1
|
Ohmagari H, Marets N, Kamata J, Yoneyama M, Miyauchi T, Takahashi Y, Yamamoto Y, Ogihara Y, Saito D, Goto K, Ishii A, Kato M, Hasegawa M. Thermosensitive visible-light-excited visible-/NIR-luminescent complexes with lanthanide sensitized by the π-electronic system through intramolecular H-bonding. Front Chem 2022; 10:1047960. [PMID: 36569958 PMCID: PMC9768490 DOI: 10.3389/fchem.2022.1047960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
Visible-luminescent lanthanide (LnL) complexes with a highly planar tetradentate ligand were successfully developed for a visible-light solid-state excitation system. L was designed by using two 2-hydroxy-3-(2-pyridinyl)-benzaldehyde molecules bridged by ethylenediamine, which was then coordinated to a series of Ln ions (Ln = Nd, Sm, Eu, Gd, Tb, Dy, and Yb). From the measurement of single-crystal X-ray analysis of EuL, two phenolic O atoms and two imine N atoms in L were coordinated to the Eu ion, and each π-electronic system took coplanar with the edged-pyridine moiety through an intramolecular hydrogen bond. The enol group on the phenolic skeleton changed to the keto form, and the pyridine was protonated. Thus, intramolecular proton transfer occurred in L after the complexation. Other complexes take isostructure. The space group is P-1, and the c-axis shrinks with decreasing temperature without a phase transition in EuL. The yellow color caused by the planar structure of L can sensitize ff emission by visible light, and the luminescence color of each complex depends on central Ln ions. Furthermore, a phosphorescence band also appeared at rt with ff emission in LnL. Drastic temperature dependence of luminescence was clarified quantitatively.
Collapse
Affiliation(s)
- Hitomi Ohmagari
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Sagamihara, Japan,Mirai Molecular Materials Design Institute, Aoyama Gakuin University, Sagamihara, Japan
| | - Nicolas Marets
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Sagamihara, Japan,Mirai Molecular Materials Design Institute, Aoyama Gakuin University, Sagamihara, Japan
| | - Jun Kamata
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Sagamihara, Japan
| | - Mayo Yoneyama
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Sagamihara, Japan
| | - Takumi Miyauchi
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Sagamihara, Japan
| | - Yuta Takahashi
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Sagamihara, Japan
| | - Yukina Yamamoto
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Sagamihara, Japan
| | - Yuto Ogihara
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Sagamihara, Japan
| | - Daisuke Saito
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan,Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Kenta Goto
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Ayumi Ishii
- Department of Natural and Environmental Science, Teikyo University of Science, Yamanashi, Japan
| | - Masako Kato
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Miki Hasegawa
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Sagamihara, Japan,Mirai Molecular Materials Design Institute, Aoyama Gakuin University, Sagamihara, Japan,*Correspondence: Miki Hasegawa,
| |
Collapse
|
2
|
Salerno EV, Carneiro Neto AN, Eliseeva SV, Hernández-Rodríguez MA, Lutter JC, Lathion T, Kampf JW, Petoud S, Carlos LD, Pecoraro VL. Tunable Optical Molecular Thermometers Based on Metallacrowns. J Am Chem Soc 2022; 144:18259-18271. [PMID: 36173924 DOI: 10.1021/jacs.2c04821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effect of ligands' energy levels on thermal dependence of lanthanide emission was examined to create new molecular nanothermometers. A series of Ln2Ga8L8'L8″ metallacrowns (shorthand Ln2L8'), where Ln = Gd3+, Tb3+, or Sm3+ (H3L' = salicylhydroxamic acid (H3shi), 5-methylsalicylhydroxamic acid (H3mshi), 5-methoxysalicylhydroxamic acid (H3moshi), and 3-hydroxy-2-naphthohydroxamic acid (H3nha)) and H2L″ = isophthalic acid (H2iph), was synthesized and characterized. Within the series, ligand-centered singlet state (S1) energy levels ranged from 23,300 to 27,800 cm-1, while triplet (T1) energy levels ranged from 18,150 to 21,980 cm-1. We demonstrated that the difference between T1 levels and relevant energies of the excited 4G5/2 level of Sm3+ (17,800 cm-1) and 5D4 level of Tb3+ (20,400 cm-1) is the major parameter controlling thermal dependence of the emission intensity via the back energy transfer mechanism. However, when the energy difference between S1 and T1 levels is small (below 3760 cm-1), the S1 → T1 intersystem crossing (and its reverse, S1 ← T1) mechanism contributes to the thermal behavior of metallacrowns. Both mechanisms affect Ln3+-centered room-temperature quantum yields with values ranging from 2.07(6)% to 31.2(2)% for Tb2L8' and from 0.0267(7)% to 2.27(5)% for Sm2L8'. The maximal thermal dependence varies over a wide thermal range (ca. 150-350 K) based on energy gaps between relevant ligand-based and lanthanide-based electronic states. By mixing Tb2moshi8' with Sm2moshi8' in a 1:1 ratio, an optical thermometer with a relative thermal sensitivity larger than 3%/K at 225 K was created. Other temperature ranges are also accessible with this approach.
Collapse
Affiliation(s)
- Elvin V Salerno
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Albano N Carneiro Neto
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro Campus de Santiago, Aveiro 3810-193, Portugal
| | - Svetlana V Eliseeva
- Centre de Biophysique Moléculaire CNRS UPR 4301, 45071 Orléans Cedex 2, France
| | - Miguel A Hernández-Rodríguez
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro Campus de Santiago, Aveiro 3810-193, Portugal
| | - Jacob C Lutter
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Timothée Lathion
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeff W Kampf
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire CNRS UPR 4301, 45071 Orléans Cedex 2, France
| | - Luis D Carlos
- Phantom-g, CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro Campus de Santiago, Aveiro 3810-193, Portugal
| | - Vincent L Pecoraro
- Department of Chemistry, Willard H. Dow Laboratories, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Canisares FSM, Mutti AMG, Santana EF, Oliveira VC, Cavalcante DGSM, Job AE, Pires AM, Lima SAM. Red-emitting heteroleptic iridium(III) complexes: photophysical and cell labeling study. Photochem Photobiol Sci 2022; 21:1077-1090. [PMID: 35304728 DOI: 10.1007/s43630-022-00200-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Two red-emitting heteroleptic iridium(III) complexes (Ir-p and Ir-q) were synthesized and their photophysical and biological properties were analyzed. After their structures have been confirmed by several techniques, such as 1H NMR, 13C NMR, FT-IR, UV-Vis, and MALDI TOF analyses, their luminescence behavior was investigated in ethanol and PBS (physiological medium, pH ~ 7.4) solutions. Emission spectra of both complexes are dominated by 3MLCT states at room temperature in ethanolic solution, but at 77 K the Ir-q exhibits the 3LC as the dominant emission state. The Ir-q complex shows one of the highest emission quantum yields, 11.5%, for a red emitter based on iridium(III) complexes in aerated PBS solution, with color coordinates (x;y) of (0.712;0.286). Moreover, both complexes display high potential to be used as a biological marker with excitation wavelengths above 400 nm, high water solubility (Ir-p 1838 μmol L-1, Ir-q 7601 μmol L-1), and distinct emission wavelengths from the biological autofluorescence. Their cytotoxicity was analyzed in CHO-k1 cells by MTT assays, and the IC50 was estimated as being higher than 131 μmol L-1 for Ir-p, and higher than 116 μmol L-1 for Ir-q. Concentrations above 70% of viability were used to perform cell imaging by confocal and fluorescence microscopies and the results suggest that the complexes were internalized by the cell membrane and they are staining the cytoplasm region.
Collapse
Affiliation(s)
- Felipe S M Canisares
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil.,Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Brazil.,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José Do Rio Preto, SP, Brazil
| | - Alessandra M G Mutti
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil
| | - Edy F Santana
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil
| | - Vytor C Oliveira
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil
| | - Dalita G S M Cavalcante
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil
| | - Aldo E Job
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil
| | - Ana M Pires
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil.,Institute of Chemistry, São Paulo State University (Unesp), Araraquara, Brazil.,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José Do Rio Preto, SP, Brazil
| | - Sergio A M Lima
- School of Technology and Sciences, São Paulo State University (Unesp), R. Roberto Simonsen, 305, Presidente Prudente, SP, 19060-900, Brazil.
| |
Collapse
|
4
|
Zhang C, Ma X, Cen P, Yang H, He Z, Guo Y, Tian D, Liu X. Dual-sensitized Eu(III)/Tb(III) complexes exhibiting tunable luminescence emission and their application in cellular-imaging. Dalton Trans 2022; 51:3180-3187. [PMID: 35113124 DOI: 10.1039/d2dt00051b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two novel dual-photosensitized stable complexes, namely [Eu(dpq)(BTFA)3] (1) and [Tb(dpq)(BTFA)3] (2), have been successfully assembled via a mixed ligand approach using dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) and 3-benzoyl-1,1,1-trifluoroacetone (BTFA). The crystallographic data reveal mononuclear lanthanide cores in both 1 and 2, in which each eight-coordinated Ln(III) ion is located in a slightly distorted dodecahedron (D2d). The room-temperature photoluminescence spectra of complexes 1 and 2 indicate that both BTFA and dpq can effectively sensitize Eu(III) and Tb(III) characteristic luminescence. Moreover, heterometallic Ln-complexes can be synthesized, leading to a new series of differently doped EuxTb1-x complexes. Luminescence experiments on them reveal dual-emission peaks of Eu3+ and Tb3+, which lead to a gradual change in the luminous colour between yellow-green, yellow, orange, orange-red and red upon increasing the Eu3+ content. On the basis of the intrinsic strong emission properties and nontoxic nature of complexes 1 and 2, we explore their potential application as cellular imaging agents. Fluorescence microscopy data suggest the cytosolic and nuclear localization of 1 and 2 in HeLa and MCF-7 cells.
Collapse
Affiliation(s)
- Cui Zhang
- College of Public Health and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750021, China.
| | - Xiufang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Peipei Cen
- College of Public Health and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750021, China.
| | - Huifang Yang
- College of Public Health and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750021, China.
| | - Zixin He
- College of Public Health and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750021, China.
| | - Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Danian Tian
- College of Public Health and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750021, China.
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. .,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
Li XZ, Tian CB, Sun QF. Coordination-Directed Self-Assembly of Functional Polynuclear Lanthanide Supramolecular Architectures. Chem Rev 2022; 122:6374-6458. [PMID: 35133796 DOI: 10.1021/acs.chemrev.1c00602] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lanthanide supramolecular chemistry is a fast growing and intriguing research field due to the unique photophysical, magnetic, and coordination properties of lanthanide ions (LnIII). Compared with the intensively investigated mononuclear Ln-complexes, polymetallic lanthanide supramolecular assemblies offer more structural superiority and functional advantages. In recent decades, significant progress has been made in polynuclear lanthanide supramolecules, varying from structural evolution to luminescent and magnetic functional materials. This review summarizes the design principles in ligand-induced coordination-driven self-assembly of polynuclear Ln-structures and intends to offer guidance for the construction of more elegant Ln-based architectures and optimization of their functional performances. Design principles concerning the water solubility and chirality of the lanthanide-organic assemblies that are vital in extending their applications are emphasized. The strategies for improving the luminescent properties and the applications in up-conversion, host-guest chemistry, luminescent sensing, and catalysis have been summarized. Magnetic materials based on supramolecular assembled lanthanide architectures are given in an individual section and are classified based on their structural features. Challenges remaining and perspective directions in this field are also briefly discussed.
Collapse
Affiliation(s)
- Xiao-Zhen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Chong-Bin Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| |
Collapse
|
6
|
Ambiliraj DB, Francis B, MLP R. Lysosome-targeting luminescent lanthanide complexes: From molecular design to bioimaging. Dalton Trans 2022; 51:7748-7762. [DOI: 10.1039/d2dt00128d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysosomes are essential acidic cytoplasmic membrane-bound organelles in human cells that play a critical role in many cellular events. A comprehensive understanding of lysosome-specific imaging can ultimately help us to...
Collapse
|
7
|
Lyu C, Li H, Zhou S, Liu G, Wyatt PB, Gillin WP, Ye H. Bright and Efficient Sensitized Near-Infrared Photoluminescence from an Organic Neodymium-Containing Composite Material System. J Am Chem Soc 2021; 143:17915-17919. [PMID: 34676770 DOI: 10.1021/jacs.1c06827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Intense organic neodymium (Nd3+) emission is obtained with near-infrared (NIR) emission equivalent in intensity to that of an organic semiconductor emitting material. The advantage of Nd3+ emission is its narrow line width and NIR emission, which is enhanced by ∼3000 times at low excitation power through an efficient sensitization effect from a composite organic sensitizer. This performance is optimized at high concentrations of Nd3+ ions, and the organic perfluorinated system provides the ion excitations with a quantum efficiency of ∼40%. The material system is applicable to thin films that are compatible with integrated optics applications.
Collapse
Affiliation(s)
- Chen Lyu
- Materials Research Institute and Department of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E14NS, United Kingdom
| | - Hongfei Li
- Materials Research Institute and Department of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E14NS, United Kingdom
| | - Shufang Zhou
- Materials Research Institute and Department of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E14NS, United Kingdom
| | - Guangfeng Liu
- Laboratoire de Chimie des Polymères, Faculté des Sciences, Université Libre de Bruxelles (ULB), CP 206/01, Boulevard du Triomphe, 1050, Brussels, Belgium
| | - Peter B Wyatt
- Materials Research Institute and Department of Chemistry, Queen Mary University of London, Mile End Road, London E14NS, United Kingdom
| | - William P Gillin
- Materials Research Institute and Department of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E14NS, United Kingdom.,Chromosol, Ltd., The Walbrook Building, 25 Walbrook, London, EC4N8A, United Kingdom
| | - Huanqing Ye
- Materials Research Institute and Department of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E14NS, United Kingdom.,Chromosol, Ltd., The Walbrook Building, 25 Walbrook, London, EC4N8A, United Kingdom
| |
Collapse
|
8
|
Abad‐Galán L, Cieslik P, Comba P, Gast M, Maury O, Neupert L, Roux A, Wadepohl H. Excited State Properties of Lanthanide(III) Complexes with a Nonadentate Bispidine Ligand. Chemistry 2021; 27:10303-10312. [PMID: 33780569 PMCID: PMC8360039 DOI: 10.1002/chem.202005459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/03/2022]
Abstract
EuIII , TbIII , GdIII and YbIII complexes of the nonadentate bispidine derivative L2 (bispidine=3,7-diazabicyclo[3.3.1]nonane) were successfully synthesized and their emission properties studied. The X-ray crystallography reveals full encapsulation by the nonadentate ligand L2 that enforces to all LnIII cations a common highly symmetrical capped square antiprismatic (CSAPR) coordination geometry (pseudo C4v symmetry). The well-resolved identical emission spectra in solid state and in solution confirm equal structures in both media. As therefore expected, this results in long-lived excited states and high emission quantum yields ([EuIII L2 ]+ , H2 O, 298 K, τ=1.51 ms, ϕ=0.35; [TbIII L2 ]+ , H2 O, 298 K, τ=1.95 ms, ϕ=0.68). Together with the very high kinetic and thermodynamic stabilities, these complexes are a possible basis for interesting biological probes.
Collapse
Affiliation(s)
- Laura Abad‐Galán
- Université de LyonENS de LyonLaboratoire de ChimieCNRS UMR 5182Université Claude Bernard Lyon 169342LyonFrance
| | - Patrick Cieslik
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
| | - Peter Comba
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
- Universität HeidelbergInterdisciplinary Center for Scientific Computing69120HeidelbergGermany
| | - Michael Gast
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
| | - Olivier Maury
- Université de LyonENS de LyonLaboratoire de ChimieCNRS UMR 5182Université Claude Bernard Lyon 169342LyonFrance
| | - Lucca Neupert
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
| | - Amandine Roux
- Université de LyonENS de LyonLaboratoire de ChimieCNRS UMR 5182Université Claude Bernard Lyon 169342LyonFrance
| | - Hubert Wadepohl
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
| |
Collapse
|
9
|
Dasari S, Singh S, Abbas Z, Sivakumar S, Patra AK. Luminescent lanthanide(III) complexes of DTPA-bis(amido-phenyl-terpyridine) for bioimaging and phototherapeutic applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119709. [PMID: 33823402 DOI: 10.1016/j.saa.2021.119709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/31/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
We report here a series of coordinatively-saturated and thermodynamically stable luminescent [Ln(dtntp)(H2O)] [Ln(III) = Eu (1), Tb (2), Gd (3), Sm (4) and Dy (5)] complexes using an aminophenyl-terpyridine appended-DTPA (dtntp) chelating ligand as cell imaging and photocytotoxic agents. The N,N″-bisamide derivative of H5DTPA named as dtntp is based on 4'-(4-aminophenyl)-2,2':6',2″-terpyridine conjugated to diethylenetriamine-N,N',N″-pentaacetic acid. The structure, physicochemical properties, detailed photophysical aspects, interaction with DNA and serum proteins, and photocytotoxicity were studied. The intrinsic luminescence of Eu(III) and Tb(III) complexes due to f → f transitions used to evaluate their cellular uptake and distribution in cancer cells. The solid-state structure of [Eu(dtntp)(DMF)] (1·DMF) shows a discrete mononuclear molecule with nine-coordinated {EuN3O6} distorted tricapped-trigonal prism (TTP) coordination geometry around the Eu(III). The {EuN3O6} core results from three nitrogen atoms and three carboxylate oxygen atoms, and two carbonyl oxygen atoms of the amide groups of dtntp ligand. The ninth coordination site is occupied by an oxygen atom of DMF as a solvent from crystallization. The designed probes have two aromatic pendant phenyl-terpyridine (Ph-tpy) moieties as photo-sensitizing antennae to impart the desirable optical properties for cellular imaging and photocytotoxicity. The photostability, coordinative saturation, and energetically rightly poised triplet states of dtntp ligand allow the efficient energy transfer (ET) from Ph-tpy to the emissive excited states of the Eu(III)/Tb(III), makes them luminescent cellular imaging probes. The Ln(III) complexes show significant binding tendency to DNA (K ~ 104 M-1), and serum proteins (BSA and HSA) (K ~ 105 M-1). The luminescent Eu(III) (1) and Tb(III) (2) complexes were utilized for cellular internalization and cytotoxicity studies due to their optimal photophysical properties. The cellular uptake studies using fluorescence imaging displayed intracellular (cytosolic and nuclear) localization in cancer cells. The complexes 1 and 2 displayed significant photocytotoxicity in HeLa cells. These results offer a modular design strategy with further scope to utilize appended N,N,N-donor tpy moiety for developing light-responsive luminescent Ln(III) bioprobes for theranostic applications.
Collapse
Affiliation(s)
- Srikanth Dasari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Swati Singh
- Department of Chemical Engineering and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Zafar Abbas
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Sri Sivakumar
- Department of Chemical Engineering and Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.
| |
Collapse
|
10
|
Kaliakin DS, Sobrinho JA, Monteiro JHSK, de Bettencourt-Dias A, Cantu DC. Solution structure of a europium–nicotianamine complex supports that phytosiderophores bind lanthanides. Phys Chem Chem Phys 2021; 23:4287-4299. [DOI: 10.1039/d0cp06150f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The structures of europium–EDTA (known lanthanide chelator) and europium–nicotianamine (biochemical precursor of phytosiderophores) complexes are resolved, in solution, with ab initio molecular dynamics as well as excitation and emission spectroscopy.
Collapse
Affiliation(s)
- Danil S. Kaliakin
- Department of Chemical and Materials Engineering
- University of Nevada
- Reno
- USA
| | | | | | | | - David C. Cantu
- Department of Chemical and Materials Engineering
- University of Nevada
- Reno
- USA
| |
Collapse
|
11
|
Chong BSK, Rajah D, Allen MF, Galán LA, Massi M, Ogden M, Moore EG. Enhanced Near-Infrared Emission from Eight-Coordinate vs Nine-Coordinate Yb III Complexes Using 2-(5-Methylpyridin-2-yl)-8-hydroxyquinoline. Inorg Chem 2020; 59:16194-16204. [PMID: 33121245 DOI: 10.1021/acs.inorgchem.0c01802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enhanced near-infrared (NIR) luminescence from two structurally related heterobinuclear NaIYbIII eight-cooridnate and heterobinuclear YbIIINaI eight-coordinate (CN = 8) complexes is reported and compared to a nine-coordinate (CN = 9) homoleptic complex. For the heteroleptic complex, [Yb(MPQ2)(acac)], the YbIII cation is coordinated to two tridentate 2-(5-methylpyridin-2-yl)-8-quinolinate (MPQ) anions, with a bidentate acetylacetonate (acac) anion completing the coordination sphere. Instead, the heterobinuclear [NaYb(MPQ)4] complex comprises a total of four anionic MPQ ligands, two of which exhibit κ3-coordination to the YbIII cation. The remaining two MPQ anions are unidentate toward the lanthanide and form μ2-bridges via the deprotonated quinolinate oxygens to a bound NaI cation which is also coordinated to the remaining nitrogen donor atoms. The structural properties of these complexes were evaluated by single-crystal X-ray diffraction (SXRD), continuous shape measure (CShM) analysis, and 1H NMR spectroscopy using a diamagnetic LuIII analogue. The corresponding photophysical properties were examined in CH2Cl2 solution by using absorption and emission spectroscopy. For both the complexes, characteristic YbIII emission is observed at ca. 980 nm, with recorded photoluminescence quantum yields (Φobs) and NIR luminescence lifetimes (τobs) of 2.0% and 14.0 μs vs 1.5% and 11.6 μs for the [NaYb(MPQ)4] and [Yb(MPQ)2(acac)] complexes, respectively. Interestingly, the eight-coordinate YbIII complexes both have higher photoluminescence quantum yields when compared to the homoleptic [Yb(MPQ)3] complex, which has a reported quantum yield of 1.0% and a NIR lifetime determined herein of 13.3 μs under identical conditions. These results have been rationalized by considering the overall efficiency of the ligand-centered sensitization process (ηsens = Φisc × Φeet), together with subsequent radiative (kr) and nonradiative (knr) deactivation of the YbIII cation. Moreover, the efficiency of the intersystem crossing (Φisc) and electronic energy transfer (Φeet) processes involved in the antennae effect have been quantified for the new complexes using a combination of nanosecond and femtosecond transient absorption techniques and have been compared to our previous results using [Ln(MPQ)3] complexes with Ln = Yb and Lu.
Collapse
Affiliation(s)
- Bowie S K Chong
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Divya Rajah
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Matthew F Allen
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laura Abad Galán
- School of Molecular and Life Sciences, and Curtin Institute of Functional Molecules and Interfaces, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, and Curtin Institute of Functional Molecules and Interfaces, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Mark Ogden
- School of Molecular and Life Sciences, and Curtin Institute of Functional Molecules and Interfaces, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Evan G Moore
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
12
|
Kanan SM, Malkawi A. Recent Advances in Nanocomposite Luminescent Metal-Organic Framework Sensors for Detecting Metal Ions. COMMENT INORG CHEM 2020. [DOI: 10.1080/02603594.2020.1805319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sofian M. Kanan
- Department of Biology, Chemistry, and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Ahmed Malkawi
- Department of Chemistry, Northwest Missouri State University, Maryville, Missouri, USA
| |
Collapse
|
13
|
Dasari S, Maparu AK, Abbas Z, Kumar P, Birla H, Sivakumar S, Patra AK. Bimetallic Europium and Terbium Complexes Containing Substituted Terpyridines and the NSAID Drug Tolfenamic Acid: Structural Differences, Luminescence Properties, and Theranostic Applications. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Srikanth Dasari
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Auhin Kumar Maparu
- Department of Chemical Engineering; Center for Environmental Science and Engineering; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Zafar Abbas
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Priyaranjan Kumar
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Hariom Birla
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Sri Sivakumar
- Department of Chemical Engineering; Center for Environmental Science and Engineering; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Ashis K. Patra
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| |
Collapse
|
14
|
Hamon N, Roux A, Beyler M, Mulatier JC, Andraud C, Nguyen C, Maynadier M, Bettache N, Duperray A, Grichine A, Brasselet S, Gary-Bobo M, Maury O, Tripier R. Pyclen-Based Ln(III) Complexes as Highly Luminescent Bioprobes for In Vitro and In Vivo One- and Two-Photon Bioimaging Applications. J Am Chem Soc 2020; 142:10184-10197. [PMID: 32368907 DOI: 10.1021/jacs.0c03496] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In addition to the already described ligand L4a, two pyclen-based lanthanide chelators, L4b and L4c, bearing two specific picolinate two-photon antennas (tailor-made for each targeted metal) and one acetate arm arranged in a dissymmetrical manner, have been synthesized, to form a complete family of lanthanide luminescent bioprobes: [EuL4a], [SmL4a], [YbL4b], [TbL4c], and [DyL4c]. Additionally, the symmetrically arranged regioisomer L4a' was also synthesized as well as its [EuL4a'] complex to highlight the astonishing positive impact of the dissymmetrical N-distribution of the functional chelating arms. The investigation clearly shows the high performance of each bioprobe, which, depending on the complexed lanthanide, could be used in various applications. Each presents high brightness, quantum yields, and lifetimes. Staining of the complexes into living human breast cancer cells was observed. In addition, in vivo two-photon microscopy was performed for the first time on a living zebrafish model with [EuL4a]. No apparent toxicity was detected on the growth of the zebrafish, and images of high quality were obtained.
Collapse
Affiliation(s)
- Nadège Hamon
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, 29200 Brest, France
| | - Amandine Roux
- Univ Lyon ENS de Lyon, CNRS Laboratoire de Chimie UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France
| | - Maryline Beyler
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, 29200 Brest, France
| | - Jean-Christophe Mulatier
- Univ Lyon ENS de Lyon, CNRS Laboratoire de Chimie UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France
| | - Chantal Andraud
- Univ Lyon ENS de Lyon, CNRS Laboratoire de Chimie UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France
| | | | - Marie Maynadier
- NanoMedSyn, 15 Avenue Charles Flahault, F-34093 Montpellier Cedex 05, France
| | - Nadir Bettache
- IBMM, Univ Montpellier, CNRS, ENSCM, F-34000 Montpellier, France
| | - Alain Duperray
- INSERM, U1209, Université Grenoble 896 Alpes, IAB, F-38000 Grenoble, France
| | - Alexei Grichine
- INSERM, U1209, Université Grenoble 896 Alpes, IAB, F-38000 Grenoble, France
| | - Sophie Brasselet
- Univ Aix Marseille, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, F-13013 Marseille, France
| | - Magali Gary-Bobo
- IBMM, Univ Montpellier, CNRS, ENSCM, F-34000 Montpellier, France
| | - Olivier Maury
- Univ Lyon ENS de Lyon, CNRS Laboratoire de Chimie UMR 5182, Université Claude Bernard Lyon 1, F-69342 Lyon, France
| | - Raphaël Tripier
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, 29200 Brest, France
| |
Collapse
|
15
|
Dee C, Zinna F, Kreidt E, Arrico L, Rodríguez-Rodríguez A, Platas-Iglesias C, Di Bari L, Seitz M. Circularly polarized luminescence of enantiopure carboline-based europium cryptates under visible light excitation. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2020.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Monteiro JHSK. Recent Advances in Luminescence Imaging of Biological Systems Using Lanthanide(III) Luminescent Complexes. Molecules 2020; 25:E2089. [PMID: 32365719 PMCID: PMC7248892 DOI: 10.3390/molecules25092089] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
The use of luminescence in biological systems allows one to diagnose diseases and understand cellular processes. Molecular systems, particularly lanthanide(III) complexes, have emerged as an attractive system for application in cellular luminescence imaging due to their long emission lifetimes, high brightness, possibility of controlling the spectroscopic properties at the molecular level, and tailoring of the ligand structure that adds sensing and therapeutic capabilities. This review aims to provide a background in luminescence imaging and lanthanide spectroscopy and discuss selected examples from the recent literature on lanthanide(III) luminescent complexes in cellular luminescence imaging, published in the period 2016-2020. Finally, the challenges and future directions that are pointing for the development of compounds that are capable of executing multiple functions and the use of light in regions where tissues and cells have low absorption will be discussed.
Collapse
|
17
|
Mendy J, Thy Bui A, Roux A, Mulatier J, Curton D, Duperray A, Grichine A, Guyot Y, Brasselet S, Riobé F, Andraud C, Le Guennic B, Patinec V, Tripier PR, Beyler M, Maury O. Cationic Biphotonic Lanthanide Luminescent Bioprobes Based on Functionalized Cross‐Bridged Cyclam Macrocycles. Chemphyschem 2020; 21:1036-1043. [DOI: 10.1002/cphc.202000085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/10/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Jonathan Mendy
- Univ BrestUMR CNRS-UBO 6521 CEMCA, IBSAM, UFR des Sciences et Techniques 6 Avenue Victor le Gorgeu, C.S. 93837 F-29238 Brest, Cedex 3 France
| | - Anh Thy Bui
- Univ LyonENS de Lyon, CNRS UMR 5182 Université Claude Bernard Lyon 1 F-69342 Lyon France
| | - Amandine Roux
- Univ LyonENS de Lyon, CNRS UMR 5182 Université Claude Bernard Lyon 1 F-69342 Lyon France
| | | | - Damien Curton
- Univ LyonENS de Lyon, CNRS UMR 5182 Université Claude Bernard Lyon 1 F-69342 Lyon France
| | - Alain Duperray
- INSERM, U1209Université Grenoble Alpes, IAB F-38000 Grenoble France
| | - Alexei Grichine
- INSERM, U1209Université Grenoble Alpes, IAB F-38000 Grenoble France
| | - Yannick Guyot
- Univ LyonInstitut Lumière Matière, UMR 5306 CNRS – Université Claude Bernard Lyon 1, 10 rue Ada Byron F-69622 Villeurbanne Cedex France
| | - Sophie Brasselet
- Univ Aix Marseille, CNRSCentrale Marseille, Institut Fresnel, UMR 7249 F-13013 Marseille France
| | - François Riobé
- Univ LyonENS de Lyon, CNRS UMR 5182 Université Claude Bernard Lyon 1 F-69342 Lyon France
| | - Chantal Andraud
- Univ LyonENS de Lyon, CNRS UMR 5182 Université Claude Bernard Lyon 1 F-69342 Lyon France
| | - Boris Le Guennic
- Univ Rennes, CNRSISCR (Institut des Sciences Chimiques de Rennes), UMR 6226 F-35000 Rennes France
| | - Véronique Patinec
- Univ BrestUMR CNRS-UBO 6521 CEMCA, IBSAM, UFR des Sciences et Techniques 6 Avenue Victor le Gorgeu, C.S. 93837 F-29238 Brest, Cedex 3 France
| | - Pr. Raphael Tripier
- Univ BrestUMR CNRS-UBO 6521 CEMCA, IBSAM, UFR des Sciences et Techniques 6 Avenue Victor le Gorgeu, C.S. 93837 F-29238 Brest, Cedex 3 France
| | - Maryline Beyler
- Univ BrestUMR CNRS-UBO 6521 CEMCA, IBSAM, UFR des Sciences et Techniques 6 Avenue Victor le Gorgeu, C.S. 93837 F-29238 Brest, Cedex 3 France
| | - Olivier Maury
- Univ LyonENS de Lyon, CNRS UMR 5182 Université Claude Bernard Lyon 1 F-69342 Lyon France
| |
Collapse
|
18
|
Barry DE, Kitchen JA, Pandurangan K, Savyasachi AJ, Peacock RD, Gunnlaugsson T. Formation of Enantiomerically Pure Luminescent Triple-Stranded Dimetallic Europium Helicates and Their Corresponding Hierarchical Self-Assembly Formation in Protic Polar Solutions. Inorg Chem 2020; 59:2646-2650. [DOI: 10.1021/acs.inorgchem.0c00058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Dawn E. Barry
- School of Chemistry and Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
| | - Jonathan A. Kitchen
- Chemistry, School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Komala Pandurangan
- School of Chemistry and Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
| | - Aramballi Jayant Savyasachi
- School of Chemistry and Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
| | - Robert D. Peacock
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin, Dublin 2 D02 PN40, Ireland
| |
Collapse
|
19
|
Abbas Z, Singh P, Dasari S, Sivakumar S, Patra AK. Luminescent EuIIIand TbIIIbimetallic complexes of N,N′-heterocyclic bases and tolfenamic acid: structures, photophysical aspects and biological activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj03261a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The isostructural bimetallic luminescent EuIIIand TbIIIdimers containing N,N′-heterocyclic bases and tolfenamic acid as a bridging ligands were evaluated for their structures, cellular imaging capability and photocytotoxicity.
Collapse
Affiliation(s)
- Zafar Abbas
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Prerana Singh
- Department of Chemical Engineering
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
- Department of Biological Sciences and Bioengineering
| | - Srikanth Dasari
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sri Sivakumar
- Department of Chemical Engineering
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Ashis K. Patra
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
20
|
Kovacs D, Kiraev SR, Phipps D, Orthaber A, Borbas KE. Eu(III) and Tb(III) Complexes of Octa- and Nonadentate Macrocyclic Ligands Carrying Azide, Alkyne, and Ester Reactive Groups. Inorg Chem 2019; 59:106-117. [DOI: 10.1021/acs.inorgchem.9b01576] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel Kovacs
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| | - Salauat R. Kiraev
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| | - Dulcie Phipps
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| | - K. Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Box 523, Uppsala University, 75120, Uppsala, Sweden
| |
Collapse
|
21
|
Thiele NA, Woods JJ, Wilson JJ. Implementing f-Block Metal Ions in Medicine: Tuning the Size Selectivity of Expanded Macrocycles. Inorg Chem 2019; 58:10483-10500. [DOI: 10.1021/acs.inorgchem.9b01277] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Götzke L, Schaper G, März J, Kaden P, Huittinen N, Stumpf T, Kammerlander KK, Brunner E, Hahn P, Mehnert A, Kersting B, Henle T, Lindoy LF, Zanoni G, Weigand JJ. Coordination chemistry of f-block metal ions with ligands bearing bio-relevant functional groups. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Wu H, Zheng J, Kjøniksen AL, Wang W, Zhang Y, Ma J. Metallogels: Availability, Applicability, and Advanceability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806204. [PMID: 30680801 DOI: 10.1002/adma.201806204] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/10/2018] [Indexed: 06/09/2023]
Abstract
Introducing metal components into gel matrices provides an effective strategy to develop soft materials with advantageous properties such as: optical activity, conductivity, magnetic response activity, self-healing activity, catalytic activity, etc. In this context, a thorough overview of application-oriented metallogels is provided. Considering that many well-established metallogels start from serendipitous discoveries, insights into the structure-gelation relationship will offer a profound impact on the development of metallogels. Initially, design strategies for discovering new metallogels are discussed, then the advanced applications of metallogels are summarized. Finally, perspectives regarding the design of metallogels, the potential applications of metallogels and their derivative materials are briefly proposed.
Collapse
Affiliation(s)
- Huiqiong Wu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Anna-Lena Kjøniksen
- Faculty of Engineering, Østfold University College, P.O. Box 700, 1757, Halden, Norway
| | - Wei Wang
- Department of Chemistry and Center for Pharmacy, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Jianmin Ma
- School of Physics and Electronics, Hunan University, 410082, Changsha, China
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
24
|
Near-infrared excited cooperative upconversion in luminescent Ytterbium(ΙΙΙ) bioprobes as light-responsive theranostic agents. Eur J Med Chem 2019; 163:546-559. [DOI: 10.1016/j.ejmech.2018.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022]
|
25
|
Sund H, Liao YY, Andraud C, Duperray A, Grichine A, Le Guennic B, Riobé F, Takalo H, Maury O. Polyanionic Polydentate Europium Complexes as Ultrabright One- or Two-photon Bioprobes. Chemphyschem 2018; 19:3318-3324. [PMID: 30198105 DOI: 10.1002/cphc.201800557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Indexed: 12/27/2022]
Abstract
A family of europium (III) complexes based on a polydentate ligand functionalized by charge-transfer antennae presents remarkable one- and two-photon photophysical proper-ties in water or buffer. A detailed analysis of their emission properties suggests that the wrapping of the ligand around the central rare-earth ion results in an overall Cs symmetry in agreement with the theoretical simulation and that about 65-70 % of the emission intensity is concentrated in the hypersensitive 5 D0 →7 F2 transition at 615 nm. Their brightness is excellent, in the range of the best lanthanide bioprobes making them very attractive for bio-imaging experiments.
Collapse
Affiliation(s)
- Henri Sund
- Radiometer Turku Oy, Biolinja 12, 20750, Turku, Finland
| | - Yuan-Yuan Liao
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Chantal Andraud
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Alain Duperray
- Institute for Advanced Biosciences, Inserm U1209, CNRS UMR5309, Université. Grenoble Alpes, 38000, Grenoble, France
| | - Alexei Grichine
- Institute for Advanced Biosciences, Inserm U1209, CNRS UMR5309, Université. Grenoble Alpes, 38000, Grenoble, France
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR, Institut des Sciences Chimiques de Rennes), UMR 6226, F-, 35000 Rennes, France
| | - François Riobé
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Harri Takalo
- Radiometer Turku Oy, Biolinja 12, 20750, Turku, Finland
| | - Olivier Maury
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| |
Collapse
|
26
|
Mathieu E, Sipos A, Demeyere E, Phipps D, Sakaveli D, Borbas KE. Lanthanide-based tools for the investigation of cellular environments. Chem Commun (Camb) 2018; 54:10021-10035. [PMID: 30101249 DOI: 10.1039/c8cc05271a] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biological probes constructed from lanthanides can provide a variety of readout signals, such as the luminescence of Eu(iii), Tb(iii), Yb(iii), Sm(iii) and Dy(iii), and the proton relaxation enhancement of Gd(iii) and Eu(ii). For numerous applications the intracellular delivery of the lanthanide probe is essential. Here, we review the methods for the intracellular delivery of non-targeted complexes (i.e. where the overall complex structure enhances cellular uptake), as well as complexes attached to a targeting unit (i.e. to a peptide or a small molecule) that facilitates delivery. The cellular applications of lanthanide-based supramolecules (dendrimers, metal organic frameworks) are covered briefly. Throughout, we emphasize the techniques that can confirm the intracellular localization of the lanthanides and those that enable the determination of the fate of the probes once inside the cell. Finally, we highlight methods that have not yet been applied in the context of lanthanide-based probes, but have been successful in the intracellular delivery of other metal-based probes.
Collapse
Affiliation(s)
- Emilie Mathieu
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
27
|
Monteiro JH, Sigoli FA, de Bettencourt-Dias A. A water-soluble TbIII complex as a temperature-sensitive luminescent probe. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The water soluble [Tb(dipicCbz)3]3− (dipicCbz = 4-(9H-carbazol-9-yl-)pyridine-2,6-dicarboxylato) complex was isolated and evaluated as a temperature sensor in water. The 1:3 (TbIII:dipicCbz2−) stoichiometry in solution was confirmed by luminescence titration and high-resolution mass spectrometry. The quantum yield of sensitized emission is 3.8% ± 0.4% at 25.0 ± 0.1 °C, and the emission intensity depends on the temperature in the range of 5–70 °C with a relative thermal sensitivity of 3.4% °C−1 at 35 °C and temperature resolution < 0.01 °C in the range of 30–40 °C. The reversibility of this behavior was demonstrated for three heating–cooling cycles. Calculations of the energy gap between donor and acceptor show that the temperature dependence of the emission intensity is due to back-energy transfer from the Tb 5D4 excited state to the triplet and twisted intramolecular charge transfer (TICT) states of the dipicCbz. The assignment of one of the energy levels as a TICT state was confirmed by the temperature-dependent behavior of the phosphorescence band.
Collapse
Affiliation(s)
- Jorge H.S.K. Monteiro
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
- Department of Chemistry, University of Nevada, Reno, NV 89557, USA
| | - Fernando A. Sigoli
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
28
|
Zheng B, Trieu TH, Li FL, Zhu XL, He YG, Fan QQ, Shi XX. Copper-Catalyzed Benign and Efficient Oxidation of Tetrahydroisoquinolines and Dihydroisoquinolines Using Air as a Clean Oxidant. ACS OMEGA 2018; 3:8243-8252. [PMID: 31458961 PMCID: PMC6644811 DOI: 10.1021/acsomega.8b00855] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/06/2018] [Indexed: 06/10/2023]
Abstract
A green chemical method for mild oxidation of 1,2,3,4-tetrahydroisoquinolines (THIQs) and 3,4-dihydroisoquinolines (DHIQs) has been developed using air (O2) as a clean oxidant. DHIQs and THIQs could be efficiently oxidized to isoquinolines in dimethyl sulfoxide at 25 °C under an open air atmosphere with CuBr2 (20 mol %) as the catalyst; different bases [NaOEt and/or 1,8-diazabicyclo[5,4,0]undec-7-ene] were used for the reaction according to the patterns of substituents (R1, R2).
Collapse
Affiliation(s)
- Bo Zheng
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Tien Ha Trieu
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Feng-Lei Li
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Xing-Liang Zhu
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Yun-Gang He
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Qi-Qi Fan
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Xiao-Xin Shi
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| |
Collapse
|
29
|
Dee C, Esteban-Gómez D, Platas-Iglesias C, Seitz M. Long Wavelength Excitation of Europium Luminescence in Extended, Carboline-Based Cryptates. Inorg Chem 2018; 57:7390-7401. [DOI: 10.1021/acs.inorgchem.8b01031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carolin Dee
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Michael Seitz
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
30
|
Bui AT, Beyler M, Grichine A, Duperray A, Mulatier JC, Guyot Y, Andraud C, Tripier R, Brasselet S, Maury O. Near infrared two photon imaging using a bright cationic Yb(iii) bioprobe spontaneously internalized into live cells. Chem Commun (Camb) 2018; 53:6005-6008. [PMID: 28516180 DOI: 10.1039/c7cc02835k] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An Yb(iii) complex based on a dimethyl cyclen macrocyclic ligand functionalized by charge transfer antennae was prepared. This cationic [YbL3]+ complex is stable and soluble in water and presents interesting photophysical nonlinear properties. It is spontaneously internalized and accumulates in live cells. High quality images have been obtained both in a classical NIR-to-vis configuration and in the more challenging NIR-to-NIR one.
Collapse
Affiliation(s)
- Anh Thy Bui
- Univ. Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, 69364 Lyon, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fernández-Moreira V, Gimeno MC. Heterobimetallic Complexes for Theranostic Applications. Chemistry 2018; 24:3345-3353. [PMID: 29334153 DOI: 10.1002/chem.201705335] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Indexed: 01/31/2023]
Abstract
The design of more efficient anticancer drugs requires a deeper understanding of their biodistribution and mechanism of action. Cell imaging agents could help to gain insight into biological processes and, consequently, the best strategy for attaining suitable scaffolds in which both biological and imaging properties are maximized. A new concept arises in this field that is the combination of two metal fragments as collaborative partners to provide the precise emissive properties to visualize the cell as well as the optimum cytotoxic activity to build more potent and selective chemotherapeutic agents.
Collapse
Affiliation(s)
- Vanesa Fernández-Moreira
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Calle de Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Calle de Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
32
|
Mishra SK, Kannan S. Doxorubicin-Conjugated Bimetallic Silver–Gadolinium Nanoalloy for Multimodal MRI-CT-Optical Imaging and pH-Responsive Drug Release. ACS Biomater Sci Eng 2017; 3:3607-3619. [DOI: 10.1021/acsbiomaterials.7b00498] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sandeep K. Mishra
- Centre for Nanoscience and Technology, Pondicherry University, R. V. Nagar, Kalapet, Puducherry 605 014, India
| | - S. Kannan
- Centre for Nanoscience and Technology, Pondicherry University, R. V. Nagar, Kalapet, Puducherry 605 014, India
| |
Collapse
|
33
|
Mishra SK, Kannan S. A Bimetallic Silver-Neodymium Theranostic Nanoparticle with Multimodal NIR/MRI/CT Imaging and Combined Chemo-photothermal Therapy. Inorg Chem 2017; 56:12054-12066. [PMID: 28933536 DOI: 10.1021/acs.inorgchem.7b02103] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An engineered metallic nanostructure is an excellent candidate for "theranosis" of cancer, having intrinsic properties of multimodal imaging and therapy. Toward this target, the development of silver-neodymium bimetallic nanoparticles (Ag-Nd BNPs) via microwave-assisted polyol synthesis is presented. The resultant Ag-Nd BNPs exhibit good monodispersity with average size of 10 nm, fluorescence in the near-infrared (NIR) region, and magnetic properties. The Ag-Nd BNPs also validate MRI, CT, and NIR trimodal imaging ability and enunciate valuable temperature response upon irradiation under a NIR laser. Aided by chitosan functionalization on the surface, the Ag-Nd BNPs deliver good biocompatibility and also promote the loading of paclitaxel, an anticancer drug. Isothermal titration calorimetry affirms the combination of strong binding affinity of drug and high loading efficiency of 7 drug molecules per nanoparticle. Moreover, Ag-Nd BNPs also illustrate a highly efficient photothermal effect in PBS. Therefore, the synergistic effects of paclitaxel and the photothermal effect make BNPs excellent "combined therapeutic agents", and also give them the important ability to destroy cancer cells in vitro at very low dose in comparison to single therapy. Thus, the Ag-Nd BNPs unveil a combination of MRI/CT/NIR imaging and chemo-photothermal therapy that ensures accurate diagnosis at an early stage and comprehensive eradication of tumor cells without affecting healthy cells.
Collapse
Affiliation(s)
- Sandeep K Mishra
- Centre for Nanoscience and Technology, Pondicherry University , Puducherry 605 014, India
| | - S Kannan
- Centre for Nanoscience and Technology, Pondicherry University , Puducherry 605 014, India
| |
Collapse
|
34
|
Ansari NH, Jordan AL, Söderberg BC. A facile base-mediated synthesis of N-alkoxy-substituted benzimidazoles. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.06.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Mishra SK, Kannan S. Microwave Synthesis of Chitosan Capped Silver-Dysprosium Bimetallic Nanoparticles: A Potential Nanotheranosis Device. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13687-13696. [PMID: 27981845 DOI: 10.1021/acs.langmuir.6b03438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Accurate imaging of the structural and functional state of biological targets is a critical task. To amend paucities associated with individual imaging, there is high interest to develop a multifunctional theranostic devices for cancer diagnosis and therapy. Herein, chitosan coated silver/dysprosium bimetallic nanoparticles (BNPs) were synthesized through a green chemistry route and characterization results inferred that the BNPs are crystalline, spherical, and of size ∼10 nm. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photoelectron spectroscopy (XPS) confirm the reduced metallic states of Ag and Dy in nanoparticles. These BNPs demonstrate high emission in a second near-infrared (NIR-II, 1000-1400 nm) biological window on excitation at 808 nm. Moreover, magnetization and magnetic resonance imaging (MRI) studies perceive the inherent paramagnetic features of Dy component that displays dark T2 contrast and high relaxivity. Due to high X-ray attenuation effect, BNPs exhibit better Hounsfield unit (HU) value than the reported contrast agents. BNPs unveil good biocompatibility and also express sturdy therapeutic effect in HeLa cells when tethered with doxorubicin.
Collapse
Affiliation(s)
- Sandeep K Mishra
- Centre for Nanoscience and Technology, Pondicherry University , Puducherry-605 014, India
| | - S Kannan
- Centre for Nanoscience and Technology, Pondicherry University , Puducherry-605 014, India
| |
Collapse
|
36
|
Dasari S, Singh S, Sivakumar S, Patra AK. Dual-Sensitized Luminescent Europium(ΙΙΙ) and Terbium(ΙΙΙ) Complexes as Bioimaging and Light-Responsive Therapeutic Agents. Chemistry 2016; 22:17387-17396. [DOI: 10.1002/chem.201603453] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Srikanth Dasari
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016, Uttar Pradesh India
| | - Swati Singh
- Department of Chemical Engineering and Centre for Environmental Science and Engineering; Indian Institute of Technology Kanpur; Kanpur 208016, Uttar Pradesh India
| | - Sri Sivakumar
- Department of Chemical Engineering and Centre for Environmental Science and Engineering; Indian Institute of Technology Kanpur; Kanpur 208016, Uttar Pradesh India
| | - Ashis K. Patra
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016, Uttar Pradesh India
| |
Collapse
|
37
|
Mohamadi A, Miller LW. Brightly Luminescent and Kinetically Inert Lanthanide Bioprobes Based on Linear and Preorganized Chelators. Bioconjug Chem 2016; 27:2540-2548. [PMID: 27684450 DOI: 10.1021/acs.bioconjchem.6b00473] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The synthesis, photophysical properties, and kinetic stability of a series of water-soluble, highly emissive Tb(III) and Eu(III) complexes featuring triethylenetetraamine hexaacetic acid (TTHA) and cyclohexyl triethylenetetraamine hexaacetic acid (cyTTHA) chelator scaffolds and carbostyril sensitizers are reported. The unique and modular design of the chelators gives rise to striking quantum yields of emission in aqueous solutions (up to 54%) as well as the characteristic lanthanides' photophysical properties (long excited-state lifetimes, large effective Stokes shifts, and narrow emission peaks). Furthermore, the preorganized chelators (L3, L4, and L6) bind metal within minutes at ambient temperature yet exhibit substantial resistance to transchelation in the presence of a challenge solution (EDTA, 1 mM). Moreover, the Eu(III) complex of L4 remains stably luminescent in HeLa cells over hours, demonstrating the suitability of these compounds for live-cell imaging applications. Representative chelators suitable for derivatization and protein bioconjugation were also prepared that were functionalized with clickable azide and alkyne moieties, biotin, and trimethoprim (TMP). With exceptional long-wavelength brightness, enhanced kinetic inertness, and an adaptable synthetic route, the reported lanthanide complexes are promising probes and labels for time-gated bioanalysis, biosensing, and optical microscopy.
Collapse
Affiliation(s)
- Ali Mohamadi
- Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| | - Lawrence W Miller
- Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| |
Collapse
|
38
|
Abstract
Lanthanide complexes are of increasing importance in cancer diagnosis and therapy, owing to the versatile chemical and magnetic properties of the lanthanide-ion 4f electronic configuration. Following the first implementation of gadolinium(III)-based contrast agents in magnetic resonance imaging in the 1980s, lanthanide-based small molecules and nanomaterials have been investigated as cytotoxic agents and inhibitors, in photodynamic therapy, radiation therapy, drug/gene delivery, biosensing, and bioimaging. As the potential utility of lanthanides in these areas continues to increase, this timely review of current applications will be useful to medicinal chemists and other investigators interested in the latest developments and trends in this emerging field.
Collapse
Affiliation(s)
- Ruijie D. Teo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, California 91010, USA
| | - Harry B. Gray
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
39
|
Bui AT, Beyler M, Liao YY, Grichine A, Duperray A, Mulatier JC, Guennic BL, Andraud C, Maury O, Tripier R. Cationic Two-Photon Lanthanide Bioprobes Able to Accumulate in Live Cells. Inorg Chem 2016; 55:7020-5. [DOI: 10.1021/acs.inorgchem.6b00891] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anh Thy Bui
- Univ Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 allée
d’Italie, 69364 Lyon, France
| | - Maryline Beyler
- Université de Brest, UMR-CNRS 6521, UFR des Sciences et Techniques 6 avenue Victor le Gorgeu, C.S. 93837,
29238, Brest Cedex 3, France
| | - Yuan-Yuan Liao
- Univ Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 allée
d’Italie, 69364 Lyon, France
| | - Alexei Grichine
- INSERM, U1209, Université Grenoble Alpes, IAB, F-38000 Grenoble, France
| | - Alain Duperray
- INSERM, U1209, Université Grenoble Alpes, IAB, F-38000 Grenoble, France
| | - Jean-Christophe Mulatier
- Univ Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 allée
d’Italie, 69364 Lyon, France
| | - Boris Le Guennic
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, 263 Avenue du Général
Leclerc, 35042 Rennes
Cedex, France
| | - Chantal Andraud
- Univ Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 allée
d’Italie, 69364 Lyon, France
| | - Olivier Maury
- Univ Lyon, ENS Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, UMR 5182, 46 allée
d’Italie, 69364 Lyon, France
| | - Raphaël Tripier
- Université de Brest, UMR-CNRS 6521, UFR des Sciences et Techniques 6 avenue Victor le Gorgeu, C.S. 93837,
29238, Brest Cedex 3, France
| |
Collapse
|
40
|
Barry DE, Caffrey DF, Gunnlaugsson T. Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands. Chem Soc Rev 2016; 45:3244-74. [PMID: 27137947 DOI: 10.1039/c6cs00116e] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein some examples of the use of lanthanide ions (f-metal ions) to direct the synthesis of luminescent self-assembly systems (architectures) will be discussed. This area of lanthanide supramolecular chemistry is fast growing, thanks to the unique physical (magnetic and luminescent) and coordination properties of the lanthanides, which are often transferred to the resulting supermolecule. The emphasis herein will be on systems that are luminescent, and hence, generated by using either visibly emitting ions (such as Eu(III), Tb(III) and Sm(III)) or near infrared emitting ions (like Nd(III), Yb(III) and Er(III)), formed through the use of templating chemistry, by employing structurally simple ligands, possessing oxygen and nitrogen coordinating moieties. As the lanthanides have high coordination requirements, their use often allows for the formation of coordination compounds and supramolecular systems such as bundles, grids, helicates and interlocked molecules that are not synthetically accessible through the use of other commonly used templating ions such as transition metal ions. Hence, the use of the rare-earth metal ions can lead to the formation of unique and stable species in both solution and in the solid state, as well as functional and responsive structures.
Collapse
Affiliation(s)
- Dawn E Barry
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | | | | |
Collapse
|
41
|
Gonzalez WG, Ramos V, Diaz M, Garabedian A, Molano-Arevalo JC, Fernandez-Lima F, Miksovska J. Characterization of the Photophysical, Thermodynamic, and Structural Properties of the Terbium(III)-DREAM Complex. Biochemistry 2016; 55:1873-86. [PMID: 26901070 PMCID: PMC4867112 DOI: 10.1021/acs.biochem.6b00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DREAM (also known as K(+) channel interacting protein 3 and calsenilin) is a calcium binding protein and an active modulator of KV4 channels in neuronal cells as well as a novel Ca(2+)-regulated transcriptional modulator. DREAM has also been associated with the regulation of Alzheimer's disease through the prevention of presenilin-2 fragmentation. Many interactions of DREAM with its binding partners (Kv4, calmodulin, DNA, and drugs) have been shown to be dependent on calcium. Therefore, understanding the structural changes induced by binding of metals to DREAM is essential for elucidating the mechanism of signal transduction and biological activity of this protein. Here, we show that the fluorescence emission and excitation spectra of the calcium luminescent analogue, Tb(3+), are enhanced upon binding to the EF-hands of DREAM due to a mechanism of energy transfer between Trp and Tb(3+). We also observe that unlike Tb(3+)-bound calmodulin, the luminescence lifetime of terbium bound to DREAM decays as a complex multiexponential (τaverage ∼ 1.8 ms) that is sensitive to perturbation of the protein structure and drug (NS5806) binding. Using isothermal calorimetry, we have determined that Tb(3+) binds to at least three sites with high affinity (Kd = 1.8 μM in the presence of Ca(2+)) and displaces bound Ca(2+) through an entropically driven mechanism (ΔH ∼ 12 kcal mol(-1), and TΔS ∼ 22 kcal mol(-1)). Furthermore, the hydrophobic probe 1,8-ANS shows that Tb(3+), like Ca(2+), triggers the exposure of a hydrophobic surface on DREAM, which modulates ligand binding. Analogous to Ca(2+) binding, Tb(3+) binding also induces the dimerization of DREAM. Secondary structural analyses using far-UV circular dichroism and trapped ion mobility spectrometry-mass spectrometry reveal that replacement of Ca(2+) with Tb(3+) preserves the folding state with minimal changes to the overall structure of DREAM. These findings pave the way for further investigation of the metal binding properties of DREAM using lanthanides as well as the study of DREAM-protein complexes by lanthanide resonance energy transfer or nuclear magnetic resonance.
Collapse
Affiliation(s)
- Walter G. Gonzalez
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Victoria Ramos
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Maurizio Diaz
- School for Advanced Studies Homestead, Homestead, Florida 33030, United States
| | - Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Juan Camilo Molano-Arevalo
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Science Institute, Florida International University, Miami, Florida 33199, United States
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Science Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
42
|
Kumar P, Soumya S, Prasad E. Enhanced Resonance Energy Transfer and White-Light Emission from Organic Fluorophores and Lanthanides in Dendron-based Hybrid Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8068-8075. [PMID: 26954712 DOI: 10.1021/acsami.6b00018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, we have investigated the use of poly(aryl ether) dendron-based gel as a medium for resonance energy transfer (RET) from organic donors (phenanthrene, naphthalene, and pyrene) to lanthanide [Eu(III) and Tb(III)] ions. The gel has been prepared through self-assembly of glucose-cored poly(aryl ether) dendrons in a dimethyl sulfoxide/water mixture (1:9 v/v). The efficiency of RET was calculated by metal-centered emission quantum yield measurements in the gel medium. While there was no resonance energy transfer observed between the donor-acceptor pairs in solution, efficient RET has been observed in the gel medium. The metal-centered quantum yield values were 11.9% for phenanthrene-Eu(III), 3.9% for naphthalene-Eu(III), and 3.6% for pyrene-Eu(III) systems. Partial RET in the system has been utilized to generate white-light emission from the gel by incorporating an additional lanthanide ion, Tb(III), along with the organic donors and Eu(III). The CIE (Commission Internationale d'Eclairage) coordinates obtained for gels formed by phenanthrene-Tb(III)-Eu(III) (PTE), naphthalene-Tb(III)-Eu(III) (NTE), and pyrene-Tb(III)-Eu(III) (PyTE) were (0.33, 0.32) for PTE, (0.35, 0.37) for NTE, and (0.35, 0.33) for PyTE. The correlated color temperatures (CCT) for white-light-emitting gels were calculated, and the values (5520 K for PTE, 4886 K for NTE, and 4722 K for PyTE) suggest that the system generates cool white light.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Chemistry, Indian Institute of Technology Madras , Chennai, Tamil Nadu 600 036, India
| | - Sivalingam Soumya
- Department of Chemistry, Indian Institute of Technology Madras , Chennai, Tamil Nadu 600 036, India
| | - Edamana Prasad
- Department of Chemistry, Indian Institute of Technology Madras , Chennai, Tamil Nadu 600 036, India
| |
Collapse
|
43
|
|
44
|
George TM, Krishna MS, Reddy MLP. A lysosome targetable luminescent bioprobe based on a europium β-diketonate complex for cellular imaging applications. Dalton Trans 2016; 45:18719-18729. [DOI: 10.1039/c6dt03833f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A unique bright luminescent europium coordination compound with excellent biocompatibility has been developed that serves as a selective bioprobe for particular organelles within the cells.
Collapse
Affiliation(s)
- T. M. George
- AcSIR-Academy of Scientific & Innovative Research
- Thiruvananthapuram
- India
- Materials Science and Technology Division
- National Institute for Interdisciplinary Science and Technology (NIIST)
| | - Mahesh S. Krishna
- Cardiovascular Diseases and Diabetes Biology Lab
- Rajiv Gandhi Centre for Biotechnology
- Thiruvananthapuram
- India
| | - M. L. P. Reddy
- AcSIR-Academy of Scientific & Innovative Research
- Thiruvananthapuram
- India
- Materials Science and Technology Division
- National Institute for Interdisciplinary Science and Technology (NIIST)
| |
Collapse
|
45
|
Starck M, Pal R, Parker D. Structural Control of Cell Permeability with Highly Emissive Europium(III) Complexes Permits Different Microscopy Applications. Chemistry 2015; 22:570-80. [DOI: 10.1002/chem.201504103] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Indexed: 12/13/2022]
|
46
|
|
47
|
Malviya A, Jena HS, Mondal AK, Konar S. Europium‐Based Dinuclear Triple‐Stranded Helicate vs. Tetranuclear Quadruple‐Stranded Helicate: Effect of Stoichiometric Ratio on the Supramolecular Self‐Assembly. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Amita Malviya
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Indore by‐pass road, Bhauri, Bhopal 462066, MP, India, http://skonarhomepage.wix.com/iiserb
| | - Himanshu Sekhar Jena
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Indore by‐pass road, Bhauri, Bhopal 462066, MP, India, http://skonarhomepage.wix.com/iiserb
| | - Amit Kumar Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Indore by‐pass road, Bhauri, Bhopal 462066, MP, India, http://skonarhomepage.wix.com/iiserb
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Indore by‐pass road, Bhauri, Bhopal 462066, MP, India, http://skonarhomepage.wix.com/iiserb
| |
Collapse
|
48
|
Routledge JD, Jones MW, Faulkner S, Tropiano M. Kinetically Stable Lanthanide Complexes Displaying Exceptionally High Quantum Yields upon Long-Wavelength Excitation: Synthesis, Photophysical Properties, and Solution Speciation. Inorg Chem 2015; 54:3337-45. [PMID: 25751278 DOI: 10.1021/ic503049m] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We demonstrate how highly emissive, kinetically stable complexes can be prepared using the macrocyclic scaffold of DO3A bearing coordinating aryl ketones as highly effective sensitizing chromophores. In the europium complexes, high quantum yields (up to 18% in water) can be combined with long-wavelength excitation (370 nm). The behavior in solution upon variation of pH, studied by means of UV-vis absorption, emission, and NMR spectroscopies, reveals that the nature of the chromophore can give rise to pH-dependent behavior as a consequence of deprotonation adjacent to the carbonyl group. Knowledge of the molecular speciation in solution is therefore critical when assessing the luminescence properties of such complexes.
Collapse
Affiliation(s)
- Jack D Routledge
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael W Jones
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Stephen Faulkner
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Manuel Tropiano
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
49
|
Das K, Nandi S, Mondal S, Askun T, Cantürk Z, Celikboyun P, Massera C, Garribba E, Datta A, Sinha C, Akitsu T. Triply phenoxo bridged Eu(iii) and Sm(iii) complexes with 2,6-diformyl-4-methylphenol-di(benzoylhydrazone): structure, spectra and biological study in human cell lines. NEW J CHEM 2015. [DOI: 10.1039/c4nj01464b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two dinuclear lanthanide(iii) complexes, [M2(HL)3] (M = Sm(iii) (1), Eu(iii) (2); H3L, 2,6-diformyl-4-methylphenol-di(benzoylhydrazone)) were generated with good yield and characterised systematically.
Collapse
|
50
|
Abstract
This review presents an accessible discussion of the application of trivalent lanthanide ions in both optical and magnetic resonance imaging.
Collapse
|