1
|
Dutta S, Srivatsan SG. Enzymatic Functionalization of RNA Oligonucleotides by Terminal Uridylyl Transferase Using Fluorescent and Clickable Nucleotide Analogs. Chem Asian J 2024; 19:e202400475. [PMID: 38949615 DOI: 10.1002/asia.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
We report a systematic study on controlling the enzyme activity of a terminal uridylyl transferase (TUTase) called SpCID1, which provides methods to effect site-specific incorporation of a single modified nucleotide analog at the 3'-end of an RNA oligonucleotide (ON). Responsive heterocycle-modified fluorescent UTP probes that are useful in analyzing non-canonical nucleic acid structures and azide- and alkyne-modified UTP analogs that are compatible for chemoenzymatic functionalization were used as study systems. In the first strategy, we balanced the concentration of essential metal ion cofactors (Mg2+ and Mn2+ ions) to restrict the processivity of the enzyme, which gave a very good control on the incorporation of clickable nucleotide analogs. In the second approach, borate that complexes with 2' and 3' oxygen atoms of a ribose sugar was used as a reversibly binding chelator to block repeated addition of nucleotide analogs. Notably, in the presence of heterocycle-modified fluorescent UTPs, we obtained single-nucleotide incorporated RNA products in reasonable yields, while with clickable nucleotides yields were very good. Further, 3'-end azide- and alkyne-labeled RNA ONs were post-enzymatically functionalized by CuAAC and SPAAC reactions with fluorescent probes. These strategies broaden the scope of TUTase in site-specifically installing modifications of different types onto RNA for various applications.
Collapse
Affiliation(s)
- Swagata Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
2
|
Bargstedt J, Reinschmidt M, Tydecks L, Kolmar T, Hendrich CM, Jäschke A. Photochromic Nucleosides and Oligonucleotides. Angew Chem Int Ed Engl 2024; 63:e202310797. [PMID: 37966433 DOI: 10.1002/anie.202310797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Photochromism is a reversible phenomenon wherein a material undergoes a change in color upon exposure to light. In organic photochromes, this effect often results from light-induced isomerization reactions, leading to alterations in either the spatial orientation or electronic properties of the photochrome. The incorporation of photochromic moieties into biomolecules, such as proteins or nucleic acids, has become a prevalent approach to render these biomolecules responsive to light stimuli. Utilizing light as a trigger for the manipulation of biomolecular structure and function offers numerous advantages compared to other stimuli, such as chemical or electrical treatments, due to its non-invasive nature. Consequently, light proves particularly advantageous in cellular and tissue applications. In this review, we emphasize recent advancements in the field of photochromic nucleosides and oligonucleotides. We provide an overview of the design principles of different classes of photochromes, synthetic strategies, critical analytical challenges, as well as structure-property relationships. The applications of photochromic nucleic acid derivatives encompass diverse domains, ranging from the precise photoregulation of gene expression to the controlled modulation of the three-dimensional structures of oligonucleotides and the development of DNA-based fluorescence modulators. Moreover, we present a future perspective on potential modifications and applications.
Collapse
Affiliation(s)
- Jörn Bargstedt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Martin Reinschmidt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Leon Tydecks
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Theresa Kolmar
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Christoph M Hendrich
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Kuprikova N, Ondruš M, Bednárová L, Riopedre-Fernandez M, Slavětínská L, Sýkorová V, Hocek M. Superanionic DNA: enzymatic synthesis of hypermodified DNA bearing four different anionic substituents at all four nucleobases. Nucleic Acids Res 2023; 51:11428-11438. [PMID: 37870471 PMCID: PMC10681718 DOI: 10.1093/nar/gkad893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
We designed and synthesized a set of four 2'-deoxyribonucleoside 5'-O-triphosphates (dNTPs) derived from 5-substituted pyrimidines and 7-substituted 7-deazapurines bearing anionic substituents (carboxylate, sulfonate, phosphonate, and phosphate). The anion-linked dNTPs were used for enzymatic synthesis of modified and hypermodified DNA using KOD XL DNA polymerase containing one, two, three, or four modified nucleotides. The polymerase was able to synthesize even long sequences of >100 modified nucleotides in a row by primer extension (PEX). We also successfully combined two anionic and two hydrophobic dNTPs bearing phenyl and indole moieties. In PCR, the combinations of one or two modified dNTPs gave exponential amplification, while most of the combinations of three or four modified dNTPs gave only linear amplification in asymmetric PCR. The hypermodified ONs were successfully re-PCRed and sequenced by Sanger sequencing. Biophysical studies including hybridization, denaturation, CD spectroscopy and molecular modelling and dynamics suggest that the presence of anionic modifications in one strand decreases the stability of duplexes while still preserving the B-DNA conformation, whilst the DNA hypermodified in both strands adopts a different secondary structure.
Collapse
Affiliation(s)
- Natalia Kuprikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Miguel Riopedre-Fernandez
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
4
|
Kan Y, Jin Z, Ke Y, Lin D, Yan L, Wu L, He Y. Replicative bypass studies of l-deoxyribonucleosides in Vitro and in E. coli cell. Sci Rep 2022; 12:21183. [PMID: 36476762 PMCID: PMC9729220 DOI: 10.1038/s41598-022-24802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
L-nucleosides were the most important antiviral lead compounds because they can inhibit viral DNA polymerase and DNA synthesis of many viruses, whereas they may lead to mutations in DNA replication and cause genomic instability. In this study, we reported the replicative bypass of L-deoxynucleosides in recombinant DNA by restriction enzyme-mediated assays to examine their impact on DNA replication in vitro and in E. coli cells. The results showed that a template L-dC inhibited Taq DNA polymerase reaction, whereas it can be bypassed by Vent (exo-) DNA polymerase as well as in cell replication, inserting correct nucleotides opposite L-dC. L-dG can be bypassed by Taq DNA polymerase and in E. coli cells, maintaining insertion of correct incoming nucleotides, and L-dG induced mutagenic replication by Vent (exo-) DNA polymerase. In contrast, L-dA can induced mutagenic replication in vitro and in E. coli cells. MD simulations were performed to investigate how DNA polymerase affected replicative bypass and mutations when D-nucleosides replaced with L-nucleosides. This study will provide a basis for the ability to assess the cytotoxic and mutagenic properties of the L-nucleoside drugs.
Collapse
Affiliation(s)
- Yuhe Kan
- grid.410726.60000 0004 1797 8419School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China ,grid.411643.50000 0004 1761 0411School of Life Sciences, Inner Mongolia University, Hohhot, 010021 Inner Mongolia People’s Republic of China ,Qilu Pharmaceutical (Inner Mongolia) CO., LTD., Hohhot, 010080 Inner Mongolia People’s Republic of China
| | - Zhaoyang Jin
- grid.410726.60000 0004 1797 8419School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Yongqi Ke
- grid.410726.60000 0004 1797 8419School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Dao Lin
- grid.410726.60000 0004 1797 8419School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Liang Yan
- grid.410726.60000 0004 1797 8419School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Li Wu
- grid.410726.60000 0004 1797 8419School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China ,grid.11135.370000 0001 2256 9319State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191 People’s Republic of China
| | - Yujian He
- grid.410726.60000 0004 1797 8419School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China ,grid.11135.370000 0001 2256 9319State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191 People’s Republic of China ,grid.410726.60000 0004 1797 8419School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| |
Collapse
|
5
|
Serrano JL. Water-Soluble Pd-Imidate Complexes as Versatile Catalysts for the Modification of Unprotected Halonucleosides. CHEM REC 2022; 22:e202200179. [PMID: 36094784 DOI: 10.1002/tcr.202200179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Indexed: 12/15/2022]
Abstract
Modification of unprotected nucleosides has been attracting continuous interest, since these building blocks themselves and their phosphate-upgraded corresponding nucleotides have shown a plethora of uses in fields like biochemistry or pharmacy. Pd-catalyzed cross-coupling reactions, conducted in water or its mixtures with polar organic solvents, have frequently been the researchers' choice for the functionalization of the purine/pyrimidine base of the unprotected nucleosides. In this scenario, the availability of hydrophilic ligands and its water-soluble palladium complexes has markedly set the pace of the advances. The approach of our group to the synthesis of such complexes, Pd-imidates specifically, has faced critical stages, namely the jump to synthesize water soluble complexes from our experience working in conventional solvents, the preparation of phosphine free complexes and the overall goal of getting catalytic systems able to work close to room temperature. The continuous feedback with Kapdi's group, experienced in the chemistry of nucleosides, has produced over the last decade the interesting results in both fields presented here.
Collapse
Affiliation(s)
- José Luis Serrano
- Departamento de Ingeniería Química y Ambiental., Área de Química Inorgánica, Universidad Politécnica de Cartagena member of European University of Technology, 30203, Cartagena, Spain
| |
Collapse
|
6
|
Shaughnessy KH. Covalent Modification of Nucleobases using Water-Soluble Palladium Catalysts. CHEM REC 2022; 22:e202200190. [PMID: 36074958 DOI: 10.1002/tcr.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Indexed: 12/15/2022]
Abstract
Nucleosides represent one of the key building blocks of biochemistry. There is significant interest in the synthesis of nucleoside-derived materials for applications as probes, biochemical models, and pharmaceuticals. Palladium-catalyzed cross-coupling reactions are effective methods for making covalent modification of carbon and nitrogen sites on nucleobases under mild conditions. Water-soluble catalysts derived from palladium and hydrophilic ligands, such as tris(3-sulfonatophenyl)phosphine trisodium (TPPTS), are efficient catalysts for a range of coupling reactions of unprotected halonucleosides. Over the past two decades, these methods have been extended to direct functionalization of halonucleotides, as well as RNA and DNA oligonucleotides (ONs) containing halogenated bases. These methods can be run under biocompatible conditions, including examples of Suzuki coupling of modified DNA in whole cells and tissue samples. In this account, development of this methodology by our group and others is highlighted along with the extension of these catalyst systems to modification of nucleotides and ONs.
Collapse
Affiliation(s)
- Kevin H Shaughnessy
- Department of Chemistry & Biochemistry, The University of Alabama, Box 870336, Tuscaloosa, AL 35487-0336, USA
| |
Collapse
|
7
|
Sýkorová V, Tichý M, Hocek M. Polymerase Synthesis of DNA Containing Iodinated Pyrimidine or 7-Deazapurine Nucleobases and Their Post-synthetic Modifications through the Suzuki-Miyaura Cross-Coupling Reactions. Chembiochem 2021; 23:e202100608. [PMID: 34821441 DOI: 10.1002/cbic.202100608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Indexed: 11/08/2022]
Abstract
All four iodinated 2'-deoxyribonucleoside triphosphates (dNTPs) derived from 5-iodouracil, 5-iodocytosine, 7-iodo-7-deazaadenine and 7-iodo-7-deazaguanine were prepared and studied as substrates for KOD XL DNA polymerase. All of the nucleotides were readily incorporated by primer extension and by PCR amplification to form DNA containing iodinated nucleobases. Systematic study of the Suzuki-Miyaura cross-coupling reactions with two bulkier arylboronic acids revealed that the 5-iodopyrimidines were more reactive and gave cross-coupling products both in the terminal or internal position in single-stranded oligonucleotides (ssONs) and in the terminal position of double-stranded DNA (dsDNA), whereas the 7-iodo-7-deazapurines were less reactive and gave cross-coupling products only in the terminal position. None of the four iodinated bases reacted in an internal position of dsDNA. These findings are useful for the use of the iodinated nucleobases for post-synthetic modification of DNA with functional groups for various applications.
Collapse
Affiliation(s)
- Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Tichý
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
8
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
9
|
Koplūnaitė M, Butkutė K, Meškys R, Tauraitė D. Synthesis of pyrimidine nucleoside and amino acid conjugates. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Ménová P, Cahová H, Vrábel M, Hocek M. Synthesis of Base-Modified dNTPs Through Cross-Coupling Reactions and Their Polymerase Incorporation to DNA. Methods Mol Biol 2019; 1973:39-57. [PMID: 31016695 DOI: 10.1007/978-1-4939-9216-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Synthesis of base-modified dNTPs through the Suzuki or Sonogashira cross-coupling reactions of halogenated dNTPs with boronic acids or alkynes is reported, as well as the use of these modified dNTPs in polymerase incorporations to oligonucleotides or DNA by primer extension or PCR.
Collapse
Affiliation(s)
- Petra Ménová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Cahová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Vrábel
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
11
|
İmik F, Yaşar S, Özdemir İ. Synthesis and investigation of catalytic activity of phenylene – And biphenylene bridged bimetallic Palladium-PEPPSI complexes. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Pubill‐Ulldemolins C, Sharma SV, Cartmell C, Zhao J, Cárdenas P, Goss RJM. Heck Diversification of Indole-Based Substrates under Aqueous Conditions: From Indoles to Unprotected Halo-tryptophans and Halo-tryptophans in Natural Product Derivatives. Chemistry 2019; 25:10866-10875. [PMID: 31125453 PMCID: PMC6772188 DOI: 10.1002/chem.201901327] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/21/2019] [Indexed: 12/17/2022]
Abstract
The blending of synthetic chemistry with biosynthetic processes provides a powerful approach to synthesis. Biosynthetic halogenation and synthetic cross-coupling have great potential to be used together, for small molecule generation, access to natural product analogues and as a tool for chemical biology. However, to enable enhanced generality of this approach, further synthetic tools are needed. Though considerable research has been invested in the diversification of phenylalanine and tyrosine, functionalisation of tryptophans thorough cross-coupling has been largely neglected. Tryptophan is a key residue in many biologically active natural products and peptides; in proteins it is key to fluorescence and dominates protein folding. To this end, we have explored the Heck cross-coupling of halo-indoles and halo-tryptophans in water, showing broad reaction scope. We have demonstrated the ability to use this methodology in the functionalisation of a brominated antibiotic (bromo-pacidamycin), as well as a marine sponge metabolite, barettin.
Collapse
Affiliation(s)
- Cristina Pubill‐Ulldemolins
- Department of Chemistry and BSRCUniversity of St AndrewsSt AndrewsKY16 9STUK
- Present address: Department of ChemistrySchool of Life SciencesUniversity of SussexBrightonBN19QJUK
| | - Sunil V. Sharma
- Department of Chemistry and BSRCUniversity of St AndrewsSt AndrewsKY16 9STUK
| | | | - Jinlian Zhao
- Department of Chemistry and BSRCUniversity of St AndrewsSt AndrewsKY16 9STUK
| | - Paco Cárdenas
- Pharmacognosy, Department of Medicinal ChemistryUppsala UniversityUppsala75123Sweden
| | - Rebecca J. M. Goss
- Department of Chemistry and BSRCUniversity of St AndrewsSt AndrewsKY16 9STUK
| |
Collapse
|
13
|
Jakubovska J, Tauraite D, Birštonas L, Meškys R. N4-acyl-2'-deoxycytidine-5'-triphosphates for the enzymatic synthesis of modified DNA. Nucleic Acids Res 2019; 46:5911-5923. [PMID: 29846697 PMCID: PMC6158702 DOI: 10.1093/nar/gky435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
A huge diversity of modified nucleobases is used as a tool for studying DNA and RNA. Due to practical reasons, the most suitable positions for modifications are C5 of pyrimidines and C7 of purines. Unfortunately, by using these two positions only, one cannot expand a repertoire of modified nucleotides to a maximum. Here, we demonstrate the synthesis and enzymatic incorporation of novel N4-acylated 2′-deoxycytidine nucleotides (dCAcyl). We find that a variety of family A and B DNA polymerases efficiently use dCAcylTPs as substrates. In addition to the formation of complementary CAcyl•G pair, a strong base-pairing between N4-acyl-cytosine and adenine takes place when Taq, Klenow fragment (exo–), Bsm and KOD XL DNA polymerases are used for the primer extension reactions. In contrast, a proofreading phi29 DNA polymerase successfully utilizes dCAcylTPs but is prone to form CAcyl•A base pair under the same conditions. Moreover, we show that terminal deoxynucleotidyl transferase is able to incorporate as many as several hundred N4-acylated-deoxycytidine nucleotides. These data reveal novel N4-acylated deoxycytidine nucleotides as beneficial substrates for the enzymatic synthesis of modified DNA, which can be further applied for specific labelling of DNA fragments, selection of aptamers or photoimmobilization.
Collapse
Affiliation(s)
- Jevgenija Jakubovska
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Daiva Tauraite
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Lukas Birštonas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
14
|
Reisacher U, Groitl B, Strasser R, Cserép GB, Kele P, Wagenknecht HA. Triazine-Modified 7-Deaza-2'-deoxyadenosines: Better Suited for Bioorthogonal Labeling of DNA by PCR than 2'-Deoxyuridines. Bioconjug Chem 2019; 30:1773-1780. [PMID: 31117344 DOI: 10.1021/acs.bioconjchem.9b00295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
6-Ethynyl-1,2,4-triazine is a small bioorthogonally reactive group we applied for fluorescent labeling of oligonucleotides by Diels-Alder reactions with inverse electron demand. We synthetically attached this functional group to the 7-position of 7-deaza-2'-deoxyadenosine triphosphate and to the 5-position of 2'-deoxyuridine triphosphate. Both modified nucleotide triphosphates were used in comparison for primer extension experiments (PEX) and PCR amplification to finally yield multilabeled oligonucleotides by the postsynthetic reaction with a highly reactive bicyclo[6.1.0]nonyne-rhodamine conjugate. These experiments show that 6-ethynyl-1,2,4-triazine is much better tolerated by the DNA polymerase when attached to the 7-position of 7-deaza-2'-deoxyadenosine in comparison to the attachment at the 5-position of 2'-deoxyuridine. This became evident both by PAGE analysis of the PCR products and real-time kinetic observation of DNA polymerase activity during primer extension using switchSENSE. Generally, our results imply that bioorthogonal labeling strategies are better suited for 7-deaza-2'-adenosines than conventional and available 2'-deoxyuridines.
Collapse
Affiliation(s)
- Ulrike Reisacher
- Karlsruhe Institute of Technology , Institute of Organic Chemistry , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
| | - Bastian Groitl
- Dynamic Biosensors GmbH, Lochhamer Straße 15 , 82152 Martinsried , Germany
| | - Ralf Strasser
- Dynamic Biosensors GmbH, Lochhamer Straße 15 , 82152 Martinsried , Germany
| | - Gergely B Cserép
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok krt. 2 , 1117 Budapest , Hungary
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar tudósok krt. 2 , 1117 Budapest , Hungary
| | - Hans-Achim Wagenknecht
- Karlsruhe Institute of Technology , Institute of Organic Chemistry , Fritz-Haber-Weg 6 , 76131 Karlsruhe , Germany
| |
Collapse
|
15
|
Milisavljevič N, Perlíková P, Pohl R, Hocek M. Enzymatic synthesis of base-modified RNA by T7 RNA polymerase. A systematic study and comparison of 5-substituted pyrimidine and 7-substituted 7-deazapurine nucleoside triphosphates as substrates. Org Biomol Chem 2019; 16:5800-5807. [PMID: 30063056 DOI: 10.1039/c8ob01498a] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We synthesized a small library of eighteen 5-substituted pyrimidine or 7-substituted 7-deazapurine nucleoside triphosphates bearing methyl, ethynyl, phenyl, benzofuryl or dibenzofuryl groups through cross-coupling reactions of nucleosides followed by triphosphorylation or through direct cross-coupling reactions of halogenated nucleoside triphosphates. We systematically studied the influence of the modification on the efficiency of T7 RNA polymerase catalyzed synthesis of modified RNA and found that modified ATP, UTP and CTP analogues bearing smaller modifications were good substrates and building blocks for the RNA synthesis even in difficult sequences incorporating multiple modified nucleotides. Bulky dibenzofuryl derivatives of ATP and GTP were not substrates for the RNA polymerase. In the case of modified GTP analogues, a modified procedure using a special promoter and GMP as initiator needed to be used to obtain efficient RNA synthesis. The T7 RNA polymerase synthesis of modified RNA can be very efficiently used for synthesis of modified RNA but the method has constraints in the sequence of the first three nucleotides of the transcript, which must contain a non-modified G in the +1 position.
Collapse
Affiliation(s)
- Nemanja Milisavljevič
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610, Prague 6, Czech Republic.
| | | | | | | |
Collapse
|
16
|
Whitfield CJ, Little RC, Khan K, Ijiro K, Connolly BA, Tuite EM, Pike AR. Self-Priming Enzymatic Fabrication of Multiply Modified DNA. Chemistry 2018; 24:15267-15274. [PMID: 29931815 DOI: 10.1002/chem.201801976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/19/2018] [Indexed: 12/15/2022]
Abstract
The self-priming synthesis of multiply modified DNA by the extension of repeating unit duplex "oligoseeds" provides a source of versatile DNA. Sterically-demanding nucleotides 5-Br-dUTP, 7-deaza-7-I-dATP, 6-S-dGTP, 5-I-dCTP as well as 5-(octadiynyl)-dCTP were incorporated into two extending oligoseeds; [GATC]5 /[GATC]5 and [A4 G]4 /[CT4 ]4 . The products contained modifications on one or both strands of DNA, demonstrating their recognition by the polymerase as both template (reading) and substrate (writing). Nucleobase modifications that lie in the major groove were reliably read and written by the polymerase during the extension reaction, even when bulky or in contiguous sequences. Repeat sequence DNA over 500 bp long, bearing four different modified units was produced by this method. The number, position and type of modification, as well as the overall length of the DNA can be controlled to yield designer DNA that offers sequence-determined sites for further chemical adaptations, targeted small molecule binding studies, or sensing and sequencing applications.
Collapse
Affiliation(s)
- Colette J Whitfield
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Rachel C Little
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Kasid Khan
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Kuniharu Ijiro
- Research Institute for Electronic Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Bernard A Connolly
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Eimer M Tuite
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Andrew R Pike
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
17
|
Saito Y, Hudson RH. Base-modified fluorescent purine nucleosides and nucleotides for use in oligonucleotide probes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2018. [DOI: 10.1016/j.jphotochemrev.2018.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Flamme M, Clarke E, Gasser G, Hollenstein M. Applications of Ruthenium Complexes Covalently Linked to Nucleic Acid Derivatives. Molecules 2018; 23:E1515. [PMID: 29932443 PMCID: PMC6099586 DOI: 10.3390/molecules23071515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022] Open
Abstract
Oligonucleotides are biopolymers that can be easily modified at various locations. Thereby, the attachment of metal complexes to nucleic acid derivatives has emerged as a common pathway to improve the understanding of biological processes or to steer oligonucleotides towards novel applications such as electron transfer or the construction of nanomaterials. Among the different metal complexes coupled to oligonucleotides, ruthenium complexes, have been extensively studied due to their remarkable properties. The resulting DNA-ruthenium bioconjugates have already demonstrated their potency in numerous applications. Consequently, this review focuses on the recent synthetic methods developed for the preparation of ruthenium complexes covalently linked to oligonucleotides. In addition, the usefulness of such conjugates will be highlighted and their applications from nanotechnologies to therapeutic purposes will be discussed.
Collapse
Affiliation(s)
- Marie Flamme
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, F-75005 Paris, France.
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institute Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Emma Clarke
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, F-75005 Paris, France.
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institute Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, F-75005 Paris, France.
| | - Marcel Hollenstein
- Laboratory for Bioorganic Chemistry of Nucleic Acids, Department of Structural Biology and Chemistry, Institute Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
19
|
Walunj MB, Tanpure AA, Srivatsan SG. Post-transcriptional labeling by using Suzuki-Miyaura cross-coupling generates functional RNA probes. Nucleic Acids Res 2018; 46:e65. [PMID: 29546376 PMCID: PMC6009664 DOI: 10.1093/nar/gky185] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/12/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022] Open
Abstract
Pd-catalyzed C-C bond formation, an important vertebra in the spine of synthetic chemistry, is emerging as a valuable chemoselective transformation for post-synthetic functionalization of biomacromolecules. While methods are available for labeling protein and DNA, development of an analogous procedure to label RNA by cross-coupling reactions remains a major challenge. Herein, we describe a new Pd-mediated RNA oligonucleotide (ON) labeling method that involves post-transcriptional functionalization of iodouridine-labeled RNA transcripts by using Suzuki-Miyaura cross-coupling reaction. 5-Iodouridine triphosphate (IUTP) is efficiently incorporated into RNA ONs at one or more sites by T7 RNA polymerase. Further, using a catalytic system made of Pd(OAc)2 and 2-aminopyrimidine-4,6-diol (ADHP) or dimethylamino-substituted ADHP (DMADHP), we established a modular method to functionalize iodouridine-labeled RNA ONs in the presence of various boronic acid and ester substrates under very mild conditions (37°C and pH 8.5). This method is highly chemoselective, and offers direct access to RNA ONs labeled with commonly used fluorescent and affinity tags and new fluorogenic environment-sensitive nucleoside probes in a ligand-controlled stereoselective fashion. Taken together, this simple approach of generating functional RNA ON probes by Suzuki-Miyaura coupling will be a very important addition to the resources and tools available for analyzing RNA motifs.
Collapse
Affiliation(s)
- Manisha B Walunj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| | - Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
20
|
Krömer M, Bártová K, Raindlová V, Hocek M. Synthesis of Dihydroxyalkynyl and Dihydroxyalkyl Nucleotides as Building Blocks or Precursors for Introduction of Diol or Aldehyde Groups to DNA for Bioconjugations. Chemistry 2018; 24:11890-11894. [PMID: 29790604 DOI: 10.1002/chem.201802282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 01/18/2023]
Abstract
(3,4-Dihydroxybut-1-ynyl)uracil, -cytosine and -7-deazaadenine 2'-deoxyribonucleoside triphosphates (dNTPs) were prepared by direct aqueous Sonogashira cross-coupling of halogenated dNTPs with dihydroxybut-1-yne and converted to 3,4-dihydroxybutyl dNTPs through catalytic hydrogenation. Sodium periodate oxidative cleavage of dihydroxybutyl-dUTP gave the desired aliphatic aldehyde-linked dUTP, whereas the oxidative cleavage of the corresponding deazaadenine dNTP gave a cyclic aminal. All dihydroxyalkyl or -alkynyl dNTPs and the formylethyl-dUTP were good substrates for DNA polymerases and were used for synthesis of diol- or aldehyde-linked DNA. The aldehyde linked DNA was used for the labelling or bioconjugations through hydrazone formation or reductive aminations.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Kateřina Bártová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Veronika Raindlová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
21
|
Olszewska A, Pohl R, Hocek M. Trifluoroacetophenone-Linked Nucleotides and DNA for Studying of DNA-Protein Interactions by 19F NMR Spectroscopy. J Org Chem 2018; 82:11431-11439. [PMID: 28991457 DOI: 10.1021/acs.joc.7b01920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of 7-[4-(trifluoroacetyl)phenyl]-7-deazaadenine and -7-deazaguanine as well as 5-substituted uracil and cytosine 2'-deoxyribonucleosides and mono- and triphosphates were synthesized through aqueous Suzuki-Miyaura crosscoupling of halogenated nucleosides or nucleotides with 4-(trifluoroacetyl)phenylboronic acid. The modified nucleoside triphosphates were good substrates for DNA polymerases applicable in primer extension or PCR synthesis of modified oligonucleotides or DNA. Attempted cross-linking with a serine-containing protein did not proceed, however the trifluoroacetophenone group was a sensitive probe for the study of DNA-protein interactions by 19F NMR.
Collapse
Affiliation(s)
- Agata Olszewska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo namesti 2, 160 00 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo namesti 2, 160 00 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo namesti 2, 160 00 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 12843 Prague 2, Czech Republic
| |
Collapse
|
22
|
Botha F, Slavíčková M, Pohl R, Hocek M. Copper-mediated arylsulfanylations and arylselanylations of pyrimidine or 7-deazapurine nucleosides and nucleotides. Org Biomol Chem 2018; 14:10018-10022. [PMID: 27722411 DOI: 10.1039/c6ob01917j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The syntheses of 5-arylsulfanyl- or 5-arylselanylpyrimidine and 7-arylsulfanyl- or 7-arylselanyl-7-deazapurine nucleosides and nucleotides were developed by the Cu-mediated sulfanylations or selanylations of the corresponding 5-iodopyrimidine or 7-iodo-7-deazapurine nucleosides or nucleotides with diaryldisulfides or -diselenides. The reactions were also applicable for direct modifications of 2'-deoxycytidine triphosphate and the resulting 5-arylsulfanyl or 5-arylselanyl-dCTP served as substrates for the polymerase synthesis of modified DNA bearing arylsulfanyl or arylselanyl groups in the major groove.
Collapse
Affiliation(s)
- Filip Botha
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6, Czech Republic.
| | - Michaela Slavíčková
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6, Czech Republic.
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6, Czech Republic.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6, Czech Republic. and Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Prague 2, Czech Republic
| |
Collapse
|
23
|
Abstract
Naturally occurring DNA is encoded by the four nucleobases adenine, cytosine, guanine and thymine. Yet minor chemical modifications to these bases, such as methylation, can significantly alter DNA function, and more drastic changes, such as replacement with unnatural base pairs, could expand its function. In order to realize the full potential of DNA in therapeutic and synthetic biology applications, our ability to 'write' long modified DNA in a controlled manner must be improved. This review highlights methods currently used for the synthesis of moderately long chemically modified nucleic acids (up to 1000 bp), their limitations and areas for future expansion.
Collapse
|
24
|
Ortiz M, Debela AM, Svobodova M, Thorimbert S, Lesage D, Cole RB, Hasenknopf B, O'Sullivan CK. PCR Incorporation of Polyoxometalate Modified Deoxynucleotide Triphosphates and Their Application in Molecular Electrochemical Sensing of Yersinia pestis. Chemistry 2017; 23:10597-10603. [PMID: 28544266 DOI: 10.1002/chem.201701295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 12/22/2022]
Abstract
Redox-labeled nucleotides are of increasing interest for the fabrication of next generation molecular tools and should meet requirements of being thermally stable, sensitive, and compatible with polymerase-mediated incorporation while also being electrochemically discriminable. The synthesis and characterization of Keggin and Dawson polyoxometalate-deoxynucleotide (POM-dNTP) bioconjugates linked through 7-deaza-modified purines is described. The modified POM-dNTPs were used for polymerase-based amplification of a DNA sequence specific for Yersinia pestis and the amplified DNA detected using an electrochemical DNA sensor. This highlights the potential of polyoxometalates as thermally stable, sensitive and polymerase-compatible redox labels for exploitation in bioanalytical applications.
Collapse
Affiliation(s)
- Mayreli Ortiz
- Department d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain
| | - Ahmed M Debela
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Universités, UPMC, Univ. Paris 06, 4 place Jussieu, 75005, Paris, France
| | - Marketa Svobodova
- Department d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain
| | - Serge Thorimbert
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Universités, UPMC, Univ. Paris 06, 4 place Jussieu, 75005, Paris, France
| | - Denis Lesage
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Universités, UPMC, Univ. Paris 06, 4 place Jussieu, 75005, Paris, France
| | - Richard B Cole
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Universités, UPMC, Univ. Paris 06, 4 place Jussieu, 75005, Paris, France
| | - Bernold Hasenknopf
- Institut Parisien de Chimie Moléculaire UMR 8232, Sorbonne Universités, UPMC, Univ. Paris 06, 4 place Jussieu, 75005, Paris, France
| | - Ciara K O'Sullivan
- Department d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain.,ICREA, Passeig Lluis Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
25
|
An ambient temperature Sonogashira cross-coupling protocol using 4-aminobenzoic acid as promoter under copper and amine free conditions. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Tauraitė D, Jakubovska J, Dabužinskaitė J, Bratchikov M, Meškys R. Modified Nucleotides as Substrates of Terminal Deoxynucleotidyl Transferase. Molecules 2017; 22:molecules22040672. [PMID: 28441732 PMCID: PMC6154577 DOI: 10.3390/molecules22040672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 11/30/2022] Open
Abstract
The synthesis of novel modified nucleotides and their incorporation into DNA sequences opens many possibilities to change the chemical properties of oligonucleotides (ONs), and, therefore, broaden the field of practical applications of modified DNA. The chemical synthesis of nucleotide derivatives, including ones bearing thio-, hydrazino-, cyano- and carboxy groups as well as 2-pyridone nucleobase-containing nucleotides was carried out. The prepared compounds were tested as substrates of terminal deoxynucleotidyl transferase (TdT). The nucleotides containing N4-aminocytosine, 4-thiouracil as well as 2-pyridone, 4-chloro- and 4-bromo-2-pyridone as a nucleobase were accepted by TdT, thus allowing enzymatic synthesis of 3’-terminally modified ONs. The successful UV-induced cross-linking of 4-thiouracil-containing ONs to TdT was carried out. Enzymatic post-synthetic 3’-modification of ONs with various photo- and chemically-reactive groups opens novel possibilities for future applications, especially in analysis of the mechanisms of polymerases and the development of photo-labels, sensors, and self-assembling structures.
Collapse
Affiliation(s)
- Daiva Tauraitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius LT-10257, Lithuania.
| | - Jevgenija Jakubovska
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius LT-10257, Lithuania.
| | - Julija Dabužinskaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius LT-10257, Lithuania.
| | - Maksim Bratchikov
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Faculty of Medicine, Vilnius University, M. K. Čiurlionio g. 21, Vilnius LT-03101, Lithuania.
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius LT-10257, Lithuania.
| |
Collapse
|
27
|
Corr MJ, Sharma SV, Pubill-Ulldemolins C, Bown RT, Poirot P, Smith DRM, Cartmell C, Abou Fayad A, Goss RJM. Sonogashira diversification of unprotected halotryptophans, halotryptophan containing tripeptides; and generation of a new to nature bromo-natural product and its diversification in water. Chem Sci 2017; 8:2039-2046. [PMID: 28451322 PMCID: PMC5398305 DOI: 10.1039/c6sc04423a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
The blending together of synthetic chemistry with natural product biosynthesis represents a potentially powerful approach to synthesis; to enable this, further synthetic tools and methodologies are needed. To this end, we have explored the first Sonogashira cross-coupling to halotryptophans in water. Broad reaction scope is demonstrated and we have explored the limits of the scope of the reaction. We have demonstrated this methodology to work excellently in the modification of model tripeptides. Furthermore, through precursor directed biosynthesis, we have generated for the first time a new to nature brominated natural product bromo-cystargamide, and demonstrated the applicability of our reaction conditions to modify this novel metabolite.
Collapse
Affiliation(s)
- M J Corr
- Department of Chemistry & BSRC , University of St Andrews , St Andrews , KY16 9ST , UK .
| | - S V Sharma
- Department of Chemistry & BSRC , University of St Andrews , St Andrews , KY16 9ST , UK .
| | - C Pubill-Ulldemolins
- Department of Chemistry & BSRC , University of St Andrews , St Andrews , KY16 9ST , UK .
| | - R T Bown
- Department of Chemistry & BSRC , University of St Andrews , St Andrews , KY16 9ST , UK .
| | - P Poirot
- Ecole Nationale Supérieure de Chimie de Lille , France
| | - D R M Smith
- Department of Chemistry & BSRC , University of St Andrews , St Andrews , KY16 9ST , UK .
| | - C Cartmell
- Department of Chemistry & BSRC , University of St Andrews , St Andrews , KY16 9ST , UK .
| | - A Abou Fayad
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) , Microbial Natural Products (MINS) , Saarland University , E8.166123 Saarbrücken , Germany
| | - R J M Goss
- Department of Chemistry & BSRC , University of St Andrews , St Andrews , KY16 9ST , UK .
| |
Collapse
|
28
|
Eremeeva E, Abramov M, Marlière P, Herdewijn P. The 5-chlorouracil:7-deazaadenine base pair as an alternative to the dT:dA base pair. Org Biomol Chem 2017; 15:168-176. [DOI: 10.1039/c6ob02274j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 5-Cl-dU:7-deaza-dA base pair can be a substitute for the dT:dA base pair in an enzymatic replication process of 2 kb DNA.
Collapse
Affiliation(s)
- E. Eremeeva
- KU Leuven
- Rega Institute for Medical Research
- Medicinal Chemistry
- BE-3000 Leuven
- Belgium
| | - M. Abramov
- KU Leuven
- Rega Institute for Medical Research
- Medicinal Chemistry
- BE-3000 Leuven
- Belgium
| | | | - P. Herdewijn
- KU Leuven
- Rega Institute for Medical Research
- Medicinal Chemistry
- BE-3000 Leuven
- Belgium
| |
Collapse
|
29
|
Slavíčková M, Pohl R, Hocek M. Additions of Thiols to 7-Vinyl-7-deazaadenine Nucleosides and Nucleotides. Synthesis of Hydrophobic Derivatives of 2'-Deoxyadenosine, dATP and DNA. J Org Chem 2016; 81:11115-11125. [PMID: 27709938 DOI: 10.1021/acs.joc.6b02098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Additions of alkyl- or arylthiols to 7-vinyl-7-deaza-2'-deoxyadenosine gave a series of 7-[2-(alkyl- or arylsulfanyl)ethyl]-7-deaza-2'-deoxyadenosines in 45-85% yields. The nucleosides were converted to 5'-O-mono-(dASRMP) or triphosphates (dASRTP) by phosphorylation. The modified triphosphates were also prepared by thiol addition to 7-vinyl-7-deaza-dATP. The triphosphates dASRTP were good substrates for DNA polymerases useful in the enzymatic synthesis of base-modified oligonucleotides (ONs) or DNA containing flexibly linked hydrophobic substituents in the major groove. Primer extension was used for the synthesis of ONs with one or several modifications, PCR was used for the synthesis of heavily modified DNA, whereas terminal deoxynucleotidyl transferase was used for a single-nucleotide labeling of the 3'-end.
Collapse
Affiliation(s)
- Michaela Slavíčková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Gilead & IOCB Research Center, Flemingovo namesti 2, CZ-16610 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, Prague-2 12843, Czech Republic
| |
Collapse
|
30
|
Dewan A, Sarmah M, Bora U, Thakur AJ. A green protocol for ligand, copper and base free Sonogashira cross-coupling reaction. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Hottin A, Marx A. Structural Insights into the Processing of Nucleobase-Modified Nucleotides by DNA Polymerases. Acc Chem Res 2016; 49:418-27. [PMID: 26947566 DOI: 10.1021/acs.accounts.5b00544] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The DNA polymerase-catalyzed incorporation of modified nucleotides is employed in many biological technologies of prime importance, such as next-generation sequencing, nucleic acid-based diagnostics, transcription analysis, and aptamer selection by systematic enrichment of ligands by exponential amplification (SELEX). Recent studies have shown that 2'-deoxynucleoside triphosphates (dNTPs) that are functionalized with modifications at the nucleobase such as dyes, affinity tags, spin and redox labels, or even oligonucleotides are substrates for DNA polymerases, even if modifications of high steric demand are used. The position at which the modification is introduced in the nucleotide has been identified as crucial for retaining substrate activity for DNA polymerases. Modifications are usually attached at the C5 position of pyrimidines and the C7 position of 7-deazapurines. Furthermore, it has been shown that the nature of the modification may impact the efficiency of incorporation of a modified nucleotide into the nascent DNA strand by a DNA polymerase. This Account places functional data obtained in studies of the incorporation of modified nucleotides by DNA polymerases in the context of recently obtained structural data. Crystal structure analysis of a Thermus aquaticus (Taq) DNA polymerase variant (namely, KlenTaq DNA polymerase) in ternary complex with primer-template DNA and several modified nucleotides provided the first structural insights into how nucleobase-modified triphosphates are tolerated. We found that bulky modifications are processed by KlenTaq DNA polymerase as a result of cavities in the protein that enable the modification to extend outside the active site. In addition, we found that the enzyme is able to adapt to different modifications in a flexible manner and adopts different amino acid side-chain conformations at the active site depending on the nature of the nucleotide modification. Different "strategies" (i.e., hydrogen bonding, cation-π interactions) enable the protein to stabilize the respective protein-substrate complex without significantly changing the overall structure of the complex. Interestingly, it was also discovered that a modified nucleotide may be more efficiently processed by KlenTaq DNA polymerase when the 3'-primer terminus is also a modified nucleotide instead of a nonmodified natural one. Indeed, the modifications of two modified nucleotides at adjacent positions can interact with each other (i.e., by π-π interactions) and thereby stabilize the enzyme-substrate complex, resulting in more efficient transformation. Several studies have indicated that archeal DNA polymerases belonging to sequence family B are better suited for the incorporation of nucleobase-modified nucleotides than enzymes from family A. However, significantly less structural data are available for family B DNA polymerases. In order to gain insights into the preference for modified substrates by members of family B, we succeeded in obtaining binary structures of 9°N and KOD DNA polymerases bound to primer-template DNA. We found that the major groove of the archeal family B DNA polymerases is better accessible than in family A DNA polymerases. This might explain the observed superiority of family B DNA polymerases in polymerizing nucleotides that bear bulky modifications located in the major groove, such as modification at C5 of pyrimidines and C7 of 7-deazapurines. Overall, this Account summarizes our recent findings providing structural insight into the mechanism by which modified nucleotides are processed by DNA polymerases. It provides guidelines for the design of modified nucleotides, thus supporting future efforts based on the acceptance of modified nucleotides by DNA polymerases.
Collapse
Affiliation(s)
- Audrey Hottin
- Department
of Chemistry and
Konstanz Research School Chemical Biology University of Konstanz Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Andreas Marx
- Department
of Chemistry and
Konstanz Research School Chemical Biology University of Konstanz Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
32
|
Urea as mild and efficient additive for palladium catalyzed Sonogashira cross coupling reaction. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Perlíková P, Rylová G, Nauš P, Elbert T, Tloušťová E, Bourderioux A, Slavětínská LP, Motyka K, Doležal D, Znojek P, Nová A, Harvanová M, Džubák P, Šiller M, Hlaváč J, Hajdúch M, Hocek M. 7-(2-Thienyl)-7-Deazaadenosine (AB61), a New Potent Nucleoside Cytostatic with a Complex Mode of Action. Mol Cancer Ther 2016; 15:922-37. [DOI: 10.1158/1535-7163.mct-14-0933] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/02/2016] [Indexed: 11/16/2022]
|
34
|
Dadová J, Cahová H, Hocek M. Polymerase Synthesis of Base-Modified DNA. MODIFIED NUCLEIC ACIDS 2016. [DOI: 10.1007/978-3-319-27111-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Güixens-Gallardo P, Hocek M, Perlíková P. Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates. Bioorg Med Chem Lett 2015; 26:288-291. [PMID: 26707394 DOI: 10.1016/j.bmcl.2015.12.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022]
Abstract
A simple and elegant method for inhibition of non-templated nucleotide addition by DNA polymerases and for following DNA 3'-heterogeneity in enzymatic DNA synthesis by primer extension (PEX) is described. When template bearing ortho-twisted intercalating nucleic acid (ortho-TINA) at the 5'-end is used, non-templated nucleotide addition is reduced in both the A- and B-family DNA polymerases (KOD XL, KOD (exo-), Bst 2.0, Therminator, Deep Vent (exo-) and Taq). Formation of a single oligonucleotide product was observed with ortho-TINA modified template and KOD XL, KOD (exo-), Bst 2.0, Deep Vent (exo-) and Taq DNA polymerases. This approach can be applied to the synthesis of both unmodified and base-modified oligonucleotides.
Collapse
Affiliation(s)
- Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic.
| |
Collapse
|
36
|
Shaughnessy KH. Palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides. Molecules 2015; 20:9419-54. [PMID: 26007192 PMCID: PMC6272472 DOI: 10.3390/molecules20059419] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 11/30/2022] Open
Abstract
Synthetic modification of nucleoside structures provides access to molecules of interest as pharmaceuticals, biochemical probes, and models to study diseases. Covalent modification of the purine and pyrimidine bases is an important strategy for the synthesis of these adducts. Palladium-catalyzed cross-coupling is a powerful method to attach groups to the base heterocycles through the formation of new carbon-carbon and carbon-heteroatom bonds. In this review, approaches to palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides are reviewed. Polar reaction media, such as water or polar aprotic solvents, allow reactions to be performed directly on the hydrophilic nucleosides and nucleotides without the need to use protecting groups. Homogeneous aqueous-phase coupling reactions catalyzed by palladium complexes of water-soluble ligands provide a general approach to the synthesis of modified nucleosides, nucleotides, and oligonucleotides.
Collapse
Affiliation(s)
- Kevin H Shaughnessy
- Department of Chemistry, The University of Alabama, Box 870336, Tuscaloosa, AL 35487-0336, USA.
| |
Collapse
|
37
|
Takada T, Takemura M, Kawano Y, Nakamura M, Yamana K. Photoresponsive DNA monolayer prepared by primer extension reaction on the electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3993-3998. [PMID: 25807074 DOI: 10.1021/la505013u] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe a simple and convenient method for the preparation of photoresponsive DNA-modified electrodes using primer extension (PEX) reactions. A naphthalimide derivative was used as the photosensitizer that was attached to the C5-position of 2'-deoxyuridine-5'-triphosphate (dUTP(NI)). It has been found that dUTP(NI) is a good substrate for the PEX reactions using KOD Dash and Vent (exo-) enzymes in solutions to incorporate naphthalimide (NI) moieties into the DNA sequences. On the electrode surface immobilized with the primer/template DNA, the PEX reactions to incorporate dUTP(NI) molecules into the DNA sequence were found to efficiently proceed. With this solid-phase method, the DNA monolayers capable of generating photocurrent due to the photoresponsive NI molecule can be constructed. It was shown that the photocurrent generation was significantly suppressed by a single-nucleotide mismatch included in the primer/template DNA, which is applicable for the design of photoelectrochemical sensors to discriminate single-nucleotide sequences.
Collapse
Affiliation(s)
- Tadao Takada
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Mai Takemura
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Yuta Kawano
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Mitsunobu Nakamura
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| | - Kazushige Yamana
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
| |
Collapse
|
38
|
Hervé G, Len C. Heck and Sonogashira couplings in aqueous media – application to unprotected nucleosides and nucleotides. ACTA ACUST UNITED AC 2015. [DOI: 10.1186/s40508-015-0029-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Gogoi A, Dewan A, Bora U. A highly efficient copper and ligand free protocol for the room temperature Sonogashira reaction. RSC Adv 2015. [DOI: 10.1039/c4ra09630d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A mild and efficient catalytic system based on PdCl2 and Na2SO4 has been developed for the Sonogashira reaction of aryl iodides at room temperature.
Collapse
Affiliation(s)
- Ankur Gogoi
- Department of Chemistry
- Dibrugarh University
- Dibrugarh-786004
- India
| | - Anindita Dewan
- Department of Chemistry
- Dibrugarh University
- Dibrugarh-786004
- India
| | - Utpal Bora
- Department of Chemistry
- Dibrugarh University
- Dibrugarh-786004
- India
- Department of Chemical Sciences
| |
Collapse
|
40
|
Gheerardijn V, Van den Begin J, Madder A. Versatile synthesis of amino acid functionalized nucleosides via a domino carboxamidation reaction. Beilstein J Org Chem 2014; 10:2566-72. [PMID: 25383128 PMCID: PMC4222392 DOI: 10.3762/bjoc.10.268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/23/2014] [Indexed: 12/23/2022] Open
Abstract
Functionalized oligonucleotides have recently gained increased attention for incorporation in modified nucleic acid structures both for the design of aptamers with enhanced binding properties as well as the construction of catalytic DNA and RNA. As a shortcut alternative to the incorporation of multiple modified residues, each bearing one extra functional group, we present here a straightforward method for direct linking of functionalized amino acids to the nucleoside base, thus equipping the nucleoside with two extra functionalities at once. As a proof of principle, we have introduced three amino acids with functional groups frequently used as key-intermediates in DNA- and RNAzymes via an efficient and straightforward domino carboxamidation reaction.
Collapse
Affiliation(s)
- Vicky Gheerardijn
- Department of Organic and Macromolecular Chemistry, Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Jos Van den Begin
- Department of Organic and Macromolecular Chemistry, Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
41
|
Hocek M. Synthesis of base-modified 2'-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology. J Org Chem 2014; 79:9914-21. [PMID: 25321948 DOI: 10.1021/jo5020799] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis of 2'-deoxyribonucleoside triphosphates (dNTPs) either by classical triphosphorylation of nucleosides or by aqueous cross-coupling reactions of halogenated dNTPs is discussed. Different enzymatic methods for synthesis of modified oligonucleotides and DNA by polymerase incorporation of modified nucleotides are summarized, and the applications in redox or fluorescent labeling, as well as in bioconjugations and modulation of interactions of DNA with proteins, are outlined.
Collapse
Affiliation(s)
- Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center , Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| |
Collapse
|
42
|
Simonova A, Balintová J, Pohl R, Havran L, Fojta M, Hocek M. Methoxyphenol and Dihydrobenzofuran as Oxidizable Labels for Electrochemical Detection of DNA. Chempluschem 2014. [DOI: 10.1002/cplu.201402194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Mačková M, Pohl R, Hocek M. Polymerase synthesis of DNAs bearing vinyl groups in the major groove and their cleavage by restriction endonucleases. Chembiochem 2014; 15:2306-12. [PMID: 25179889 DOI: 10.1002/cbic.201402319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Indexed: 01/12/2023]
Abstract
DNA molecules containing 5-vinyluracil, 5-vinylcytosine, or 7-deaza-7-vinyladenine were prepared by polymerase incorporation of the corresponding vinyl-modified 2'-deoxyribonucleoside triphosphates, and the influence of the vinyl group in the major groove of DNA on the cleavage by diverse type II restriction endonucleases (REs) was studied. The presence of 5-vinyluracil was tolerated by most of the REs, whereas only some REs were able to cleave sequences containing 7-deaza-7-vinyladenine. The enzyme ScaI was found to cleave DNA containing 5-vinylcytosine efficiently but not DNA containing the related 5-ethynylcytosine. All other REs failed to cleave sequences containing any cytosine modifications.
Collapse
Affiliation(s)
- Michaela Mačková
- Institute of Organic Chemistry and Biochemistry, Academy of Science Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | | | | |
Collapse
|
44
|
Hollenstein M, Leumann CJ. Synthesis and biochemical characterization of tricyclothymidine triphosphate (tc-TTP). Chembiochem 2014; 15:1901-4. [PMID: 25044722 DOI: 10.1002/cbic.201402116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Indexed: 01/03/2023]
Abstract
Tricyclo-DNA (tc-DNA) is a conformationally restricted oligonucleotide analogue that exhibits promising properties as a robust antisense agent. Here we report on the synthesis and biochemical characterization of tc-TTP, the triphosphate of a tc-DNA nucleoside containing the base thymine. Tc-TTP turned out to be a substrate for the Vent (exo(-) ) DNA polymerase, a polymerase that allows for multiple incorporations of tc-T nucleotides under primer extension reaction conditions. However, the substrate acceptance is rather low, as also observed for other sugar-modified analogues. Tc-TTP and tc-nucleotide-containing templates do not sustain enzymatic polymerization under physiological conditions; this indicates that tc-DNA-based antisense agents will not enter natural metabolic pathways that lead to long-term toxicity.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland).
| | | |
Collapse
|
45
|
Zhang Y, Yue X, Kim B, Yao S, Belfield KD. Deoxyribonucleoside-Modified Squaraines as Near-IR Viscosity Sensors. Chemistry 2014; 20:7249-53. [DOI: 10.1002/chem.201403003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Indexed: 12/18/2022]
|
46
|
Smith CC, Hollenstein M, Leumann CJ. The synthesis and application of a diazirine-modified uridine analogue for investigating RNA–protein interactions. RSC Adv 2014. [DOI: 10.1039/c4ra08682a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A uridine analogue equipped with a photoactive diazirine unit was generated and incorporated into RNA either syntheticallyviaphosphoramidite chemistry or by enzymatic polymerization. The new analogue was developed to identify and investigate RNA–protein interactions.
Collapse
Affiliation(s)
- Christine C. Smith
- Department of Chemistry and Biochemistry
- University of Bern
- 3012 Bern, Switzerland
| | - Marcel Hollenstein
- Department of Chemistry and Biochemistry
- University of Bern
- 3012 Bern, Switzerland
| | - Christian J. Leumann
- Department of Chemistry and Biochemistry
- University of Bern
- 3012 Bern, Switzerland
| |
Collapse
|
47
|
Hervé G, Sartori G, Enderlin G, Mackenzie G, Len C. Palladium-catalyzed Suzuki reaction in aqueous solvents applied to unprotected nucleosides and nucleotides. RSC Adv 2014. [DOI: 10.1039/c3ra47911k] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nucleoside analogues have attracted much attention due to their potential biological activities.
Collapse
Affiliation(s)
- Gwénaëlle Hervé
- Transformations Intégrées de la Matière Renouvelable
- UTC-ESCOM
- Centre de Recherche Royallieu
- F-60200 Compiègne, France
| | - Guillaume Sartori
- Transformations Intégrées de la Matière Renouvelable
- UTC-ESCOM
- Centre de Recherche Royallieu
- F-60200 Compiègne, France
| | - Gérald Enderlin
- Transformations Intégrées de la Matière Renouvelable
- UTC-ESCOM
- Centre de Recherche Royallieu
- F-60200 Compiègne, France
| | | | - Christophe Len
- Transformations Intégrées de la Matière Renouvelable
- UTC-ESCOM
- Centre de Recherche Royallieu
- F-60200 Compiègne, France
| |
Collapse
|
48
|
Moreau C, Kirchberger T, Swarbrick JM, Bartlett SJ, Fliegert R, Yorgan T, Bauche A, Harneit A, Guse AH, Potter BVL. Structure-activity relationship of adenosine 5'-diphosphoribose at the transient receptor potential melastatin 2 (TRPM2) channel: rational design of antagonists. J Med Chem 2013; 56:10079-102. [PMID: 24304219 PMCID: PMC3873810 DOI: 10.1021/jm401497a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Adenosine
5′-diphosphoribose (ADPR) activates TRPM2, a Ca2+, Na+, and K+ permeable cation channel.
Activation is induced by ADPR binding to the cytosolic C-terminal
NudT9-homology domain. To generate the first structure–activity
relationship, systematically modified ADPR analogues were designed,
synthesized, and evaluated as antagonists using patch-clamp experiments
in HEK293 cells overexpressing human TRPM2. Compounds with a purine C8 substituent show antagonist activity, and an 8-phenyl
substitution (8-Ph-ADPR, 5) is very effective. Modification
of the terminal ribose results in a weak antagonist, whereas its removal
abolishes activity. An antagonist based upon a hybrid structure, 8-phenyl-2′-deoxy-ADPR
(86, IC50 = 3 μM), is more potent than
8-Ph-ADPR (5). Initial bioisosteric replacement of the
pyrophosphate linkage abolishes activity, but replacement of the pyrophosphate
and the terminal ribose by a sulfamate-based group leads to a weak
antagonist, a lead to more drug-like analogues. 8-Ph-ADPR (5) inhibits Ca2+ signalling and chemotaxis in human neutrophils,
illustrating the potential for pharmacological intervention at TRPM2.
Collapse
Affiliation(s)
- Christelle Moreau
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath , Claverton Down, Bath BA2 7AY, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dadová J, Vidláková P, Pohl R, Havran L, Fojta M, Hocek M. Aqueous Heck cross-coupling preparation of acrylate-modified nucleotides and nucleoside triphosphates for polymerase synthesis of acrylate-labeled DNA. J Org Chem 2013; 78:9627-37. [PMID: 23992435 DOI: 10.1021/jo4011574] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aqueous-phase Heck coupling methodology was developed for direct attachment of butyl acrylate to 5-iodoracil, 5-iodocytosine, 7-iodo-7-deazaadenine, and 7-iodo-7-deazaguanine 2'-deoxyribonucleoside 5'-O-monophosphates (dNMPs) and 5'-O-triphosphates (dNTPs) and compared with the classical approach of phosphorylation of the corresponding modified nucleosides. The 7-substituted 7-deazapurine nucleotides (dA(BA)MP, dA(BA)TP, dG(BA)MP, and dG(BA)TP) were prepared by the direct Heck coupling of nucleotides in good yields (35-55%), whereas the pyrimidine nucleotides reacted poorly and the corresponding BA-modified dNTPs were prepared by triphosphorylation of the modified nucleosides. The acrylate-modified dN(BA)TPs (N = A, C, and U) were good substrates for DNA polymerases and were used for enzymatic synthesis of acrylate-modified DNA by primer extension, whereas dG(BA)TP was an inhibitor of polymerases. The butyl acrylate group was found to be a useful redox label giving a strong reduction peak at -1.3 to -1.4 V in cyclic voltammetry.
Collapse
Affiliation(s)
- Jitka Dadová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center , Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | | | | | | | | | | |
Collapse
|
50
|
Peters JP, Yelgaonkar SP, Srivatsan SG, Tor Y, James Maher L. Mechanical properties of DNA-like polymers. Nucleic Acids Res 2013; 41:10593-604. [PMID: 24013560 PMCID: PMC3905893 DOI: 10.1093/nar/gkt808] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The molecular structure of the DNA double helix has been known for 60 years, but we remain surprisingly ignorant of the balance of forces that determine its mechanical properties. The DNA double helix is among the stiffest of all biopolymers, but neither theory nor experiment has provided a coherent understanding of the relative roles of attractive base stacking forces and repulsive electrostatic forces creating this stiffness. To gain insight, we have created a family of double-helical DNA-like polymers where one of the four normal bases is replaced with various cationic, anionic or neutral analogs. We apply DNA ligase-catalyzed cyclization kinetics experiments to measure the bending and twisting flexibilities of these polymers under low salt conditions. Interestingly, we show that these modifications alter DNA bending stiffness by only 20%, but have much stronger (5-fold) effects on twist flexibility. We suggest that rather than modifying DNA stiffness through a mechanism easily interpretable as electrostatic, the more dominant effect of neutral and charged base modifications is their ability to drive transitions to helical conformations different from canonical B-form DNA.
Collapse
Affiliation(s)
- Justin P Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905, USA, Indian Institute of Science Education and Research, 900, NCL Innovation Park, Dr. Homi Bhabha Road, Pune 411008, India and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|