1
|
Duca M, Haksar D, van Neer J, Thies-Weesie DM, Martínez-Alarcón D, de Cock H, Varrot A, Pieters RJ. Multivalent Fucosides Targeting β-Propeller Lectins from Lung Pathogens with Promising Anti-Adhesive Properties. ACS Chem Biol 2022; 17:3515-3526. [PMID: 36414265 PMCID: PMC9764287 DOI: 10.1021/acschembio.2c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fungal and bacterial pathogens causing lung infections often use lectins to mediate adhesion to glycoconjugates at the surface of host tissues. Given the rapid emergence of resistance to the treatments in current use, β-propeller lectins such as FleA from Aspergillus fumigatus, SapL1 from Scedosporium apiospermum, and BambL from Burkholderia ambifaria have become appealing targets for the design of anti-adhesive agents. In search of novel and cheap anti-infectious agents, we synthesized multivalent compounds that can display up to 20 units of fucose, the natural ligand. We obtained nanomolar inhibitors that are several orders of magnitude stronger than their monovalent analogue according to several biophysical techniques (i.e., fluorescence polarization, isothermal titration calorimetry, and bio-layer interferometry). The reason for high affinity might be attributed to a strong aggregating mechanism, which was examined by analytical ultracentrifugation. Notably, the fucosylated inhibitors reduced the adhesion of A. fumigatus spores to lung epithelial cells when administered 1 h before or after the infection of human lung epithelial cells. For this reason, we propose them as promising anti-adhesive drugs for the prevention and treatment of aspergillosis and related microbial lung infections.
Collapse
Affiliation(s)
- Margherita Duca
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, NL-3508 TB Utrecht, The Netherlands,Department
of Biology, Utrecht University, Padualaan 8, 3584 CS Utrecht, The Netherlands,Univ.
Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Diksha Haksar
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, NL-3508 TB Utrecht, The Netherlands
| | - Jacq van Neer
- Department
of Biology, Utrecht University, Padualaan 8, 3584 CS Utrecht, The Netherlands
| | - Dominique M.E. Thies-Weesie
- Debye
Institute for Nanomaterials Science, Utrecht
University, Padualaan
8, 3584 CS Utrecht, The Netherlands
| | | | - Hans de Cock
- Department
of Biology, Utrecht University, Padualaan 8, 3584 CS Utrecht, The Netherlands,
| | | | - Roland J. Pieters
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, NL-3508 TB Utrecht, The Netherlands,
| |
Collapse
|
2
|
Hydrotropic Hydrogels Prepared from Polyglycerol Dendrimers: Enhanced Solubilization and Release of Paclitaxel. Gels 2022; 8:gels8100614. [DOI: 10.3390/gels8100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Polyglycerol dendrimers (PGD) exhibit unique properties such as drug delivery, drug solubilization, bioimaging, and diagnostics. In this study, PGD hydrogels were prepared and evaluated as devices for controlled drug release with good solubilization properties. The PGD hydrogels were prepared by crosslinking using ethylene glycol diglycidylether (EGDGE). The concentrations of EGDGE and PGDs were varied. The hydrogels were swellable in ethanol for loading paclitaxel (PTX). The amount of PTX in the hydrogels increased with the swelling ratio, which is proportional to EGDGE/OH ratio, meaning that heterogeneous crosslinking of PGD made high dense region of PGD molecules in the matrix. The hydrogels remained transparent after loading PTX and standing in water for one day, indicating that PTX was dispersed in the hydrogels without any crystallization in water. The results of FTIR imaging of the PTX-loaded PGD hydrogels revealed good dispersion of PTX in the hydrogel matrix. Sixty percent of the loaded PTX was released in a sink condition within 90 min, suggesting that the solubilized PTX would be useful for controlled release without any precipitation. Polyglycerol dendrimer hydrogels are expected to be applicable for rapid release of poorly water-soluble drugs, e.g., for oral administration.
Collapse
|
3
|
Gosecka M, Jaworska-Krych D, Gosecki M, Wielgus E, Marcinkowska M, Janaszewska A, Klajnert-Maculewicz B. Self-Healable, Injectable Hydrogel with Enhanced Clotrimazole Solubilization as a Potential Therapeutic Platform for Gynecology. Biomacromolecules 2022; 23:4203-4219. [PMID: 36073031 PMCID: PMC9554913 DOI: 10.1021/acs.biomac.2c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Injectable, self-healing hydrogels with enhanced solubilization
of hydrophobic drugs are urgently needed for antimicrobial intravaginal
therapies. Here, we report the first hydrogel systems constructed
of dynamic boronic esters cross-linking unimolecular micelles, which
are a reservoir of antifungal hydrophobic drug molecules. The selective
hydrophobization of hyperbranched polyglycidol with phenyl units in
the core via ester or urethane bonds enabled the solubilization of
clotrimazole, a water-insoluble drug of broad antifungal properties.
The encapsulation efficiency of clotrimazole increases with the degree
of the HbPGL core modification; however, the encapsulation is more
favorable in the case of urethane derivatives. In addition, the rate
of clotrimazole release was lower from HbPGL hydrophobized via urethane
bonds than with ester linkages. In this work, we also revealed that
the hydrophobization degree of HbPGL significantly influences the
rheological properties of its hydrogels with poly(acrylamide-ran-2-acrylamidephenylboronic acid). The elastic strength
of networks (GN) and the thermal stability
of hydrogels increased along with the degree of HbPGL core hydrophobization.
The degradation of the hydrogel constructed of the neat HbPGL was
observed at approx. 40 °C, whereas the hydrogels constructed
on HbPGL, where the monohydroxyl units were modified above 30 mol
%, were stable above 50 °C. Moreover, the flow and self-healing
ability of hydrogels were gradually decreased due to the reduced dynamics
of macromolecules in the network as an effect of increased hydrophobicity.
The changes in the rheological properties of hydrogels resulted from
the engagement of phenyl units into the intermolecular hydrophobic
interactions, which besides boronic esters constituted additional
cross-links. This study demonstrates that the HbPGL core hydrophobized
with phenyl units at 30 mol % degrees via urethane linkages is optimal
in respect of the drug encapsulation efficiency and rheological properties
including both self-healable and injectable behavior. This work is
important because of a proper selection of a building component for
the construction of a therapeutic hydrogel platform dedicated to the
intravaginal delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Monika Gosecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Daria Jaworska-Krych
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Mateusz Gosecki
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Monika Marcinkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| |
Collapse
|
4
|
Chopra H, Bibi S, Mishra AK, Tirth V, Yerramsetty SV, Murali SV, Ahmad SU, Mohanta YK, Attia MS, Algahtani A, Islam F, Hayee A, Islam S, Baig AA, Emran TB. Nanomaterials: A Promising Therapeutic Approach for Cardiovascular Diseases. JOURNAL OF NANOMATERIALS 2022; 2022:1-25. [DOI: 10.1155/2022/4155729] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Cardiovascular diseases (CVDs) are a primary cause of death globally. A few classic and hybrid treatments exist to treat CVDs. However, they lack in both safety and effectiveness. Thus, innovative nanomaterials for disease diagnosis and treatment are urgently required. The tiny size of nanomaterials allows them to reach more areas of the heart and arteries, making them ideal for CVDs. Atherosclerosis causes arterial stenosis and reduced blood flow. The most common treatment is medication and surgery to stabilize the disease. Nanotechnologies are crucial in treating vascular disease. Nanomaterials may be able to deliver medications to lesion sites after being infused into the circulation. Newer point-of-care devices have also been considered together with nanomaterials. For example, this study will look at the use of nanomaterials in imaging, diagnosing, and treating CVDs.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091 Yunnan, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, 650091 Yunnan, China
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421 Asir, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, Abha, 61413 Asir, P.O. Box No. 9004, Saudi Arabia
| | - Sree Vandana Yerramsetty
- Department of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613402, India
| | - Sree Varshini Murali
- Department of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613402, India
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Yugal Kishore Mohanta
- Department of Applied Biology, University of Science and Technology Meghalaya, Ri-Bhoi 793101, India
| | - Mohamed S. Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421 Asir, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, Abha, 61413 Asir, P.O. Box No. 9004, Saudi Arabia
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdul Hayee
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, 61421 Asir, Saudi Arabia
| | - Atif Amin Baig
- Unit of Biochemistry, Faculty of Medicine, Universiti Sultan Zainal Abidin, Malaysia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
5
|
Krishna, Parshad B, Achazi K, Böttcher C, Haag R, Sharma SK. Newer Non-ionic A 2 B 2 -Type Enzyme-Responsive Amphiphiles for Drug Delivery. ChemMedChem 2021; 16:1457-1466. [PMID: 33559331 DOI: 10.1002/cmdc.202100031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Indexed: 12/29/2022]
Abstract
A new series of nonionic gemini amphiphiles have been synthesized in a multi-step chemoenzymatic approach by using a novel A2 B2 -type central core consisting of conjugating glycerol and propargyl bromide on 5-hydroxy isophthalic acid. A pair of hydrophilic monomethoxy poly(ethylene glycol) (mPEG) and hydrophobic linear alkyl chains (C12 /C15 ) were then added to the core to obtain amphiphilic architectures. The aggregation tendency in aqueous media was studied by dynamic light scattering, fluorescence spectroscopy and cryogenic transmission electron microscopy. The nanotransport potential of the amphiphiles was studied for model hydrophobic guests, that is, the dye Nile Red and the drug Nimodipine by using UV/Vis and fluorescence spectroscopy. Evaluation of the viability of amphiphile-treated A549 cells showed them to be well tolerated up to the concentrations studied. Being ester based, these amphiphiles exhibit stimuli-responsive sensitivity towards esterases, and a rupture of amphiphilic architecture was observed in the presence of immobilized Candida antarctica lipase (Novozym 435), thus facilitating release of the encapsulated guest from the aggregate.
Collapse
Affiliation(s)
- Krishna
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Badri Parshad
- Department of Chemistry, University of Delhi, Delhi, 110007, India.,Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, 14195, Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
6
|
Jangizehi A, Schmid F, Besenius P, Kremer K, Seiffert S. Defects and defect engineering in Soft Matter. SOFT MATTER 2020; 16:10809-10859. [PMID: 33306078 DOI: 10.1039/d0sm01371d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Soft matter covers a wide range of materials based on linear or branched polymers, gels and rubbers, amphiphilic (macro)molecules, colloids, and self-assembled structures. These materials have applications in various industries, all highly important for our daily life, and they control all biological functions; therefore, controlling and tailoring their properties is crucial. One way to approach this target is defect engineering, which aims to control defects in the material's structure, and/or to purposely add defects into it to trigger specific functions. While this approach has been a striking success story in crystalline inorganic hard matter, both for mechanical and electronic properties, and has also been applied to organic hard materials, defect engineering is rarely used in soft matter design. In this review, we present a survey on investigations on defects and/or defect engineering in nine classes of soft matter composed of liquid crystals, colloids, linear polymers with moderate degree of branching, hyperbranched polymers and dendrimers, conjugated polymers, polymeric networks, self-assembled amphiphiles and proteins, block copolymers and supramolecular polymers. This overview proposes a promising role of this approach for tuning the properties of soft matter.
Collapse
Affiliation(s)
- Amir Jangizehi
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, D-55128 Mainz, Germany
| | | | | | | | | |
Collapse
|
7
|
Zheng L, Luo Y, Chen K, Zhang Z, Chen G. Highly Branched Gradient Glycopolymer: Enzyme-Assisted Synthesis and Enhanced Bacteria-Binding Ability. Biomacromolecules 2020; 21:5233-5240. [DOI: 10.1021/acs.biomac.0c01311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lifang Zheng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Yan Luo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Kui Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Zexin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
8
|
Bej R, Achazi K, Haag R, Ghosh S. Polymersome Formation by Amphiphilic Polyglycerol-b-polydisulfide-b-polyglycerol and Glutathione-Triggered Intracellular Drug Delivery. Biomacromolecules 2020; 21:3353-3363. [DOI: 10.1021/acs.biomac.0c00775] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raju Bej
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Katharina Achazi
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
- Technical Research Center, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
9
|
Abrahamsson T, Poxson DJ, Gabrielsson EO, Sandberg M, Simon DT, Berggren M. Formation of Monolithic Ion-Selective Transport Media Based on "Click" Cross-Linked Hyperbranched Polyglycerol. Front Chem 2019; 7:484. [PMID: 31355181 PMCID: PMC6635471 DOI: 10.3389/fchem.2019.00484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/24/2019] [Indexed: 01/02/2023] Open
Abstract
In the emerging field of organic bioelectronics, conducting polymers and ion-selective membranes are combined to form resistors, diodes, transistors, and circuits that transport and process both electronic and ionic signals. Such bioelectronics concepts have been explored in delivery devices that translate electronic addressing signals into the transport and dispensing of small charged biomolecules at high specificity and spatiotemporal resolution. Manufacturing such "iontronic" devices generally involves classical thin film processing of polyelectrolyte layers and insulators followed by application of electrolytes. This approach makes miniaturization and integration difficult, simply because the ion selective polyelectrolytes swell after completing the manufacturing. To advance such bioelectronics/iontronics and to enable applications where relatively larger molecules can be delivered, it is important to develop a versatile material system in which the charge/size selectivity can be easily tailormade at the same time enabling easy manufacturing of complex and miniaturized structures. Here, we report a one-pot synthesis approach with minimal amount of organic solvent to achieve cationic hyperbranched polyglycerol films for iontronics applications. The hyperbranched structure allows for tunable pre multi-functionalization, which combines available unsaturated groups used in crosslinking along with ionic groups for electrolytic properties, to achieve a one-step process when applied in devices for monolithic membrane gel formation with selective electrophoretic transport of molecules.
Collapse
Affiliation(s)
- Tobias Abrahamsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - David J. Poxson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Erik O. Gabrielsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | | | - Daniel T. Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| |
Collapse
|
10
|
Perala SK, Ramakrishnan S. Orthogonally clickable hyperbranched polymers: effect of reactant size and polarity on core-functionalization of peripherally jacketed HBPs. Polym Chem 2019. [DOI: 10.1039/c8py01499j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Using an orthogonally clickable strategy, the accessibility of internal allyl groups in jacketed HBPs, bearing either PEG or docosyl peripheral segments, was shown to depend both on the size and relative polarity of the reactant thiol.
Collapse
Affiliation(s)
- Suresh Kumar Perala
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| | - S. Ramakrishnan
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore 560012
- India
| |
Collapse
|
11
|
Pound-Lana GEN, Garcia GM, Trindade IC, Capelari-Oliveira P, Pontifice TG, Vilela JMC, Andrade MS, Nottelet B, Postacchini BB, Mosqueira VCF. Phthalocyanine photosensitizer in polyethylene glycol-block-poly(lactide-co-benzyl glycidyl ether) nanocarriers: Probing the contribution of aromatic donor-acceptor interactions in polymeric nanospheres. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:220-233. [PMID: 30423704 DOI: 10.1016/j.msec.2018.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/08/2018] [Accepted: 09/07/2018] [Indexed: 01/18/2023]
Abstract
For best photosensitizer activity phthalocyanine dyes used in photodynamic therapy should be molecularly dispersed. Polyethylene glycol-block-polylactide derivatives presenting benzyl side-groups were synthesized to encapsulate a highly lipophilic phthalocyanine dye (AlClPc) and evaluate the effect of π-π interactions on the nanocarrier colloidal stability and dye dispersion. Copolymers with 0, 1, 2 and 6 mol% of benzyl glycidyl ether (BGE) were obtained via polyethylene glycol initiated ring-opening copolymerization of D,l-lactide with BGE. The block copolymers formed stable, monodisperse nanospheres with low in vitro cytotoxicity. AlClPc loading increased the nanosphere size and affected their colloidal stability. The photo-physical properties of the encapsulated dye, studied in batch and after separation by field flow fractionation, demonstrated the superiority of plain PEG-PLA over BGE-containing copolymers in maintaining the dye in its monomeric (non-aggregated) form in aqueous suspension. High dye encapsulation and sustained dye release suggest that these nanocarriers are good candidates for photodynamic therapy.
Collapse
Affiliation(s)
- Gwenaelle E N Pound-Lana
- Laboratory of Pharmaceutical Development and Nanobiotechnology, School of Pharmacy, Universidade Federal de Ouro Preto, Minas Gerais, Brazil.
| | - Giani M Garcia
- Laboratory of Pharmaceutical Development and Nanobiotechnology, School of Pharmacy, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - Izabel C Trindade
- Laboratory of Pharmaceutical Development and Nanobiotechnology, School of Pharmacy, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - Patrícia Capelari-Oliveira
- Laboratory of Pharmaceutical Development and Nanobiotechnology, School of Pharmacy, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - Thais Godinho Pontifice
- Laboratory of Pharmaceutical Development and Nanobiotechnology, School of Pharmacy, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - José Mário C Vilela
- CIT - Centro de Inovação e Tecnologia Senai-Fiemg, Avenida José Cândido da Silveira, 2000, Horto, Belo Horizonte 31035-536, Minas Gerais, Brazil
| | - Margareth S Andrade
- CIT - Centro de Inovação e Tecnologia Senai-Fiemg, Avenida José Cândido da Silveira, 2000, Horto, Belo Horizonte 31035-536, Minas Gerais, Brazil
| | - Benjamin Nottelet
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247, Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Bruna B Postacchini
- Laboratory of Molecular Photophysics, Physics Department, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Vanessa C F Mosqueira
- Laboratory of Pharmaceutical Development and Nanobiotechnology, School of Pharmacy, Universidade Federal de Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Maysinger D, Ji J, Moquin A, Hossain S, Hancock MA, Zhang I, Chang PK, Rigby M, Anthonisen M, Grütter P, Breitner J, McKinney RA, Reimann S, Haag R, Multhaup G. Dendritic Polyglycerol Sulfates in the Prevention of Synaptic Loss and Mechanism of Action on Glia. ACS Chem Neurosci 2018; 9:260-271. [PMID: 29078046 DOI: 10.1021/acschemneuro.7b00301] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dendritic polyglycerols (dPG), particularly dendritic polyglycerol sulfates (dPGS), have been intensively studied due to their intrinsic anti-inflammatory activity. As related to brain pathologies involving neuroinflammation, the current study examined if dPG and dPGS can (i) regulate neuroglial activation, and (ii) normalize the morphology and function of excitatory postsynaptic dendritic spines adversely affected by the neurotoxic 42 amino acid amyloid-β (Aβ42) peptide of Alzheimer disease (AD). The exact role of neuroglia, such as microglia and astrocytes, remains controversial especially their positive and negative impact on inflammatory processes in AD. To test dPGS effectiveness in AD models we used primary neuroglia and organotypic hippocampal slice cultures exposed to Aβ42 peptide. Overall, our data indicate that dPGS is taken up by both microglia and astrocytes in a concentration- and time-dependent manner. The mechanism of action of dPGS involves binding to Aβ42, i.e., a direct interaction between dPGS and Aβ42 species interfered with Aβ fibril formation and reduced the production of the neuroinflammagen lipocalin-2 (LCN2) mainly in astrocytes. Moreover, dPGS normalized the impairment of neuroglia and prevented the loss of dendritic spines at excitatory synapses in the hippocampus. In summary, dPGS has desirable therapeutic properties that may help reduce amyloid-induced neuroinflammation and neurotoxicity in AD.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Jeff Ji
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Alexandre Moquin
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Shireen Hossain
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Mark A. Hancock
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Issan Zhang
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Philip K.Y. Chang
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Matthew Rigby
- Department
of Physics, McGill University, Montreal, Canada H3A 2T8
| | | | - Peter Grütter
- Department
of Physics, McGill University, Montreal, Canada H3A 2T8
| | - John Breitner
- Douglas
Hospital Research Centre, McGill University, Montreal, Canada H4H 1R3
| | - R. Anne McKinney
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| | - Sabine Reimann
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rainer Haag
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gerhard Multhaup
- Department
of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G 1Y6
| |
Collapse
|
13
|
Wu H, Yin T, Li K, Wang R, Chen Y, Jing L. Encapsulation property of hyperbranched polyglycerols as prospective drug delivery systems. Polym Chem 2018. [DOI: 10.1039/c7py01419h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperbranched polyglycerols (hbPGs) were investigated as nanocarriers to encapsulate and deliver guest molecules.
Collapse
Affiliation(s)
- Haigang Wu
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai
- China
- School of Pharmacy
| | - Ting Yin
- School of Electronic Information and Electrical Engineering
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Ke Li
- University of Michigan-Shanghai Jiao Tong University Joint Institute
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Ruibin Wang
- Instrumental Analysis Center
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yantian Chen
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Lili Jing
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| |
Collapse
|
14
|
Singh AK, Thota BNS, Schade B, Achazi K, Khan A, Böttcher C, Sharma SK, Haag R. Aggregation Behavior of Non-ionic Twinned Amphiphiles and Their Application as Biomedical Nanocarriers. Chem Asian J 2017; 12:1796-1806. [DOI: 10.1002/asia.201700450] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/24/2017] [Indexed: 01/10/2023]
Affiliation(s)
| | - Bala N. S. Thota
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustraße 3 14195 Berlin Germany
| | - Boris Schade
- Forschungszentrum für Elektronenmikroskopie; Institut für Chemie und Biochemie; Freie Universität Berlin; Fabeckstraße 36 a 14195 Berlin Germany
| | - Katharina Achazi
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustraße 3 14195 Berlin Germany
| | - Abdullah Khan
- Department of Chemistry; University of Delhi; Delhi India
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie; Institut für Chemie und Biochemie; Freie Universität Berlin; Fabeckstraße 36 a 14195 Berlin Germany
| | | | - Rainer Haag
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustraße 3 14195 Berlin Germany
| |
Collapse
|
15
|
Abbina S, Vappala S, Kumar P, Siren EMJ, La CC, Abbasi U, Brooks DE, Kizhakkedathu JN. Hyperbranched polyglycerols: recent advances in synthesis, biocompatibility and biomedical applications. J Mater Chem B 2017; 5:9249-9277. [DOI: 10.1039/c7tb02515g] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyperbranched polyglycerol is one of the most widely studied biocompatible dendritic polymer and showed promising applications. Here, we summarized the recent advancements in the field.
Collapse
Affiliation(s)
- Srinivas Abbina
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| | - Sreeparna Vappala
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| | - Prashant Kumar
- Center for Blood Research
- University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| | - Erika M. J. Siren
- Center for Blood Research
- University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| | - Chanel C. La
- Center for Blood Research
- University of British Columbia
- Vancouver
- Canada
- Department of Chemistry
| | - Usama Abbasi
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| | - Donald E. Brooks
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Laboratory Medicine
- University of British Columbia
- Vancouver
- Canada
- Center for Blood Research
| |
Collapse
|
16
|
Boreham A, Brodwolf R, Walker K, Haag R, Alexiev U. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine. Molecules 2016; 22:molecules22010017. [PMID: 28029135 PMCID: PMC6155873 DOI: 10.3390/molecules22010017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022] Open
Abstract
The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM) for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.
Collapse
Affiliation(s)
- Alexander Boreham
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | - Robert Brodwolf
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.
| | - Karolina Walker
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.
| | - Ulrike Alexiev
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.
| |
Collapse
|
17
|
Stefani S, Sharma SK, Haag R, Servin P. Core-shell nanocarriers based on PEGylated hydrophobic hyperbranched polyesters. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Gosecki M, Gadzinowski M, Gosecka M, Basinska T, Slomkowski S. Polyglycidol, Its Derivatives, and Polyglycidol-Containing Copolymers-Synthesis and Medical Applications. Polymers (Basel) 2016; 8:E227. [PMID: 30979324 PMCID: PMC6432134 DOI: 10.3390/polym8060227] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/24/2022] Open
Abstract
Polyglycidol (or polyglycerol) is a biocompatible polymer with a main chain structure similar to that of poly(ethylene oxide) but with a ⁻CH₂OH reactive side group in every structural unit. The hydroxyl groups in polyglycidol not only increase the hydrophilicity of this polymer but also allow for its modification, leading to polymers with carboxyl, amine, and vinyl groups, as well as to polymers with bonded aliphatic chains, sugar moieties, and covalently immobilized bioactive compounds in particular proteins. The paper describes the current state of knowledge on the synthesis of polyglycidols with various topology (linear, branched, and star-like) and with various molar masses. We provide information on polyglycidol-rich surfaces with protein-repelling properties. We also describe methods for the synthesis of polyglycidol-containing copolymers and the preparation of nano- and microparticles that could be derived from these copolymers. The paper summarizes recent advances in the application of polyglycidol and polyglycidol-containing polymers as drug carriers, reagents for diagnostic systems, and elements of biosensors.
Collapse
Affiliation(s)
- Mateusz Gosecki
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Mariusz Gadzinowski
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Monika Gosecka
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Teresa Basinska
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Stanislaw Slomkowski
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| |
Collapse
|
19
|
Yu C, Ma L, Li K, Li S, Liu Y, Zhou Y, Yan D. Molecular dynamics simulation studies of hyperbranched polyglycerols and their encapsulation behaviors of small drug molecules. Phys Chem Chem Phys 2016; 18:22446-57. [DOI: 10.1039/c6cp03726g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computer simulation could disclose more details about the conformations of HPGs and their encapsulation behaviors of guest molecules.
Collapse
Affiliation(s)
- Chunyang Yu
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Li Ma
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Ke Li
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Shanlong Li
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Yannan Liu
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Yongfeng Zhou
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry & Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| |
Collapse
|
20
|
Lukowiak MC, Thota BN, Haag R. Dendritic core–shell systems as soft drug delivery nanocarriers. Biotechnol Adv 2015; 33:1327-41. [DOI: 10.1016/j.biotechadv.2015.03.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/19/2015] [Accepted: 03/22/2015] [Indexed: 12/29/2022]
|
21
|
Xu Y, Wu C, Zhu W, Xia C, Wang D, Zhang H, Wu J, Lin G, Wu B, Gong Q, Song B, Ai H. Superparamagnetic MRI probes for in vivo tracking of dendritic cell migration with a clinical 3 T scanner. Biomaterials 2015; 58:63-71. [PMID: 25941783 DOI: 10.1016/j.biomaterials.2015.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 02/05/2023]
Abstract
Dendritic cell (DC) based vaccines have shown promising results in the immunotherapy of cancers and other diseases. How to track the in vivo fate of DC vaccines will provide important insights to the final therapeutic results. In this study, we chose magnetic resonance imaging (MRI) to track murine DCs migration to the draining lymph node under a clinical 3 T scanner. Different from labeling immature DCs usually reported in literature, this study instead labeled matured DC with superparamagnetic iron oxide (SPIO) nanoparticle based imaging probes. The labeling process did not show negative impacts on cell viability, morphology, and surface biomarker expression. To overcome the imaging challenges brought by the limitations of the scanner, the size of lymph node, and the number of labeled cell, we optimized MRI pulse sequences. As a result, the signal reduction, caused either by gelatin phantoms containing as low as 12 SPIO-laden cells in each voxel or by the homing SPIO-laden DCs within the draining nodes after footpad injection of only 1 × 10(5) cells, can be clearly depicted under a 3 T MR scanner. Overall, the MRI labeling probes offer a low-toxic and high-efficient MR imaging platform for the assessment of DC-based immunotherapies.
Collapse
Affiliation(s)
- Ye Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Department of Radiology, Children's Hospital, Chongqing Medical University, Chongqing 400014, China
| | - Changqiang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Wencheng Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Houbin Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jun Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Gan Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bing Wu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, Children's Hospital, Chongqing Medical University, Chongqing 400014, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
22
|
Mohammadifar E, Nemati Kharat A, Adeli M. Polyamidoamine and polyglycerol; their linear, dendritic and linear–dendritic architectures as anticancer drug delivery systems. J Mater Chem B 2015; 3:3896-3921. [DOI: 10.1039/c4tb02133a] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review covers the latest advances in the conjugation of chemotherapeutics such as doxorubicin, paclitaxel, methotrexate, fluorouracil and cisplatin to dendritic polymers, including polyamidoamine dendrimers, hyperbranched polyglycerols and their linear analogues, with a focus on their cytotoxicity, biodistribution and biodegradability.
Collapse
Affiliation(s)
- Ehsan Mohammadifar
- School of Chemistry
- University College of Science
- University of Tehran
- Tehran
- Iran
| | - Ali Nemati Kharat
- School of Chemistry
- University College of Science
- University of Tehran
- Tehran
- Iran
| | - Mohsen Adeli
- Department of Chemistry
- Faculty of Science
- Lorestan University
- Khoramabad
- Iran
| |
Collapse
|
23
|
Kurniasih IN, Keilitz J, Haag R. Dendritic nanocarriers based on hyperbranched polymers. Chem Soc Rev 2015; 44:4145-64. [DOI: 10.1039/c4cs00333k] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of hyperbranched polymers as an alternative to perfect dendrimers as nanocarrier systems for drugs, dyes and other guest molecules is covered. Different types of hyperbranched polymers are discussed with regard to aspects like synthesis, functionalisation and encapsulation properties but also their degradation.
Collapse
Affiliation(s)
| | - Juliane Keilitz
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| |
Collapse
|
24
|
Zheng Y, Li S, Weng Z, Gao C. Hyperbranched polymers: advances from synthesis to applications. Chem Soc Rev 2015; 44:4091-130. [DOI: 10.1039/c4cs00528g] [Citation(s) in RCA: 498] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the advances in hyperbranched polymers from the viewpoint of structure, click synthesis and functionalization towards their applications in the last decade.
Collapse
Affiliation(s)
- Yaochen Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Sipei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Zhulin Weng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
25
|
Zhang P, Yin J, Jiang X. Hyperbranched poly(ether amine) (hPEA)/poly(vinyl alcohol) (PVA) interpenetrating network (IPN) for selective adsorption and separation of guest homologues. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14597-14605. [PMID: 25411714 DOI: 10.1021/la502869n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We here reported that hyperbranched poly(ether amine) (hPEA) and poly(vinyl alcohol) (PVA) interpenetrating network (hPEA/PVA-IPN) can be used for the selective adsorption and separation of guest homologues. A series of hyperbranched poly(ether amine) and poly(vinyl alcohol) interpenetrating networks (hPEA/PVA-IPNs) were fabricated by introducing poly(vinyl alcohol) chains into network of hyperbranched poly(ether amine), in which two independent networks of hyperbranched poly(ether amine) and poly(vinyl alcohol) were cross-linked through photodimerization of coumarin groups of hyperbranched poly(ether amine) and aldol condensation reaction between hydroxyl groups of poly(vinyl alcohol) and glutaraldehyde, respectively. The mechanical strength of interpenetrating networks can be enhanced by the introduction of poly(vinyl alcohol), and the tensile strength of interpenetrating networks increased with tens of times in compared with the pure hyperbranched poly(ether amine) network. The adsorption behavior of seven fluorescein dyes sharing with the same backbone and charge state onto hyperbranched poly(ether amine) and poly(vinyl alcohol) interpenetrating networks was then investigated in detail. Regardless of their charge states, these interpenetrating networks exhibited the quick adsorption to Rose Bengal (RB), Erythrosin B (ETB), Eosin B (EB), 4',5'-dibromofluorescein (DBF), and 4,5,6,7-tetrachlorofluorescein (TCF), with high adsorption capacity (Qeq) and very low adsorption of Calcein (Cal) and fluorescein (FR). The adsorption process was found to follow the pseudo-second-order kinetics, and the introduction of poly(vinyl alcohol) has no obvious effect on the adsorption behavior in this study. The big difference in the adsorption is indicative of the selective adsorption of hyperbranched poly(ether amine) and poly(vinyl alcohol) interpenetrating networks to fluorescein dyes. Based on the unique selective adsorption, the separation of several mixtures of fluorescein dyes such as RB/Cal, RB/FR, ETB/FR, and ETB/Cal was achieved by using hPEA/PVA-IPN as adsorbent.
Collapse
Affiliation(s)
- Peng Zhang
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | | | | |
Collapse
|
26
|
Yu B, Jiang X, Yin J. The Interaction Between Amphiphilic Polymer Materials and Guest Molecules: Selective Adsorption and Its Related Applications. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bing Yu
- State Key Laboratory for Metal Matrix Composite Materials, School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 PR China
| | - Xuesong Jiang
- State Key Laboratory for Metal Matrix Composite Materials, School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 PR China
| | - Jie Yin
- State Key Laboratory for Metal Matrix Composite Materials, School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 PR China
| |
Collapse
|
27
|
Subuddhi U, Vuram PK, Chadha A, Mishra AK. Disaggregation induced solvatochromic switch: a study of dansylated polyglycerol dendrons in binary solvent mixture. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 128:351-356. [PMID: 24681319 DOI: 10.1016/j.saa.2014.02.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
A reversal in solvatochromic behaviour was observed in second and third generation glycerol based dansylated polyether dendrons in water on addition of a second solvent like methanol or acetonitrile. Below a certain percentage of the nonaqueous solvent there is a negative-solvatochromism observed and above that there is a switch to positive-solvatochromism. The negative-solvatochromism is attributed to the progressive disaggregation of the dendron aggregates by the nonaqueous solvent component. Once the disaggregation process is complete, positive-solvatochromism is exhibited by the dendron monomers. Higher the hydrophobicity of the dendron more is the amount of the second solvent required for disaggregation.
Collapse
Affiliation(s)
- Usharani Subuddhi
- Department of Chemistry, National Institute of Technology Rourkela, India
| | - Prasanna K Vuram
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Anju Chadha
- Laboratory of Bioorganic Chemistry, Department of Biotechnology and National Center for Catalysis Research, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Ashok K Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
28
|
Facile Williamson etherification of hyperbranched polyglycerol and subtle core-dependent supramolecular guest selection of the resulting molecular nanocapsule. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Paulus F, Steinhilber D, Welker P, Mangoldt D, Licha K, Depner H, Sigrist S, Haag R. Structure related transport properties and cellular uptake of hyperbranched polyglycerol sulfates with hydrophobic cores. Polym Chem 2014. [DOI: 10.1039/c4py00430b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Deng Y, Saucier-Sawyer JK, Hoimes CJ, Zhang J, Seo YE, Andrejecsk JW, Saltzman WM. The effect of hyperbranched polyglycerol coatings on drug delivery using degradable polymer nanoparticles. Biomaterials 2014; 35:6595-602. [PMID: 24816286 DOI: 10.1016/j.biomaterials.2014.04.038] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/14/2014] [Indexed: 02/08/2023]
Abstract
A key attribute for nanoparticles (NPs) that are used in medicine is the ability to avoid rapid uptake by phagocytic cells in the liver and other tissues. Poly(ethylene glycol) (PEG) coatings has been the gold standard in this regard for several decades. Here, we examined hyperbranched polyglycerols (HPG) as an alternate coating on NPs. In earlier work, HPG was modified with amines and subsequently conjugated to poly(lactic acid) (PLA), but that approach compromised the ability of HPG to resist non-specific adsorption of biomolecules. Instead, we synthesized a copolymer of PLA-HPG by a one-step esterification. NPs were produced from a single emulsion using PLA-HPG: fluorescent dye or the anti-tumor agent camptothecin (CPT) were encapsulated at high efficiency in the NPs. PLA-HPG NPs were quantitatively compared to PLA-PEG NPs, produced using approaches that have been extensively optimized for drug delivery in humans. Despite being similar in size, drug release profile and in vitro cytotoxicity, the PLA-HPG NPs showed significantly longer blood circulation and significantly less liver accumulation than PLA-PEG. CPT-loaded PLA-HPG NPs showed higher stability in suspension and better therapeutic effectiveness against tumors in vivo than CPT-loaded PLA-PEG NPs. Our results suggest that HPG is superior to PEG as a surface coating for NPs in drug delivery.
Collapse
Affiliation(s)
- Yang Deng
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, MEC 414, New Haven, CT 06511, USA
| | - Jennifer K Saucier-Sawyer
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, MEC 414, New Haven, CT 06511, USA
| | - Christopher J Hoimes
- Department of Medical Oncology, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - Junwei Zhang
- Department of Chemical and Environmental Engineering, Yale University, 55 Prospect Street, MEC 414, New Haven, CT 06511, USA
| | - Young-Eun Seo
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, MEC 414, New Haven, CT 06511, USA
| | - Jillian W Andrejecsk
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, MEC 414, New Haven, CT 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, MEC 414, New Haven, CT 06511, USA.
| |
Collapse
|
31
|
Boreham A, Pfaff M, Fleige E, Haag R, Alexiev U. Nanodynamics of dendritic core-multishell nanocarriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1686-95. [PMID: 24460144 DOI: 10.1021/la4043155] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The molecular dynamics of polymeric nanocarriers is an important parameter for controlling the interaction of nanocarrier branches with cargo. Understanding the interplay of dendritic polymer dynamics, temperature, and cargo molecule interactions should provide valuable new insight for tailoring the dendritic architecture to specific needs in nanomedicine, drug, dye, and gene delivery. Here, we have investigated polyglycerol-based core-multishell (CMS) nanotransporters with incorporated Nile Red as a fluorescent drug mimetic and CMS nanotransporters with a covalently bound fluorophore (Indocarbocyanine) using fluorescence spectroscopy methods. From time-resolved fluorescence depolarization we have obtained the rotational diffusion dynamics of the incorporated dye, the nanocarrier, and its branches as a function of temperature. UV/vis and fluorescence lifetime measurements provided additional information on the local dye environment. Our results show a distribution of the cargo Nile Red within the nanotransporter shells that depends on solvent and temperature. In particular, we show that the flexibility of the polymer branches in the unimolecular state of the nanotransporter undergoes a temperature-dependent transition which correlates with a larger space for the mobility of the incorporated hydrophobic drug mimetic Nile Red and a higher probability of cargo-solvent interactions at temperatures above 31 °C. The measurements have further revealed that a loss of the cargo molecule Nile Red occurred neither upon dilution of the CMS nanotransporters nor upon heating. Thus, the unimolecular preloaded CMS nanotransporters retain their cargo and are capable to transport and respond to temperature, thereby fulfilling important requirements for biomedical applications.
Collapse
Affiliation(s)
- Alexander Boreham
- Institut für Experimentalphysik, Freie Universität Berlin , Arnimallee 14, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
32
|
Kurniasih IN, Liang H, Kumar S, Mohr A, Sharma SK, Rabe JP, Haag R. A bifunctional nanocarrier based on amphiphilic hyperbranched polyglycerol derivatives. J Mater Chem B 2013; 1:3569-3577. [PMID: 32261172 DOI: 10.1039/c3tb20366b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We here report on the synthesis of a bifunctional nanocarrier system based on amphiphilic hyperbranched polyglycerol (hPG), which is modified by introducing hydrophobic aromatic groups to the core and retaining hydrophilic groups in the shell. "Selective chemical differentiation" and chemo-enzymatic reaction strategies were used to synthesize this new core-shell type nanocarrier. The system shows an innovative bifunctional carrier capacity with both polymeric and unimolecular micelle-like transport properties. Hydrophobic guest molecules such as pyrene were encapsulated into the hydrophobic core of modified hPG via hydrophobic interactions as well as π-π stacking, analogous to a unimolecular micelle system. A second guest molecule, which has a high affinity to the shell like nile red, was solubilized in the outer shell of the host molecule, thus connecting the nanocarrier molecules to form aggregates. This model is confirmed by UV-Vis, fluorescence, atomic force microscopy, and dynamic light scattering, as well as release studies triggered by pH-changes and enzymes. Encapsulated guest molecules, respectively in the core and in the shell, present different controlled release profiles. The bifunctional nanocarrier system is a promising candidate for simultaneous delivery of different hydrophobic drugs for a combination therapy, e.g., in tumor treatment.
Collapse
Affiliation(s)
- Indah N Kurniasih
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Gupta S, Schade B, Kumar S, Böttcher C, Sharma SK, Haag R. Non-ionic dendronized multiamphiphilic polymers as nanocarriers for biomedical applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:894-904. [PMID: 23225638 DOI: 10.1002/smll.201201253] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/03/2012] [Indexed: 06/01/2023]
Abstract
A new class of non-ionic dendronized multiamphiphilic polymers is prepared from a biodegradable (AB)n-type diblock polymer synthesized from 2-azido-1,3-propanediol (azido glycerol) and polyethylene glycol (PEG)-600 diethylester using Novozym-435 (Candida antarctica lipase) as a biocatalyst, following a well-established biocatalytic route. These polymers are functionalized with dendritic polyglycerols (G1 and G2) and octadecyl chains in different functionalization levels via click chemistry to generate dendronized multiamphiphilic polymers. Surface tension measurements and dynamic light scattering studies reveal that all of the multiamphiphilic polymers spontaneously self-assemble in aqueous solution. Cryogenic transmission electron microscopy further proves the formation of multiamphiphiles towards monodisperse spherical micelles of about 7-9 nm in diameter. The evidence from UV-vis and fluorescence spectroscopy suggests the effective solubilization of hydrophobic guests like pyrene and 1-anilinonaphthalene-8-sulfonic acid within the hydrophobic core of the micelles. These results demonstrate the potential of these dendronized multiamphiphilic polymers for the development of prospective drug delivery systems for the solubilization of poorly water soluble drugs.
Collapse
Affiliation(s)
- Shilpi Gupta
- Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Gupta S, Tyagi R, Parmar VS, Sharma SK, Haag R. Polyether based amphiphiles for delivery of active components. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.04.047] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Zeng X, Li J, Zheng J, Pan Y, Wang J, Zhang L, He X, Liu D. Amphiphilic cylindrical copolypeptide brushes as potential nanocarriers for the simultaneous encapsulation of hydrophobic and cationic drugs. Colloids Surf B Biointerfaces 2012; 94:324-32. [DOI: 10.1016/j.colsurfb.2012.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
|
36
|
Production of CaCO3/hyperbranched polyglycidol hybrid films using spray-coating technique. J Colloid Interface Sci 2012; 374:61-9. [DOI: 10.1016/j.jcis.2012.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 11/18/2022]
|
37
|
Huang H, Li J, Liao L, Li J, Wu L, Dong C, Lai P, Liu D. Poly(l-glutamic acid)-based star-block copolymers as pH-responsive nanocarriers for cationic drugs. Eur Polym J 2012. [DOI: 10.1016/j.eurpolymj.2012.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Kurniasih IN, Liang H, Möschwitzer VD, Quadir MA, Radowski M, Rabe JP, Haag R. Synthesis and transport properties of new dendritic core–shell architectures based on hyperbranched polyglycerol with biphenyl-PEG shells. NEW J CHEM 2012. [DOI: 10.1039/c1nj20466a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Chen B, van der Poll DG, Jerger K, Floyd WC, Fréchet JMJ, Szoka FC. Synthesis and properties of star-comb polymers and their doxorubicin conjugates. Bioconjug Chem 2011; 22:617-24. [PMID: 21375296 DOI: 10.1021/bc100400u] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe a six-step synthesis to water-soluble doxorubicin (DOX)-loaded biodegradable PEGylated star-comb polymers with favorable pharmaceutical properties by atom transfer radical polymerization (ATRP) starting with a commercially available tripentaerythritol carrying eight reactive sites. The low polydispersity polymers degrade in a stepwise manner into lower molecular weight (MW) fragments by 15 days at 37 °C at either pH 5.0 or pH 7.4. The half-life of the star-comb polymers in blood is dependent upon the molecular weight; the 44 kDa star-comb has a t(1/2, β) of 30.5 ± 2.1 h, which is not significantly changed (28.6 ± 2.7 h) when 6.6 wt % of DOX is attached to it via a pH-sensitive hydrazone linker. The star-comb polymers have low accumulation in organs but a high accumulation in C26 flank tumors implanted in Balb/C mice. The hydrodynamic diameter of polymer-DOX conjugates measured by dynamic light scattering increases from 8 to 35 to 41 nm as the loading is increased from 6.6 to 8.4 to 10.2 wt %. Although there is no significant difference in the t(1/2, β) or in the accumulation of polymer-DOX in C-26 tumors, the uptake of polymer in the spleen is significantly higher for polymers with DOX loadings greater than 6.6 wt %. Polymer accumulation in other vital organs is independent of the DOX loading. The facile synthesis, biodegradability, long circulation time, and high tumor accumulation of the attached drug suggests that the water-soluble star-comb polymers have promise in therapeutic applications.
Collapse
Affiliation(s)
- Bo Chen
- Department of Bioengineering, Therapeutic Sciences and Pharmaceutical Chemistry, University of California, San Francisco , California 94143-0912, United States
| | | | | | | | | | | |
Collapse
|
40
|
Han Y, Gao C. Miktoarms hyperbranched polymer brushes: One-step fast synthesis by parallel click chemistry and hierarchical self-assembly. Sci China Chem 2010. [DOI: 10.1007/s11426-010-4134-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Mugabe C, Liggins RT, Guan D, Manisali I, Chafeeva I, Brooks DE, Heller M, Jackson JK, Burt HM. Development and in vitro characterization of paclitaxel and docetaxel loaded into hydrophobically derivatized hyperbranched polyglycerols. Int J Pharm 2010; 404:238-49. [PMID: 21093563 DOI: 10.1016/j.ijpharm.2010.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/03/2010] [Accepted: 11/10/2010] [Indexed: 12/31/2022]
Abstract
In this study we report the development and in vitro characterization of paclitaxel (PTX) and docetaxel (DTX) loaded into hydrophobically derivatized hyperbranched polyglycerols (HPGs). Several HPGs derivatized with hydrophobic groups (C(8/10) alkyl chains) (HPG-C(8/10)-OH) and/or methoxy polyethylene glycol (MePEG) chains (HPG-C(8/10)-MePEG) were synthesized. PTX or DTX were loaded into these polymers by a solvent evaporation method and the resulting nanoparticle formulations were characterized in terms of size, drug loading, stability, release profiles, cytotoxicity, and cellular uptake. PTX and DTX were found to be chemically unstable in unpurified HPGs and large fractions (∼80%) of the drugs were degraded during the preparation of the formulations. However, both PTX and DTX were found to be chemically stable in purified HPGs. HPGs possessed hydrodynamic radii of less than 10nm and incorporation of PTX or DTX did not affect their size. The release profiles for both PTX and DTX from HPG-C(8/10)-MePEG nanoparticles were characterized by a continuous controlled release with little or no burst phase of release. In vitro cytotoxicity evaluations of PTX and DTX formulations demonstrated a concentration-dependent inhibition of proliferation in KU7 cell line. Cellular uptake studies of rhodamine-labeled HPG (HPG-C(8/10)-MePEG(13)-TMRCA) showed that these nanoparticles were rapidly taken up into cells, and reside in the cytoplasm without entering the nuclear compartment and were highly biocompatible with the KU7 cells.
Collapse
Affiliation(s)
- C Mugabe
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhou Y, Huang W, Liu J, Zhu X, Yan D. Self-assembly of hyperbranched polymers and its biomedical applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:4567-4590. [PMID: 20853374 DOI: 10.1002/adma.201000369] [Citation(s) in RCA: 428] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Hyperbranched polymers (HBPs) are highly branched macromolecules with a three-dimensional dendritic architecture. Due to their unique topological structure and interesting physical/chemical properties, HBPs have attracted wide attention from both academia and industry. In this paper, the recent developments in HBP self-assembly and their biomedical applications have been comprehensively reviewed. Many delicate supramolecular structures from zero-dimension (0D) to three-dimension (3D), such as micelles, fibers, tubes, vesicles, membranes, large compound vesicles and physical gels, have been prepared through the solution or interfacial self-assembly of amphiphilic HBPs. In addition, these supramolecular structures have shown promising applications in the biomedical areas including drug delivery, protein purification/detection/delivery, gene transfection, antibacterial/antifouling materials and cytomimetic chemistry. Such developments promote the interdiscipline researches among surpramolecular chemistry, biomedical chemistry, nano-technology and functional materials.
Collapse
Affiliation(s)
- Yongfeng Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | | | | | | | | |
Collapse
|
43
|
Wan D, Pu H, Jin M, Pan H, Chang Z. Enhancing the unimolecularity and control for guest release of a macromolecular nanocapsule via core engineering. REACT FUNCT POLYM 2010. [DOI: 10.1016/j.reactfunctpolym.2010.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Papp I, Sieben C, Sisson AL, Herrmann A, Haag R. Inhibition of influenza virus activity by newly designed multivalent glycoarchitectures. J Control Release 2010; 148:e114-5. [DOI: 10.1016/j.jconrel.2010.07.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Vuram PK, Subuddhi U, Krishnaji ST, Chadha A, Mishra AK. Synthesis and Aggregation Properties of Dansylated Glycerol-Based Amphiphilic Polyether Dendrons. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Trappmann B, Ludwig K, Radowski MR, Shukla A, Mohr A, Rehage H, Böttcher C, Haag R. A New Family of Nonionic Dendritic Amphiphiles Displaying Unexpected Packing Parameters in Micellar Assemblies. J Am Chem Soc 2010; 132:11119-24. [DOI: 10.1021/ja101523v] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Britta Trappmann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany, Physikalische Chemie II, Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany, and Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Kai Ludwig
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany, Physikalische Chemie II, Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany, and Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Michał R. Radowski
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany, Physikalische Chemie II, Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany, and Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Anuj Shukla
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany, Physikalische Chemie II, Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany, and Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Andreas Mohr
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany, Physikalische Chemie II, Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany, and Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Heinz Rehage
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany, Physikalische Chemie II, Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany, and Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Christoph Böttcher
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany, Physikalische Chemie II, Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany, and Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany, Physikalische Chemie II, Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany, and Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 36a, 14195 Berlin, Germany
| |
Collapse
|
47
|
Sun X, Zhou Y, Yan D. Rendering Hyperbranched Polyglycerol Adjustably Thermoresponsive by Adamantyl Modification and Host/Guest Interaction. MACROMOL CHEM PHYS 2010. [DOI: 10.1002/macp.201000250] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Liu J, Huang W, Pang Y, Zhu X, Zhou Y, Yan D. Self-assembled micelles from an amphiphilic hyperbranched copolymer with polyphosphate arms for drug delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:10585-10592. [PMID: 20384307 DOI: 10.1021/la1006988] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A novel type of amphiphilic hyperbranched multiarm copolymer [H40-star-(PLA-b-PEP-OH)] was synthesized through a two-step ring-opening polymerization (ROP) procedure and applied to drug delivery. First, Boltorn H40 was used as macroinitiator for the ROP of L-lactide to form the intermediate (H40-star-PLA-OH). Then, the ROP of ethyl ethylene phosphate was further initiated to produce H40-star-(PLA-b-PEP-OH). The resulting hyperbranched multiarm copolymers were characterized by (1)H, (13)C, and (31)P NMR, GPC, and FTIR spectra. Benefiting from the amphiphilic structure, H40-star-(PLA-b-PEP-OH) was able to self-assemble into micelles in water with an average diameter of 130 nm. In vitro evaluation of these micelles demonstrated their excellent biocompatibility and efficient cellular uptake by methyl tetrazolium assay, flow cytometry, and confocal laser scanning microscopy measurements. Doxorubicin-loaded micelles were investigated for the proliferation inhibition of a Hela human cervical carcinoma cell line, and the Doxorubicin dose required for 50% cellular growth inhibition was found to be 1 microg/mL. These results indicate that H40-star-(PLA-b-PEP-OH) micelles can be used as safe, promising drug-delivery systems.
Collapse
Affiliation(s)
- Jinyao Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | | | | | | | | | | |
Collapse
|
49
|
Kurniasih IN, Liang H, Rabe JP, Haag R. Supramolecular aggregates of water soluble dendritic polyglycerol architectures for the solubilization of hydrophobic compounds. Macromol Rapid Commun 2010; 31:1516-20. [PMID: 21567560 DOI: 10.1002/marc.201000112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/30/2010] [Indexed: 11/08/2022]
Abstract
Dendritic core-shell architectures which are based on hyperbranched polyglycerol for the solubilization of hydrophobic drugs have been synthesized and characterized. The core of hyperbranched polyglycerol has been modified with hydrophobic biphenyl groups or perfluorinated chains to increase the core hydrophobicity of the macromolecules. These amphiphilic core-shell type architectures were then used to solubilize pyrene, nile red, and a perfluoro tagged diazo dye, as well as the drug nimodipine in water. Specific host-guest interactions such as fluorous-fluorous interactions could be tailored by this flexible core design and determined by UV spectroscopy. The transport capacity increased 450-fold for nile red, 47-fold for nimodipine, and 37-fold for pyrene at a polymer concentration of only 0.1 wt.-%. Surface tension measurements and scanning force microscopy (SFM) were used to reveal the aggregation properties of these complexes. The formation of supramolecular aggregates with diameters of ≈20 nm and critical aggregate concentrations of 2 × 10(-6) mol · L(-1) have been observed. This indicates the controlled self-assembly of the presented amphiphilic dendritic core-shell type architectures.
Collapse
Affiliation(s)
- Indah N Kurniasih
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
50
|
Khandare J, Haag R. Pharmaceutically used polymers: principles, structures, and applications of pharmaceutical delivery systems. Handb Exp Pharmacol 2010:221-50. [PMID: 20217532 DOI: 10.1007/978-3-642-00477-3_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
This chapter presents a general overview of pharmaceutically used polymers with respect to their physicochemical characteristics and factors affecting drug delivery abilities. Pharmaceutical polymers, chemical structure, and properties are discussed for their applications in controlled drug release systems. An additional focus is on new polymers (dendrimers, hyperbranched polymers), considering their chemical versatility, uniqueness, and future implications. Problems associated with controlled drug release systems are also highlighted. Finally, applications of FDA-approved polymers used for oral drug delivery systems are outlined.
Collapse
Affiliation(s)
- Jayant Khandare
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | | |
Collapse
|