1
|
Thomas J, Mokkawes T, Senft L, Dey A, Gordon JB, Ivanovic-Burmazovic I, de Visser SP, Goldberg DP. Axial Ligation Impedes Proton-Coupled Electron-Transfer Reactivity of a Synthetic Compound-I Analogue. J Am Chem Soc 2024; 146:12338-12354. [PMID: 38669456 PMCID: PMC11305010 DOI: 10.1021/jacs.3c08950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The nature of the axial ligand in high-valent iron-oxo heme enzyme intermediates and related synthetic catalysts is a critical structural element for controlling proton-coupled electron-transfer (PCET) reactivity of these species. Herein, we describe the generation and characterization of three new 6-coordinate, iron(IV)-oxo porphyrinoid-π-cation-radical complexes and report their PCET reactivity together with a previously published 5-coordinate analogue, FeIV(O)(TBP8Cz+•) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato3-) (2) (Cho, K. A high-valent iron-oxo corrolazine activates C-H bonds via hydrogen-atom transfer. J. Am. Chem. Soc. 2012, 134, 7392-7399). The new complexes FeIV(O)(TBP8Cz+•)(L) (L = 1-methyl imidazole (1-MeIm) (4a), 4-dimethylaminopyridine (DMAP) (4b), cyanide (CN-)(4c)) can be generated from either oxidation of the ferric precursors or by addition of L to the Compound-I (Cpd-I) analogue at low temperatures. These complexes were characterized by UV-vis, electron paramagnetic resonance (EPR), and Mössbauer spectroscopies, and cryospray ionization mass spectrometry (CSI-MS). Kinetic studies using 4-OMe-TEMPOH as a test substrate indicate that coordination of a sixth axial ligand dramatically lowers the PCET reactivity of the Cpd-I analogue (rates up to 7000 times slower). Extensive density functional theory (DFT) calculations together with the experimental data show that the trend in reactivity with the axial ligands does not correlate with the thermodynamic driving force for these reactions or the calculated strengths of the O-H bonds being formed in the FeIV(O-H) products, pointing to non-Bell-Evans-Polanyi behavior. However, the PCET reactivity does follow a trend with the bracketed reduction potential of Cpd-I analogues and calculated electron affinities. The combined data suggest a concerted mechanism (a concerted proton electron transfer (CPET)) and an asynchronous movement of the electron/proton pair in the transition state.
Collapse
Affiliation(s)
- Jithin Thomas
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Thirakorn Mokkawes
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Laura Senft
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr., 5-13, Haus D, 81377 München, Germany
| | - Aniruddha Dey
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ivana Ivanovic-Burmazovic
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr., 5-13, Haus D, 81377 München, Germany
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Chen S, Li Z, Wu L, Liu L, Hu J, Hou H, Liang S, Yang J. Generation of high-valent iron-oxo porphyrin cation radicals on hemin loaded carbon nanotubes for efficient degradation of sulfathiazole. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130402. [PMID: 36403452 DOI: 10.1016/j.jhazmat.2022.130402] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Hemin has attracted considerable interest as an efficient catalyst recently, however, its direct application is inefficient due to severe molecular aggregation. Immobilizing hemin on various supports is a feasible approach to address this issue. In this work, a CNTs-hemin catalyst was prepared by loading hemin onto multiwalled carbon nanotubes (CNTs) through ball milling. Compared with hemin, CNTs-hemin demonstrates remarkably enhanced performance in the peroxymonosulfate system, with a 650-fold improvement of apparent rate constant, reaching 97.8% degradation of sulfathiazole in 5 min. High-valent iron-oxo porphyrin cation ((Porp)+•FeIV=O) radicals are proposed as the dominant reactive species in the CNTs-hemin/peroxymonosulfate system instead of sulfate radicals (SO4•-), hydroxyl radicals (•OH), superoxide radicals (O2•-) and singlet oxygen (1O2). More in-depth mechanisms reveal that the strong electron transfer between CNTs and hemin promotes the generation of (Porp)+•FeIV=O radicals through a heterolysis pathway. This research enriches the understanding of the catalytic mechanism of supported biomimetic catalysts for PMS activation and provides a perspective on the role of support materials for catalytic activity.
Collapse
Affiliation(s)
- Sijing Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Zhen Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Longsheng Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Lu Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China.
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| |
Collapse
|
3
|
Chen S, Hu J, Lu L, Wu L, Liang Z, Tang J, Hou H, Liang S, Yang J. Iron porphyrin-TiO 2 modulated peroxymonosulfate activation for efficient degradation of 2,4,6-trichlorophenol with high-valent iron-oxo species. CHEMOSPHERE 2022; 309:136744. [PMID: 36209859 DOI: 10.1016/j.chemosphere.2022.136744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Developing efficient catalysts with low cost and environmental friendliness for peroxymonosulfate (PMS) activation attracts broad interest. In this study, TiO2-hemin was prepared by immobilizing hemin on TiO2 using a ball milling method, demonstrating 126.9-fold enhanced catalytic degradation efficiency compared with unsupported hemin in the PMS activation system, with 92.9% of 2,4,6-trichlorophenol (2,4,6-TCP) removed in 10 min. The superior performance is attributed to the strong interaction between TiO2 and hemin, which induces the redistribution of the electron density of hemin molecules. In the TiO2-hemin/PMS system, sulfate radicals (SO4•-), hydroxyl radicals (•OH), singlet oxygen (1O2), and superoxide radicals (O2•-) were identified, which only played a minor role in the elimination of 2,4,6-TCP. Instead, high-valent iron-oxo species were proposed and identified as the primary active species. This study provides a facile strategy to enhance the activity of the biomimetic catalyst and offers insight into the catalytic mechanism of iron porphyrin with PMS activation.
Collapse
Affiliation(s)
- Sijing Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China.
| | - Liu Lu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| | - Longsheng Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| | - Zhilin Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| | - Jianjian Tang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, China
| |
Collapse
|
4
|
Wu C, Wu Y, He X, Hong R, Lee H, Feng K, Ping‐Yu Chen P. Modeling Heme Peroxidase: Heme Saddling Facilitates Reactions with Hyperperoxides To Form High‐Valent Fe
IV
‐Oxo Species. Chemistry 2022; 28:e202201139. [DOI: 10.1002/chem.202201139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Chang‐Quan Wu
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| | - Yi‐Wen Wu
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| | - Xuan‐Han He
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| | - Ruo‐Ting Hong
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| | - Hao‐Chien Lee
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| | - Kang‐Yen Feng
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| | - Peter Ping‐Yu Chen
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| |
Collapse
|
5
|
Zaitseva SV, Zdanovich SA, Tyurin DV, Koifman OI. Macroheterocyclic μ-Nitrido- and μ-Carbido Dimeric Iron and Ruthenium Complexes as a Molecular Platform for Modeling Oxidative Enzymes (A Review). RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622030160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Mukherjee G, Satpathy JK, Bagha UK, Mubarak MQE, Sastri CV, de Visser SP. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Jagnyesh K. Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Umesh K. Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Chivukula V. Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Sam P. de Visser
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
7
|
Hubbard CD, Chatterjee D, Oszajca M, Polaczek J, Impert O, Chrzanowska M, Katafias A, Puchta R, van Eldik R. Inorganic reaction mechanisms. A personal journey. Dalton Trans 2020; 49:4599-4659. [PMID: 32162632 DOI: 10.1039/c9dt04620h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This review covers highlights of the work performed in the van Eldik group on inorganic reaction mechanisms over the past two decades in the form of a personal journey. Topics that are covered include, from NO to HNO chemistry, peroxide activation in model porphyrin and enzymatic systems, the wonder-world of RuIII(edta) chemistry, redox chemistry of Ru(iii) complexes, Ru(ii) polypyridyl complexes and their application, relevant physicochemical properties and reaction mechanisms in ionic liquids, and mechanistic insight from computational chemistry. In each of these sections, typical examples of mechanistic studies are presented in reference to related work reported in the literature.
Collapse
Affiliation(s)
- Colin D Hubbard
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstr. 1, 91058 Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Baglia RA, Zaragoza JPT, Goldberg DP. Biomimetic Reactivity of Oxygen-Derived Manganese and Iron Porphyrinoid Complexes. Chem Rev 2017; 117:13320-13352. [PMID: 28991451 PMCID: PMC6058703 DOI: 10.1021/acs.chemrev.7b00180] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heme proteins utilize the heme cofactor, an iron porphyrin, to perform a diverse range of reactions including dioxygen binding and transport, electron transfer, and oxidation/oxygenations. These reactions share several key metalloporphyrin intermediates, typically derived from dioxygen and its congeners such as hydrogen peroxide. These species are composed of metal-dioxygen, metal-superoxo, metal-peroxo, and metal-oxo adducts. A wide variety of synthetic metalloporphyrinoid complexes have been synthesized to generate and stabilize these intermediates. These complexes have been studied to determine the spectroscopic features, structures, and reactivities of such species in controlled and well-defined environments. In this Review, we summarize recent findings on the reactivity of these species with common porphyrinoid scaffolds employed for biomimetic studies. The proposed mechanisms of action are emphasized. This Review is organized by structural type of metal-oxygen intermediate and broken into subsections based on the metal (manganese and iron) and porphyrinoid ligand (porphyrin, corrole, and corrolazine).
Collapse
Affiliation(s)
- Regina A. Baglia
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jan Paulo T. Zaragoza
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
9
|
A bio-mimetic zinc/tau protein as an artificial catalase. Int J Biol Macromol 2016; 92:1307-1312. [PMID: 26905468 DOI: 10.1016/j.ijbiomac.2016.02.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/21/2022]
Abstract
In this study, the catalase-like activity of monomeric tau protein was reported in the presence of of zinc (Zn(II)) ions at low pH value. Monomeric tau protein contains two SH groups that are a target of disulfide bond formation. However these SH groups are able to interact with Zn(II) ion at pH 7.2 which creates a thiol bond as a mimetic model of chloroperoxidase active site which performs catalase like activity at low pH. Zn(II)/tau protein complex decomposed H2O2 with a high rate (Vm) as well as an efficient turn oven number (kcat) at pH 3. This remarkable catalase like activity is may be attributed to the conformational reorientation of protein at low pH. Circular dichroism (CD) studies did not demonstrate any secondary structural changes of tau protein after addition of Zn(II) ions at pH 7.2. In addition, tau protein shows identical CD bands at pH 7.2 and 3. Moreover, fluorescence quenching of tau by Zn(II) at pH 7.2 was initiated by complex formation rather than by dynamic collision. A significant red shift (6nm) was observed in the emission maximum of the fluorescence spectra when the protein was dissolved at pH 3 compared to pH 7.2. This conformational change can provide information regarding the rearrangements of the protein structure and exposure of Cys-Zn(II) group to the solvent which induces easy access of active site to H2O2 molecules and corresponding enhanced catalytic activity of Zn(II)/tau protein complex. This study introduces tau protein as a bio-inspired high performing scaffold for transition metal encapsulation and introducing an engineered apoprotein-induced biomimetic enzyme.
Collapse
|
10
|
Rezaeifard A, Kavousi H, Raissi H, Jafarpour M. Significant hydrogen-bonding effect on the reactivity of high-valent manganese(V)–oxo porphyrins in C–H bond activation: A DFT study. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424615501035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The stereo electronic effects as well as hydrogen bonding effects of imidazole, pyridine and 2,6-dimethylpyridine as N-donor axial ligands on the C–H oxidation activity of high-valent manganese(V)–oxo meso-tetraphenylporphyrin (TPP) and meso-tetrakis(pentaflourophenyl)porphyrin (TPFPP), are investigated by DFT calculations. The electronic and steric properties of axial donors and porphyrin ligands affected on the activation energy of cyclohexane hydroxylation as well as the Mn–O bond strength of the oxo species in transition state. Imidazole with the strong [Formula: see text]-donating ability and the least steric hindrance showed greater co-catalytic activity than those of pyridine and in particularly hindered 2,6-Me2 pyridine in the presence of simple [(TPP)MnO][Formula: see text]. Nevertheless, the C–H bond activation by hindered and electron-deficient perfluorinated catalyst [(TPFPP)MnO][Formula: see text] is in the order of pyridine >2, 6-Me2 pyridine >imidazole. AIM analysis showed hydrogen bonding (HB) between the C–H [Formula: see text] bonds of pyridine (C[Formula: see text]-H of ring) and 2,6-Me2Py (C[Formula: see text]-H of methyl groups) with ortho-C–F bond of phenyl rings of TPFPP in Mn[Formula: see text]O species (C–H…..F–C hydrogen bond) which might be responsible for this unusual behavior. These results are supported by natural bond orbital (NBO) analysis.
Collapse
Affiliation(s)
- Abdolreza Rezaeifard
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| | - Hossein Kavousi
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| | - Heidar Raissi
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| | - Maasoumeh Jafarpour
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand 97179-414, Iran
| |
Collapse
|
11
|
Oszajca M, Franke A, Brindell M, Stochel G, van Eldik R. Redox cycling in the activation of peroxides by iron porphyrin and manganese complexes. ‘Catching’ catalytic active intermediates. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.01.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Liu YC, Yen TH, Chu KT, Chiang MH. Utilization of Non-Innocent Redox Ligands in [FeFe] Hydrogenase Modeling for Hydrogen Production. COMMENT INORG CHEM 2015. [DOI: 10.1080/02603594.2015.1115397] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Li H, She Y, Fu H, Cao M, Wang J, Wang T. Synergistic effect of co-reactant promotes one-step oxidation of cyclohexane into adipic acid catalyzed by manganese porphyrins. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0515] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synergistic effect of cyclohexane and cyclohexanone promoted synthesis of adipic acid catalyzed by [MnIIIT(p-Cl)PP]Cl with cyclohexane and cyclohexanone as co-reactants. The results showed that the conversions of cyclohexane and cyclohexanone were significantly enhanced because of the cyclohexanone synergistic effect, and the higher selectivity to adipic acid was obtained with dioxygen as an oxidant. The studies indicated that the co-oxidation of cyclohexane and cyclohexanone was influenced by the initial molar ratio of cyclohexanone and cyclohexane, catalyst structure, catalyst concentrations, and reaction conditions. The preliminary mechanism of the co-oxidation reaction of cyclohexane and cyclohexanone using [MnIIIT(p-Cl)PP]Cl as the catalyst was proposed.
Collapse
Affiliation(s)
- Hui Li
- Institute of Green Chemistry & Fine Chemical, College of Environmental & Energy Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yuanbin She
- Institute of Green Chemistry & Fine Chemical, College of Environmental & Energy Engineering, Beijing University of Technology, Beijing 100124, PR China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Haiyan Fu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei 430074, PR China
| | - Meijuan Cao
- Institute of Green Chemistry & Fine Chemical, College of Environmental & Energy Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jing Wang
- Huizhou Research Institute of Sun Yat-sen University, Huizhou, Guangdong 516081, PR China
| | - Tao Wang
- Institute of Green Chemistry & Fine Chemical, College of Environmental & Energy Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
14
|
Sainna MA, Sil D, Sahoo D, Martin B, Rath SP, Comba P, de Visser SP. Spin-State Ordering in Hydroxo-Bridged Diiron(III)bisporphyrin Complexes. Inorg Chem 2015; 54:1919-30. [DOI: 10.1021/ic502803b] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mala A. Sainna
- Manchester Institute
of Biotechnology and School of Chemical Engineering and Analytical
Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Debangsu Sil
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Dipankar Sahoo
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Bodo Martin
- Anorganisch-Chemisches Institüt and Interdisciplinary
Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer
Feld 270, 69120 Heidelberg, Germany
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Peter Comba
- Anorganisch-Chemisches Institüt and Interdisciplinary
Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer
Feld 270, 69120 Heidelberg, Germany
| | - Sam P. de Visser
- Manchester Institute
of Biotechnology and School of Chemical Engineering and Analytical
Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
15
|
Neu HM, Quesne MG, Yang T, Prokop-Prigge KA, Lancaster KM, Donohoe J, DeBeer S, de Visser SP, Goldberg DP. Dramatic influence of an anionic donor on the oxygen-atom transfer reactivity of a Mn(V) -oxo complex. Chemistry 2014; 20:14584-8. [PMID: 25256417 PMCID: PMC4321347 DOI: 10.1002/chem.201404349] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 11/23/2022]
Abstract
Addition of an anionic donor to an Mn(V) (O) porphyrinoid complex causes a dramatic increase in 2-electron oxygen-atom-transfer (OAT) chemistry. The 6-coordinate [Mn(V) (O)(TBP8 Cz)(CN)](-) was generated from addition of Bu4 N(+) CN(-) to the 5-coordinate Mn(V) (O) precursor. The cyanide-ligated complex was characterized for the first time by Mn K-edge X-ray absorption spectroscopy (XAS) and gives MnO=1.53 Å, MnCN=2.21 Å. In combination with computational studies these distances were shown to correlate with a singlet ground state. Reaction of the CN(-) complex with thioethers results in OAT to give the corresponding sulfoxide and a 2e(-) -reduced Mn(III) (CN)(-) complex. Kinetic measurements reveal a dramatic rate enhancement for OAT of approximately 24 000-fold versus the same reaction for the parent 5-coordinate complex. An Eyring analysis gives ΔH(≠) =14 kcal mol(-1) , ΔS(≠) =-10 cal mol(-1) K(-1) . Computational studies fully support the structures, spin states, and relative reactivity of the 5- and 6-coordinate Mn(V) (O) complexes.
Collapse
Affiliation(s)
- Heather M Neu
- Department of Chemistry, The Johns Hopkins UniversityBaltimore, MD (USA)
| | - Matthew G Quesne
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester (UK)
| | - Tzuhsiung Yang
- Department of Chemistry, The Johns Hopkins UniversityBaltimore, MD (USA)
| | | | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, New York (USA)
| | - James Donohoe
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, New York (USA)
| | - Serena DeBeer
- Department of Chemistry and Chemical Biology, Cornell UniversityIthaca, New York (USA)
- Max-Planck Institute for Chemical Energy Conversion, StiftstrasseMülheim an der Ruhr (Germany)
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester (UK)
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins UniversityBaltimore, MD (USA)
| |
Collapse
|
16
|
Ji L, Franke A, Brindell M, Oszajca M, Zahl A, van Eldik R. Combined experimental and theoretical study on the reactivity of compounds I and II in horseradish peroxidase biomimetics. Chemistry 2014; 20:14437-50. [PMID: 25220399 DOI: 10.1002/chem.201402347] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Indexed: 12/21/2022]
Abstract
For the exploration of the intrinsic reactivity of two key active species in the catalytic cycle of horseradish peroxidase (HRP), Compound I (HRP-I) and Compound II (HRP-II), we generated in situ [Fe(IV) O(TMP(+.) )(2-MeIm)](+) and [Fe(IV) O(TMP)(2-MeIm)](0) (TMP=5,10,15,20-tetramesitylporphyrin; 2-MeIm=2-methylimidazole) as biomimetics for HRP-I and HRP-II, respectively. Their catalytic activities in epoxidation, hydrogen abstraction, and heteroatom oxidation reactions were studied in acetonitrile at -15 °C by utilizing rapid-scan UV/Vis spectroscopy. Comparison of the second-order rate constants measured for the direct reactions of the HRP-I and HRP-II mimics with the selected substrates clearly confirmed the outstanding oxidizing capability of the HRP-I mimic, which is significantly higher than that of HRP-II. The experimental study was supported by computational modeling (DFT calculations) of the oxidation mechanism of the selected substrates with the involvement of quartet and doublet HRP-I mimics ((2,4) Cpd I) and the closed-shell triplet spin HRP-II model ((3) Cpd II) as oxidizing species. The significantly lower activation barriers calculated for the oxidation systems involving (2,4) Cpd I than those found for (3) Cpd II are in line with the much higher oxidizing efficiency of the HRP-I mimic proven in the experimental part of the study. In addition, the DFT calculations show that all three reaction types catalyzed by HRP-I occur on the doublet spin surface in an effectively concerted manner, whereas these reactions may proceed in a stepwise mechanism with the HRP-II mimic as oxidant. However, the high desaturation or oxygen rebound barriers during CH bond activation processes by the HRP-II mimic predict a sufficient lifetime for the substrate radical formed through hydrogen abstraction. Thus, the theoretical calculations suggest that the dissociation of the substrate radical may be a more favorable pathway than desaturation or oxygen rebound processes. Importantly, depending on the electronic nature of the oxidizing species, that is, (2,4) Cpd I or (3) Cpd II, an interesting region-selective conversion phenomenon between sulfoxidation and H-atom abstraction was revealed in the course of the oxidation reaction of dimethylsulfide. The combined experimental and theoretical study on the elucidation of the intrinsic reactivity patterns of the HRP-I and HRP-II mimics provides a valuable tool for evaluating the particular role of the HRP active species in biological systems.
Collapse
Affiliation(s)
- Li Ji
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen (Germany); College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China)
| | | | | | | | | | | |
Collapse
|
17
|
Hong S, Lee YM, Cho KB, Seo MS, Song D, Yoon J, Garcia-Serres R, Clémancey M, Ogura T, Shin W, Latour JM, Nam W. Conversion of high-spin iron(iii)–alkylperoxo to iron(iv)–oxo species via O–O bond homolysis in nonheme iron models. Chem Sci 2014. [DOI: 10.1039/c3sc52236a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Sardar S, Sarkar S, Myint MTZ, Al-Harthi S, Dutta J, Pal SK. Role of central metal ions in hematoporphyrin-functionalized titania in solar energy conversion dynamics. Phys Chem Chem Phys 2013; 15:18562-70. [DOI: 10.1039/c3cp52353e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Li Y, Zhou XT, Ji HB. Cocatalytic effect of cobalt acetate on aerobic cyclohexene oxidation catalyzed by manganese porphyrin. CATAL COMMUN 2012. [DOI: 10.1016/j.catcom.2012.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
20
|
Franke A, Fertinger C, van Eldik R. Axial Ligand and Spin-State Influence on the Formation and Reactivity of Hydroperoxo-Iron(III) Porphyrin Complexes. Chemistry 2012; 18:6935-49. [DOI: 10.1002/chem.201103036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/29/2011] [Indexed: 11/12/2022]
|
21
|
Cho K, Leeladee P, McGown AJ, DeBeer S, Goldberg DP. A high-valent iron-oxo corrolazine activates C-H bonds via hydrogen-atom transfer. J Am Chem Soc 2012; 134:7392-9. [PMID: 22489757 DOI: 10.1021/ja3018658] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidation of the Fe(III) complex (TBP(8)Cz)Fe(III) [TBP(8)Cz = octakis(4-tert-butylphenyl)corrolazinate] with O-atom transfer oxidants under a variety of conditions gives the reactive high-valent Fe(O) complex (TBP(8)Cz(+•))Fe(IV)(O) (2). The solution state structure of 2 was characterized by XAS [d(Fe-O) = 1.64 Å]. This complex is competent to oxidize a range of C-H substrates. Product analyses and kinetic data show that these reactions occur via rate-determining hydrogen-atom transfer (HAT), with a linear correlation for log k versus BDE(C-H), and the following activation parameters for xanthene (Xn) substrate: ΔH(++) = 12.7 ± 0.8 kcal mol(-1), ΔS(++) = -9 ± 3 cal K(-1) mol(-1), and KIE = 5.7. Rebound hydroxylation versus radical dimerization for Xn is favored by lowering the reaction temperature. These findings provide insights into the factors that control the intrinsic reactivity of Compound I heme analogues.
Collapse
Affiliation(s)
- Kevin Cho
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
22
|
dos Santos MR, Diniz JR, Arouca AM, Gomes AF, Gozzo FC, Tamborim SM, Parize AL, Suarez PAZ, Neto BAD. Ionically tagged iron complex-catalyzed epoxidation of olefins in imidazolium-based ionic liquids. CHEMSUSCHEM 2012; 5:716-726. [PMID: 22473642 DOI: 10.1002/cssc.201100453] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A new ionophilic ligand and a new ionically tagged imidazolium-based iron(III) complex were synthesized and applied in the air oxidation (also hydrogen peroxide) of alkenes in imidazolium-based ionic liquids. At least ten recycling reactions were performed. The epoxidized olefin was obtained in very good yields of 84-91 %. Some important mechanistic insights are also provided based on electrospray ionization quadrupole-time of flight mass spectrometry for the oxidation reaction. These results indicate that oxidations can take place by two different pathways, depending on the reaction condition: a radical or a concerted mechanism. These results contribute towards a better understanding of iron-catalyzed oxidation mechanisms.
Collapse
Affiliation(s)
- Marcelo R dos Santos
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Brasília-DF, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Xu JC, Li WM, Zheng H, Lai YF, Zhang PF. One-pot synthesis of tetrahydrochromene derivatives catalyzed by lipase. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.09.137] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
|
25
|
Spectroscopic studies of the oxidation of ferric CYP153A6 by peracids: Insights into P450 higher oxidation states. Arch Biochem Biophys 2009; 493:184-91. [PMID: 19879854 DOI: 10.1016/j.abb.2009.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/25/2009] [Accepted: 10/27/2009] [Indexed: 11/21/2022]
Abstract
Our previous rapid-scanning stopped-flow studies of the reaction of substrate-free cytochrome P450cam with peracids [T. Spolitak, J.H. Dawson, D.P. Ballou, J. Biol. Chem. 280 (2005) 20300-20309; J. Inorg. Biochem. 100 (2006) 2034-2044; J. Biol. Inorg. Chem. 13 (2008) 599-611] spectrally characterized compound I (ferryl iron plus a porphyrin pi-cation radical (Fe(IV)O/Por(.+))), Cpd ES, and Cpd II (Fe(IV)O/Tyr() or Fe(IV)O). We now report that reactions of CYP153A6 with peracids yield all these intermediates, with kinetic profiles allowing better resolution of all forms at pH 8.0 compared to similar reactions with WT P450cam. Properties of the reactions of these higher oxidation state intermediates were determined in double-mixing experiments in which intermediates are pre-formed and ascorbate is then added. Reactions of heptane-bound CYP153A6 (pH 7.4) with mCPBA resulted in conversion of P450 to the low-spin ferric form, presumably as heptanol was formed, suggesting that CYP 153A6 is a potential biocatalyst that can use peracids with no added NAD(P)H or reducing systems for bioremediation and other industrial applications.
Collapse
|
26
|
Kang Y, Chen H, Jeong YJ, Lai W, Bae EH, Shaik S, Nam W. Enhanced Reactivities of Iron(IV)-Oxo Porphyrin π-Cation Radicals in Oxygenation Reactions by Electron-Donating Axial Ligands. Chemistry 2009; 15:10039-46. [DOI: 10.1002/chem.200901238] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Hessenauer-Ilicheva N, Franke A, Wolak M, Higuchi T, van Eldik R. Spectroscopic and Mechanistic Studies on Oxidation Reactions Catalyzed by the Functional Model SR Complex for Cytochrome P450: Influence of Oxidant, Substrate, and Solvent. Chemistry 2009; 15:12447-59. [DOI: 10.1002/chem.200901712] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
McGown AJ, Kerber WD, Fujii H, Goldberg DP. Catalytic Reactivity of a Meso-N-Substituted Corrole and Evidence for a High-Valent Iron−Oxo Species. J Am Chem Soc 2009; 131:8040-8. [DOI: 10.1021/ja809183z] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amanda J. McGown
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore Maryland, 21218, and Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8787, Japan
| | - William D. Kerber
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore Maryland, 21218, and Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8787, Japan
| | - Hiroshi Fujii
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore Maryland, 21218, and Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8787, Japan
| | - David P. Goldberg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore Maryland, 21218, and Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Okazaki 444-8787, Japan
| |
Collapse
|