 Paris, France;
- Chimie ParisTech-PSL, 11 Rue P. et M. Curie, F-75005 Paris, France
| | - Marc Sanson
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (A.A.); (M.S.); (A.I.)
| | - Ahmed Idbaih
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (A.A.); (M.S.); (A.I.)
| | - Maïté Verreault
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
- Correspondence: (A.V.); (M.V.)
| |
Collapse
|
40
|
Zhang Z, Du G, Gong G, Sheng Y, Lu X, Cai W, Wang F, Zhao G. A novel ferrocene-palladium metal complex: synthesis, single crystal structure, in vitro cytotoxicity study and molecular docking. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
41
|
Gurunarayanan V, Ramapanicker R. Amphiphilic conjugates of ferrocene with amino acids and peptides: Design, synthesis, and studies on their aggregation behavior. J Pept Sci 2021; 27:e3332. [PMID: 33884698 DOI: 10.1002/psc.3332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 11/08/2022]
Abstract
A new class of ferrocenyl surfactants based on covalent linkage between amino acids or peptides and ferrocene was designed. Accordingly, five ferrocenyl amphiphiles, FcS1-5, were synthesized, and their aggregation behaviors in aqueous solutions were studied. Compared to the other surfactants containing ferrocenyl units, FcS have a relatively smaller size and low molecular weight and are easy to synthesize. The influences of the number of carboxylic acid head groups and the number of Fc group in the hydrophobic tail, on the stability and aggregation behavior of these amphiphiles in aqueous medium, were explored to deduce the structure property relationships. A combination of fluorescence and dynamic light scattering techniques was used to elucidate the behavior of these molecules. A good agreement between the results obtained using different techniques was observed.
Collapse
Affiliation(s)
- Vinithra Gurunarayanan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Ramesh Ramapanicker
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.,Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
42
|
Ghosh K, Nayek N, Das S, Biswas N, Sinha S. Design and synthesis of ferrocene‐tethered pyrazolines and pyrazoles: Photophysical studies, protein‐binding behavior with bovine serum albumin, and antiproliferative activity against MDA‐MB‐231 triple negative breast cancer cells. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Koena Ghosh
- Department of Chemistry Presidency University Kolkata India
| | - Nipa Nayek
- Department of Chemistry Presidency University Kolkata India
- Department of Chemistry Vivekananda College for Women Kolkata India
| | - Subhomoy Das
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur India
- Department of Chemistry Bar‐Ilan University Ramat‐Gan Israel
| | - Nabendu Biswas
- Department of Life Sciences Presidency University Kolkata India
| | - Samraj Sinha
- Department of Life Sciences Presidency University Kolkata India
| |
Collapse
|
43
|
Replacing the Z-phenyl Ring in Tamoxifen ® with a para-Connected NCN Pincer-Pt-Cl Grouping by Post-Modification †. Molecules 2021; 26:molecules26071888. [PMID: 33810499 PMCID: PMC8038112 DOI: 10.3390/molecules26071888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022] Open
Abstract
Post-modification of a series of NCN-pincer platinum(II) complexes [PtX(NCN-R-4)] (NCN = [C6H2(CH2NMe2)2-2,6]–, R = C(O)H, C(O)Me and C(O)Et), X = Cl– or Br–) at the para-position using the McMurry reaction was studied. The synthetic route towards two new [PtCl(NCN-R-4)] (R = C(O)Me and C(O)Et) complexes used above is likewise described. The utility and limitations of the McMurry reaction involving these pincer complexes was systematically evaluated. The predicted “homo-coupling” reaction of [PtBr(NCN-C(O)H-4)] led to the unexpected formation of 3,3′,5,5′-tetra[(dimethylamino)methyl]-4,4′-bis(platinum halide)-benzophenone (halide = Br or Cl), referred to hereafter as the bispincer-benzophenone complex 13. This material was further characterized using X-ray crystal structure determination. The applicability of the pincer complexes in the McMurry reaction is shown to open a route towards the synthesis of tamoxifen-type derivatives of which one phenyl ring of Tamoxifen® itself is replaced by an NCN arylplatinum pincer fragment. The newly synthesized derivatives can be used as potential candidates in anti-cancer drug screening protocols. Two NCN-arylpincer platinum tamoxifen type derivatives, 5 and 6, were successfully synthesized and of 5 the separation of the diastereomeric E-/Z-forms was achieved. Compound 6, which is the pivaloyl protected NCN pincer platinum hydroxy-Tamoxifen® derivative, was obtained as a mixture of E-/Z-isomers. The new derivatives were further analyzed and characterized with 1H-, 13C{1H}- and 195Pt{1H}-NMR, IR, exact mass MS and elemental analysis.
Collapse
|
44
|
Vessières A, Wang Y, McGlinchey MJ, Jaouen G. Multifaceted chemical behaviour of metallocene (M = Fe, Os) quinone methides. Their contribution to biology. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213658] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Allison M, Caramés-Méndez P, Pask CM, Phillips RM, Lord RM, McGowan PC. Bis(bipyridine)ruthenium(II) Ferrocenyl β-Diketonate Complexes: Exhibiting Nanomolar Potency against Human Cancer Cell Lines. Chemistry 2021; 27:3737-3744. [PMID: 33073884 DOI: 10.1002/chem.202004024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/09/2020] [Indexed: 12/23/2022]
Abstract
The synthesis and characterization of new bis(bipyridine)ruthenium(II) ferrocenyl β-diketonate complexes, [(bpy)2 Ru(Fc-acac)][PF6 ] (bpy=2,2'-bipyridine; Fc-acac=functionalized ferrocenyl β-diketonate ligand) are reported. Alongside clinical platinum drugs, these bimetallic ruthenium-iron complexes have been screened for their cytotoxicity against MIA PaCa-2 (human pancreatic carcinoma), HCT116 p53+/+ (human colon carcinoma, p53-wild type) and ARPE-19 (human retinal pigment epithelial) cell lines. With the exception of one complex, the library exhibit nanomolar potency against cancerous cell lines, and their relative potencies are up to 40x, 400x and 72x more cytotoxic than cisplatin, carboplatin and oxaliplatin, respectively. Under hypoxic conditions, the complexes remain cytotoxic (sub-micromolar range), highlighting their potential in targeting hypoxic tumor regions. The Comet assay was used to determine their ability to damage DNA, and results show dose dependent damage which correlates well with the cytotoxicity results. Their potential to treat bacterial and fungal strains has been determined, and highlight complexes have selective growth inhibition of up to 87-100 % against Staphylococcus aureus and Candida albicans.
Collapse
Affiliation(s)
- Matthew Allison
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Pablo Caramés-Méndez
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Department of Pharmacy, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Christopher M Pask
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Roger M Phillips
- Department of Pharmacy, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Rianne M Lord
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Patrick C McGowan
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
46
|
González‐Pelayo S, Bernardo O, Borge J, López LA. Synthesis of Metallocene Analogues of the Phenethylamine and Tetrahydroisoquinoline Scaffolds via Regioselective Ring Opening of 2‐Aryl‐
N
‐sulfonyl Aziridines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Silvia González‐Pelayo
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica “Enrique Moles” Universidad de Oviedo, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Julián Clavería 8 33006- Oviedo Spain
| | - Olaya Bernardo
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica “Enrique Moles” Universidad de Oviedo, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Julián Clavería 8 33006- Oviedo Spain
| | - Javier Borge
- Departamento de Química Física y Analítica Universidad de Oviedo Julián Clavería 8 33006- Oviedo Spain
| | - Luis A. López
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica “Enrique Moles” Universidad de Oviedo, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Julián Clavería 8 33006- Oviedo Spain
| |
Collapse
|
47
|
Chellan P, Sadler PJ. Enhancing the Activity of Drugs by Conjugation to Organometallic Fragments. Chemistry 2020; 26:8676-8688. [PMID: 32452579 PMCID: PMC7496994 DOI: 10.1002/chem.201904699] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/12/2020] [Indexed: 12/22/2022]
Abstract
Resistance to chemotherapy is a current clinical problem, especially in the treatment of microbial infections and cancer. One strategy to overcome this is to make new derivatives of existing drugs by conjugation to organometallic fragments, either by an appropriate linker, or by direct coordination of the drug to a metal. We illustrate this with examples of conjugated organometallic metallocene sandwich and half-sandwich complexes, RuII and OsII arene, and RhIII and IrIII cyclopentadienyl half-sandwich complexes. Ferrocene conjugates are particularly promising. The ferrocene-chloroquine conjugate ferroquine is in clinical trials for malaria treatment, and a ferrocene-tamoxifen derivative (a ferrocifen) seems likely to enter anticancer trails soon. Several other examples illustrate that organometallic conjugation can restore the activity of drugs to which resistance has developed.
Collapse
Affiliation(s)
- Prinessa Chellan
- Department of Chemistry and Polymer ScienceStellenbosch University7600Matieland, Western CapeSouth Africa
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
48
|
Trevorah R, Tran N, Appadoo D, Wang F, Chantler C. Resolution of ferrocene and deuterated ferrocene conformations using dynamic vibrational spectroscopy: Experiment and theory. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Ghobadi N, Nazari N, Gholamzadeh P. The Friedländer reaction: A powerful strategy for the synthesis of heterocycles. ADVANCES IN HETEROCYCLIC CHEMISTRY 2020. [DOI: 10.1016/bs.aihch.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Makar S, Saha T, Swetha R, Gutti G, Kumar A, Singh SK. Rational approaches of drug design for the development of selective estrogen receptor modulators (SERMs), implicated in breast cancer. Bioorg Chem 2019; 94:103380. [PMID: 31757413 DOI: 10.1016/j.bioorg.2019.103380] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022]
Abstract
Drug discovery and development have gained momentum due to the rational drug design by engaging computational tools and bioinformatics methodologies. Bioisosteric replacements and hybrid molecular approaches are the other inventive processes, used by medicinal chemists for the desired modifications of leads for clinical drug candidates. SERMs, ought to produce inhibitory activity in breast, uterus and agonist activity in other tissues, are beneficial for estrogen-like actions. ER subtypes α and β are hormone dependent modulators of intracellular signaling and gene expression, and development of ER selective ligands could be an effective approach for treatment of breast cancer. This report has critically investigated the possible designing considerations of SERMs, their in silico interactions, and potent pharmacophore generation approaches viz. indole, restricted benzothiophene [3, 2-b] indole, carborane, xanthendione, combretastatin A-4, organometallic heterocycles, OBHS-SAHA hybrids, benzopyranones, tetrahydroisoquinolines, Dig G derivatives and their specifications in drug design and development, to rationally improve the understanding in drug discovery. This also includes various strategies for the development of dual inhibitors for the management of antiestrogenic resistance.
Collapse
Affiliation(s)
- Subhajit Makar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Tanmay Saha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Rayala Swetha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India.
| |
Collapse
|