1
|
Tripodi G, Roithová J. Unmasking the Iron-Oxo Bond of the [(Ligand)Fe-OIAr] 2+/+ Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1636-1643. [PMID: 35920859 PMCID: PMC9460779 DOI: 10.1021/jasms.2c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
ArIO (ArI = 2-(tBuSO2)C6H4I) is an oxidant used to oxidize FeII species to their FeIV-oxo state, enabling hydrogen-atom transfer (HAT) and oxygen-atom transfer (OAT) reactions at low energy barriers. ArIO, as a ligand, generates masked Fen═O species of the type Fe(n-2)-OIAr. Herein, we used gas-phase ion-molecule reactions and DFT calculations to explore the properties of masked iron-oxo species and to understand their unmasking mechanisms. The theory shows that the I-O bond cleavage in [(TPA)FeIVO(ArIO)]2+ (12+, TPA = tris(2-pyridylmethyl)amine)) is highly endothermic; therefore, it can be achieved only in collision-induced dissociation of 12+ leading to the unmasked iron(VI) dioxo complex. The reduction of 12+ by HAT leads to [(TPA)FeIIIOH(ArIO)]2+ with a reduced energy demand for the I-O bond cleavage but is, however, still endothermic. The exothermic unmasking of the Fe═O bond is predicted after one-electron reduction of 12+ or after OAT reactivity. The latter leads to the 4e- oxidation of unsaturated hydrocarbons: The initial OAT from [(TPA)FeIVO(ArIO)]2+ leads to the epoxidation of an alkene and triggers the unmasking of the second Fe═O bond still within one collisional complex. The second oxidation step starts with HAT from a C-H bond and follows with the rebound of the C-radical and the OH group. The process starting with the one-electron reduction could be studied with [(TQA)FeIVO(ArIO)]2+ (22+, TQA = tris(2-quinolylmethyl)amine)) because it has a sufficient electron affinity for electron transfer with alkenes. Accordingly, the reaction of 22+ with 2-carene leads to [(TQA)FeIIIO(ArIO)]2+ that exothermically eliminates ArI and unmasks the reactive FeV-dioxo species.
Collapse
Affiliation(s)
- Guilherme
L. Tripodi
- Department of spectroscopy
and Catalysis, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jana Roithová
- Department of spectroscopy
and Catalysis, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
2
|
|
3
|
Tse CW, Liu Y, Wai-Shan Chow T, Ma C, Yip WP, Chang XY, Low KH, Huang JS, Che CM. cis-Oxoruthenium complexes supported by chiral tetradentate amine (N 4) ligands for hydrocarbon oxidations. Chem Sci 2018; 9:2803-2816. [PMID: 29780453 PMCID: PMC5943683 DOI: 10.1039/c7sc05224c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/01/2018] [Indexed: 12/31/2022] Open
Abstract
We report the first examples of ruthenium complexes cis-[(N4)RuIIICl2]+ and cis-[(N4)RuII(OH2)2]2+ supported by chiral tetradentate amine ligands (N4), together with a high-valent cis-dioxo complex cis-[(N4)RuVI(O)2]2+ supported by the chiral N4 ligand mcp (mcp = N,N'-dimethyl-N,N'-bis(pyridin-2-ylmethyl)cyclohexane-1,2-diamine). The X-ray crystal structures of cis-[(mcp)RuIIICl2](ClO4) (1a), cis-[(Me2mcp)RuIIICl2]ClO4 (2a) and cis-[(pdp)RuIIICl2](ClO4) (3a) (Me2mcp = N,N'-dimethyl-N,N'-bis((6-methylpyridin-2-yl)methyl)cyclohexane-1,2-diamine, pdp = 1,1'-bis(pyridin-2-ylmethyl)-2,2'-bipyrrolidine)) show that the ligands coordinate to the ruthenium centre in a cis-α configuration. In aqueous solutions, proton-coupled electron-transfer redox couples were observed for cis-[(mcp)RuIII(O2CCF3)2]ClO4 (1b) and cis-[(pdp)RuIII(O3SCF3)2]CF3SO3 (3c'). Electrochemical analyses showed that the chemically/electrochemically generated cis-[(mcp)RuVI(O)2]2+ and cis-[(pdp)RuVI(O)2]2+ complexes are strong oxidants with E° = 1.11-1.13 V vs. SCE (at pH 1) and strong H-atom abstractors with DO-H = 90.1-90.8 kcal mol-1. The reaction of 1b or its (R,R)-mcp counterpart with excess (NH4)2[CeIV(NO3)6] (CAN) in aqueous medium afforded cis-[(mcp)RuVI(O)2](ClO4)2 (1e) or cis-[((R,R)-mcp)RuVI(O)2](ClO4)2 (1e*), respectively, a strong oxidant with E(RuVI/V) = 0.78 V (vs. Ag/AgNO3) in acetonitrile solution. Complex 1e oxidized various hydrocarbons, including cyclohexane, in acetonitrile at room temperature, affording alcohols and/or ketones in up to 66% yield. Stoichiometric oxidations of alkenes by 1e or 1e* in t BuOH/H2O (5 : 1 v/v) afforded diols and aldehydes in combined yields of up to 98%, with moderate enantioselectivity obtained for the reaction using 1e*. The cis-[(pdp)RuII(OH2)2]2+ (3c)-catalysed oxidation of saturated C-H bonds, including those of ethane and propane, with CAN as terminal oxidant was also demonstrated.
Collapse
Affiliation(s)
- Chun-Wai Tse
- State Key Laboratory of Synthetic Chemistry , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China . .,HKU Shenzhen Institute of Research and Innovation , Shenzhen , Guangdong 518053 , China
| | - Yungen Liu
- State Key Laboratory of Synthetic Chemistry , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China . .,Department of Chemistry , Southern University of Science of Technology , Shenzhen , Guangdong 518055 , China
| | - Toby Wai-Shan Chow
- State Key Laboratory of Synthetic Chemistry , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Chaoqun Ma
- Department of Chemistry , Southern University of Science of Technology , Shenzhen , Guangdong 518055 , China
| | - Wing-Ping Yip
- State Key Laboratory of Synthetic Chemistry , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Xiao-Yong Chang
- State Key Laboratory of Synthetic Chemistry , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Kam-Hung Low
- State Key Laboratory of Synthetic Chemistry , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China .
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China . .,HKU Shenzhen Institute of Research and Innovation , Shenzhen , Guangdong 518053 , China.,Department of Chemistry , Southern University of Science of Technology , Shenzhen , Guangdong 518055 , China
| |
Collapse
|
4
|
Cho KB, Nam W. A theoretical study into a trans-dioxo Mn(V) porphyrin complex that does not follow the oxygen rebound mechanism in C-H bond activation reactions. Chem Commun (Camb) 2016; 52:904-7. [PMID: 26576748 DOI: 10.1039/c5cc08734a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previous experimental results revealed that the C-H bond activation reaction by a synthetic trans-dioxo Mn(V) porphyrin complex, [(TF4TMAP)OMn(V)O](3+), does not occur via the well-known oxygen rebound mechanism, which has been well demonstrated in Fe(IV)O porphyrin π-cation radical reactions. In the present study, theoretical calculations offer an explanation through the energetics involved in the C-H bond activation reaction, where a multi-spin state scenario cannot be excluded.
Collapse
Affiliation(s)
- Kyung-Bin Cho
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
5
|
Freitag L, González L. Theoretical spectroscopy and photodynamics of a ruthenium nitrosyl complex. Inorg Chem 2014; 53:6415-26. [PMID: 24745977 DOI: 10.1021/ic500283y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Photoactive transition-metal nitrosyl complexes are particularly interesting as potential drugs that deliver nitric oxide (NO) upon UV-light irradiation to be used, e.g., in photodynamic therapy. It is well-recognized that quantum-chemical calculations can guide the rational design and synthesis of molecules with specific functions. In this contribution, it is shown how electronic structure calculations and dynamical simulations can provide a unique insight into the photodissociation mechanism of NO. Exemplarily, [Ru(PaPy3)(NO)](2+) is investigated in detail, as a prototype of a particularly promising class of photoactive metal nitrosyl complexes. The ability of time-dependent density functional theory (TD-DFT) to obtain reliable excited-state energies compared with more sophisticated multiconfigurational spin-corrected calculations is evaluated. Moreover, a TD-DFT-based trajectory surface-hopping molecular dynamics study is employed to reveal the details of the radiationless decay of the molecule via internal conversion and intersystem crossing. Calculations show that the ground state of [Ru(PaPy3)(NO)](2+) includes a significant admixture of the Ru(III)(NO)(0) electronic configuration, in contrast to the previously postulated Ru(II)(NO)(+) structure of similar metal nitrosyls. Moreover, the lowest singlet and triplet excited states populate the antibonding metal d → πNO* orbitals, favoring NO dissociation. Molecular dynamics show that intersystem crossing is ultrafast (<10 fs) and dissociation is initiated in less than 50 fs. The competing relaxation to the lowest S1 singlet state takes place in less than 100 fs and thus competes with NO dissociation, which mostly takes place in the higher-lying excited triplet states. All of these processes are accompanied by bending of the NO ligand, which is not confined to any particular state.
Collapse
Affiliation(s)
- Leon Freitag
- Institut für theoretische Chemie, Universität Wien , Währinger Straße 17, 1090 Vienna, Austria
| | | |
Collapse
|
6
|
Liu Y, Guan X, Wong ELM, Liu P, Huang JS, Che CM. Nonheme iron-mediated amination of C(sp3)-H bonds. Quinquepyridine-supported iron-imide/nitrene intermediates by experimental studies and DFT calculations. J Am Chem Soc 2013; 135:7194-204. [PMID: 23634746 DOI: 10.1021/ja3122526] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The 7-coordinate complex [Fe(qpy)(MeCN)2](ClO4)2 (1, qpy = 2,2':6',2″:6″,2''':6''',2''''-quinquepyridine) is a highly active nonheme iron catalyst for intra- and intermolecular amination of C(sp(3))-H bonds. This complex effectively catalyzes the amination of limiting amounts of not only benzylic and allylic C(sp(3))-H bonds of hydrocarbons but also the C(sp(3))-H bonds of cyclic alkanes and cycloalkane/linear alkane moieties in sulfamate esters, such as those derived from menthane and steroids cholane and androstane, using PhI═NR or "PhI(OAc)2 + H2NR" [R = Ts (p-toluenesulfonyl), Ns (p-nitrobenzenesulfonyl)] as nitrogen source, with the amination products isolated in up to 93% yield. Iron imide/nitrene intermediates [Fe(qpy)(NR)(X)](n+) (CX, X = NR, solvent, or anion) are proposed in these amination reactions on the basis of experimental studies including ESI-MS analysis, crossover experiments, Hammett plots, and correlation with C-H bond dissociation energies and with support by DFT calculations. Species consistent with the formulations of [Fe(qpy)(NTs)2](2+) (CNTs) and [Fe(qpy)(NTs)](2+) (C) were detected by high-resolution ESI-MS analysis of the reaction mixture of 1 with PhI═NTs (4 equiv). DFT calculations revealed that the reaction barriers for H-atom abstraction of cyclohexane by the ground state of 7-coordinate CNTs and ground state of C are 15.3 and 14.2 kcal/mol, respectively, in line with the observed high activity of 1 in catalyzing the C-H amination of alkanes under mild conditions.
Collapse
Affiliation(s)
- Yungen Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | | | | | | | | | | |
Collapse
|
7
|
Zheng W, Wu S, Zhao S, Geng Y, Jin J, Su Z, Fu Q. Carbonyl Amine/Schiff Base Ligands in Manganese Complexes: Theoretical Study on the Mechanism, Capability of NO Release. Inorg Chem 2012; 51:3972-80. [DOI: 10.1021/ic2011953] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weili Zheng
- Institute of Functional Material Chemistry, Faculty
of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People’s Republic of China
| | - Shuixing Wu
- Institute of Functional Material Chemistry, Faculty
of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People’s Republic of China
| | - Shanshan Zhao
- Institute of Functional Material Chemistry, Faculty
of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People’s Republic of China
| | - Yun Geng
- Institute of Functional Material Chemistry, Faculty
of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People’s Republic of China
| | - Junling Jin
- Institute of Functional Material Chemistry, Faculty
of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People’s Republic of China
| | - Zhongmin Su
- Institute of Functional Material Chemistry, Faculty
of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People’s Republic of China
| | - Qiang Fu
- Institute of Functional Material Chemistry, Faculty
of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People’s Republic of China
| |
Collapse
|
8
|
Fry NL, Zhao XP, Mascharak PK. Density functional theory studies on a designed photoactive {FeNO}6 nitrosyl and the corresponding photoinactive {FeNO}7 species: Insight into the origin of NO photolability. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2010.12.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Liu P, Liu Y, Wong ELM, Xiang S, Che CM. Iron oligopyridine complexes as efficient catalysts for practical oxidation of arenes, alkanes, tertiary amines and N-acyl cyclic amines with Oxone. Chem Sci 2011. [DOI: 10.1039/c1sc00234a] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
10
|
Tong GSM, Che C. Density Functional Theory Studies of [Fe(O)
2
L]
2+
: What is the Role of the Spectator Ligand L with Different Coordination Numbers? Eur J Inorg Chem 2010. [DOI: 10.1002/ejic.201000656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Glenna So Ming Tong
- Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for DrugDiscovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Chi‐Ming Che
- Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for DrugDiscovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
11
|
Rose MJ, Betterley NM, Oliver AG, Mascharak PK. Binding of Nitric Oxide to a Synthetic Model of Iron-Containing Nitrile Hydratase (Fe-NHase) and Its Photorelease: Relevance to Photoregulation of Fe-NHase by NO. Inorg Chem 2010; 49:1854-64. [DOI: 10.1021/ic902220a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Michael J. Rose
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Nolan M. Betterley
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| |
Collapse
|