1
|
Nazli A, Malanga M, Sohajda T, Béni S. Cationic Cyclodextrin-Based Carriers for Drug and Nucleic Acid Delivery. Pharmaceutics 2025; 17:81. [PMID: 39861729 PMCID: PMC11768558 DOI: 10.3390/pharmaceutics17010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Cyclodextrins can serve as carriers for various payloads, utilizing their capacity to form unique host-guest inclusion complexes within their cavity and their versatile surface functionalization. Recently, cationic cyclodextrins have gained considerable attention, as they can improve drug permeability across negatively charged cell membranes and efficiently condense negatively charged nucleic acid due to electrostatic interactions. This review focuses on state-of-the-art and recent advances in the construction of cationic cyclodextrin-based delivery systems. First, we identified different cationic moieties that are commonly employed in the design of cyclodextrins with enhanced complexation ability. Subsequently, a wide range of cationic cyclodextrin-based drug delivery systems were analyzed with emphasis on chemistry, drug release profiles, and therapeutic outcomes. The evaluation of the delivery platforms was also based on the four major types of drugs, such as anticancer, anti-inflammatory, antibacterial, and antidiabetic agents. The delivery systems for nucleic acids were also summarized while focusing on their condensation ability, transfection efficiency, and biocompatibility in comparison to commercially available vectors such as PEI 25 kDa and lipofectamine 2000. Furthermore, we highlighted the potential of cationic cyclodextrins in constructing multimodal delivery systems for the simultaneous encapsulation of both drugs and nucleic acids. Finally, the challenges and limitations associated with cationic cyclodextrin setups were discussed.
Collapse
Affiliation(s)
- Adila Nazli
- Department of Pharmacognosy, Semmelweis University, 1085 Budapest, Hungary;
| | - Milo Malanga
- CarboHyde Zrt., Berlini u. 47-49, 1045 Budapest, Hungary; (M.M.); (T.S.)
| | - Tamás Sohajda
- CarboHyde Zrt., Berlini u. 47-49, 1045 Budapest, Hungary; (M.M.); (T.S.)
| | - Szabolcs Béni
- Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
2
|
Rivero-Barbarroja G, López-Fernández J, Juárez-Gonzálvez I, Fernández-Clavero C, Di Giorgio C, Vélaz I, Garrido MJ, Benito JM, Ortiz Mellet C, Mendicuti F, Tros de Ilarduya C, García Fernández JM. β-Cyclodextrin-based geometrically frustrated amphiphiles as one-component, cell-specific and organ-specific nucleic acid delivery systems. Carbohydr Polym 2025; 347:122776. [PMID: 39487000 DOI: 10.1016/j.carbpol.2024.122776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 11/04/2024]
Abstract
We introduce an innovative β-cyclodextrin (βCD)-prototype for delivering nucleic acids: "geometrically frustrated amphiphiles (GFAs)." GFAs are designed with cationic centers evenly distributed across the primary O6 and secondary O2 positions of the βCD scaffold, while hydrophobic tails are anchored at the seven O3 positions. Such distribution of functional elements differs from Janus-type architectures and enlarges the capacity for accessing strictly monodisperse variants. Changes at the molecular level can then be correlated with preferred self-assembly and plasmid DNA (pDNA) co-assembly behaviors. Specifically, GFAs undergo pH-dependent transition between bilayered to monolayered vesicles or individual molecules. GFA-pDNA nanocomplexes exhibit topological and internal order characteristics that are also a function of the GFA molecular architecture. Notably, adjusting the pKa of the cationic heads and the hydrophilic-hydrophobic balance, pupa-like arrangements implying axial alignments of GFA units flanked by quasi-parallel pDNA segments are preferred. In vitro cell transfection studies revealed remarkable differences in relative performances, which corresponded to distinct organ targeting outcomes in vivo. This allowed for preferential delivery to the liver and lung, kidney or spleen. The results collectively highlight cyclodextrin-based GFAs as a promising class of molecular vectors capable of finely tuning cell and organ transfection selectivity.
Collapse
Affiliation(s)
| | - José López-Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Inmaculada Juárez-Gonzálvez
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - Carlos Fernández-Clavero
- Departamento de Química Analítica, Química Física e Ingeniería Química and Instituto de Investigación Química "Andrés del Rio", Universidad de Alcalá, Spain
| | | | - Itziar Vélaz
- Department of Chemistry, School of Sciences, University of Navarra, 31080 Pamplona, Spain
| | - María J Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Sevilla, Spain.
| | - Francisco Mendicuti
- Departamento de Química Analítica, Química Física e Ingeniería Química and Instituto de Investigación Química "Andrés del Rio", Universidad de Alcalá, Spain.
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain.
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain.
| |
Collapse
|
3
|
Bahavarnia F, Hasanzadeh M, Bahavarnia P, Shadjou N. Advancements in application of chitosan and cyclodextrins in biomedicine and pharmaceutics: recent progress and future trends. RSC Adv 2024; 14:13384-13412. [PMID: 38660530 PMCID: PMC11041621 DOI: 10.1039/d4ra01370k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
The global community is faced with numerous health concerns such as cancer, cardiovascular and neurological diseases, diabetes, joint pain, osteoporosis, among others. With the advancement of research in the fields of materials chemistry and medicine, pharmaceutical technology and biomedical analysis have entered a new stage of development. The utilization of natural oligosaccharides and polysaccharides in pharmaceutical/biomedical studies has gained significant attention. Over the past decade, several studies have shown that chitosan and cyclodextrin have promising biomedical implications in background analysis, ongoing development, and critical applications in biomedical and pharmaceutical research fields. This review introduces different types of saccharides/natural biopolymers such as chitosan and cyclodextrin and discusses their wide-ranging applications in the biomedical/pharmaceutical research area. Recent research advances in pharmaceutics and drug delivery based on cyclodextrin, and their response to smart stimuli, as well as the biological functions of cyclodextrin and chitosan, such as the immunomodulatory effects, antioxidant, and antibacterial properties, have also been discussed, along with their applications in tissue engineering, wound dressing, and drug delivery systems. Finally, the innovative applications of chitosan and cyclodextrin in the pharmaceutical/biomedicine were reviewed, and current challenges, research/technological gaps, and future development opportunities were surveyed.
Collapse
Affiliation(s)
- Farnaz Bahavarnia
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Parinaz Bahavarnia
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Nasrin Shadjou
- Department of Nanotechnology, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
4
|
Ortega-Caballero F, Santana-Armas ML, Tros de Ilarduya C, Di Giorgio C, Tripier R, Le Bris N, Ollier C, Ortiz Mellet C, García Fernández JM, Jiménez Blanco JL, Méndez-Ardoy A. Trehalose-polyamine/DNA nanocomplexes: impact of vector architecture on cell and organ transfection selectivity. J Mater Chem B 2024; 12:3445-3452. [PMID: 38502035 DOI: 10.1039/d3tb02889e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A novel family of precision-engineered gene vectors with well-defined structures built on trehalose and trehalose-based macrocycles (cyclotrehalans) comprising linear or cyclic polyamine heads have been synthesized through procedures that exploit click chemistry reactions. The strategy was conceived to enable systematic structural variations and, at the same time, ensuring that enantiomerically pure vectors are obtained. Notably, changes in the molecular architecture translated into topological differences at the nanoscale upon co-assembly with plasmid DNA, especially regarding the presence of regions with short- or long-range internal order as observed by TEM. In vitro and in vivo experiments further evidenced a significant impact on cell and organ transfection selectivity. Altogether, the results highlight the potential of trehalose-polyamine/pDNA nanocomplex monoformulations to achieve targeting transfection without the need for any additional cell- or organ-sorting component.
Collapse
Affiliation(s)
- Fernando Ortega-Caballero
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/Profesor García González 1, Sevilla 41012, Spain. @us.es
- Department of Organic Chemistry, Higher Polytechnic School, University of Seville, c/Virgen de África 7, Sevilla 41011, Spain
| | - María L Santana-Armas
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona 31080, Spain
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona 31080, Spain
| | - Christophe Di Giorgio
- Institut de Chimie Nice, UMR 7272, Université Côte d'Azur, 28 Avenue de Valrose, Nice 06108, France
| | - Raphäel Tripier
- Université de Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, Brest 29238, France
| | - Nathalie Le Bris
- Université de Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, Brest 29238, France
| | - Cedric Ollier
- Université de Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor le Gorgeu, Brest 29238, France
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/Profesor García González 1, Sevilla 41012, Spain. @us.es
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC -, Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - José L Jiménez Blanco
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/Profesor García González 1, Sevilla 41012, Spain. @us.es
| | - Alejandro Méndez-Ardoy
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/Profesor García González 1, Sevilla 41012, Spain. @us.es
- Instituto de Investigaciones Químicas (IIQ), CSIC -, Universidad de Sevilla, Avda. Américo Vespucio 49, Sevilla 41092, Spain
| |
Collapse
|
5
|
De Gaetano F, Scala A, Celesti C, Lambertsen Larsen K, Genovese F, Bongiorno C, Leggio L, Iraci N, Iraci N, Mazzaglia A, Ventura CA. Amphiphilic Cyclodextrin Nanoparticles as Delivery System for Idebenone: A Preformulation Study. Molecules 2023; 28:molecules28073023. [PMID: 37049785 PMCID: PMC10096402 DOI: 10.3390/molecules28073023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Idebenone (IDE), a synthetic short-chain analogue of coenzyme Q10, is a potent antioxidant able to prevent lipid peroxidation and stimulate nerve growth factor. Due to these properties, IDE could potentially be active towards cerebral disorders, but its poor water solubility limits its clinical application. Octanoyl-β-cyclodextrin is an amphiphilic cyclodextrin (ACyD8) bearing, on average, ten octanoyl substituents able to self-assemble in aqueous solutions, forming various typologies of supramolecular nanoassemblies. Here, we developed nanoparticles based on ACyD8 (ACyD8-NPs) for the potential intranasal administration of IDE to treat neurological disorders, such as Alzheimer’s Disease. Nanoparticles were prepared using the nanoprecipitation method and were characterized for their size, zeta potential and morphology. STEM images showed spherical particles, with smooth surfaces and sizes of about 100 nm, suitable for the proposed therapeutical aim. The ACyD8-NPs effectively loaded IDE, showing a high encapsulation efficiency and drug loading percentage. To evaluate the host/guest interaction, UV-vis titration, mono- and two-dimensional NMR analyses, and molecular modeling studies were performed. IDE showed a high affinity for the ACyD8 cavity, forming a 1:1 inclusion complex with a high association constant. A biphasic and sustained release of IDE was observed from the ACyD8-NPs, and, after a burst effect of about 40%, the release was prolonged over 10 days. In vitro studies confirmed the lack of toxicity of the IDE/ACyD8-NPs on neuronal SH-SY5Y cells, and they demonstrated their antioxidant effect upon H2O2 exposure, as a general source of ROS.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Kim Lambertsen Larsen
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Fabio Genovese
- Technical, Economic and Technological Institute “Girolamo Caruso”, Via John Fitzgerald Kennedy 2, 91011 Alcamo, Italy
| | - Corrado Bongiorno
- National Council of Research, Institute of Microelectronics and Microsystems (CNR-IMM), Strada VIII n. 5-Zona Industriale, 95121 Catania, Italy
| | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (N.I.); (A.M.); (C.A.V.)
| | - Antonino Mazzaglia
- National Council of Research, Institute for the Study of Nanostructured Materials (CNR-ISMN), URT of Messina c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (N.I.); (A.M.); (C.A.V.)
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (N.I.); (A.M.); (C.A.V.)
| |
Collapse
|
6
|
Carbajo‐Gordillo AI, González‐Cuesta M, Jiménez Blanco JL, Benito JM, Santana‐Armas ML, Carmona T, Di Giorgio C, Przybylski C, Ortiz Mellet C, Tros de Ilarduya C, Mendicuti F, García Fernández JM. Trifaceted Mickey Mouse Amphiphiles for Programmable Self-Assembly, DNA Complexation and Organ-Selective Gene Delivery. Chemistry 2021; 27:9429-9438. [PMID: 33882160 PMCID: PMC8361672 DOI: 10.1002/chem.202100832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Indexed: 12/15/2022]
Abstract
Instilling segregated cationic and lipophilic domains with an angular disposition in a trehalose-based trifaceted macrocyclic scaffold allows engineering patchy molecular nanoparticles leveraging directional interactions that emulate those controlling self-assembling processes in viral capsids. The resulting trilobular amphiphilic derivatives, featuring a Mickey Mouse architecture, can electrostatically interact with plasmid DNA (pDNA) and further engage in hydrophobic contacts to promote condensation into transfectious nanocomplexes. Notably, the topology and internal structure of the cyclooligosaccharide/pDNA co-assemblies can be molded by fine-tuning the valency and characteristics of the cationic and lipophilic patches, which strongly impacts the transfection efficacy in vitro and in vivo. Outstanding organ selectivities can then be programmed with no need of incorporating a biorecognizable motif in the formulation. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes by making cyclooligosaccharide patchiness the focus.
Collapse
Affiliation(s)
| | - Manuel González‐Cuesta
- Department of Organic ChemistryFaculty of ChemistryUniversity of SevillaC/ Prof García González 141012SevillaSpain
| | - José L. Jiménez Blanco
- Department of Organic ChemistryFaculty of ChemistryUniversity of SevillaC/ Prof García González 141012SevillaSpain
| | - Juan M. Benito
- Institute for Chemical ResearchIIQCSIC-Univ. SevillaC/ Américo Vespucio 4941092SevillaSpain
| | - María L. Santana‐Armas
- Department of Pharmaceutical Technology and ChemistrySchool of Pharmacy and NutritionUniversity of Navarra31080PamplonaSpain
| | - Thais Carmona
- Department of Analytical ChemistryPhysical Chemistry and Chemical EngineeringInstituto de Investigación Química “Andrés M. del Rio” (IQAR)University of AlcaláCampus Universitario Ctra. Madrid-Barcelona Km 33.60028871Alcalá de HenaresSpain
| | - Christophe Di Giorgio
- Institut de Chimie NiceUMR 7272Université Côte d'Azur28, Avenue de Valrose06108NiceFrance
| | - Cédric Przybylski
- CNRSInstitut Parisien de Chimie MoléculaireIPCMSorbonne UniversitéParisFrance
| | - Carmen Ortiz Mellet
- Department of Organic ChemistryFaculty of ChemistryUniversity of SevillaC/ Prof García González 141012SevillaSpain
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Technology and ChemistrySchool of Pharmacy and NutritionUniversity of Navarra31080PamplonaSpain
| | - Francisco Mendicuti
- Department of Analytical ChemistryPhysical Chemistry and Chemical EngineeringInstituto de Investigación Química “Andrés M. del Rio” (IQAR)University of AlcaláCampus Universitario Ctra. Madrid-Barcelona Km 33.60028871Alcalá de HenaresSpain
| | | |
Collapse
|
7
|
Shchegravina ES, Sachkova AA, Usova SD, Nyuchev AV, Gracheva YA, Fedorov AY. Carbohydrate Systems in Targeted Drug Delivery: Expectation and Reality. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Ercan A, Çelebier M, Oncul S, Varan G, Kocak E, Benito JM, Bilensoy E. Polycationic cyclodextrin nanoparticles induce apoptosis and affect antitumoral activity in HepG2 cell line: An evaluation at the molecular level. Int J Pharm 2021; 598:120379. [PMID: 33592288 DOI: 10.1016/j.ijpharm.2021.120379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly metastatic primary liver cancer generating molecular alterations that end up escaping the apoptotic machinery and conferring multidrug resistance. Targeted medicines with increased and selective cytotoxicity and minimal drug resistance are essential for the treatment of HCC. In this study, a self-assembled polycationic (PC) amphiphilic β-cyclodextrin (βCDC6) nanoparticle formulation was characterized and its efficacy over HCC cell line HepG2 was evaluated in terms of cytotoxicity, apoptotic potential, chemosensitivity and mitochondrial balance utilizing biochemical, gene expression and proteomic approaches without encapsulating an anti-neoplastic agent. Blank PC βCDC6 exerted an anti-proliferative effect on 3D multicellular HepG2 spheroid tumors. These nanoparticles were able to trigger apoptosis proved by caspase 3/7 activity, gene expression and flow cytometry studies. The subjection of PC restored the chemosensitivity of HepG2 cells by suppressing the function of p-glycoprotein. The proteomic studies with Q-TOF LC/MS revealed 73 proteins that are aberrantly encoded after cells were treated with the blank PC. Metabolomic analysis further confirmed the shift in certain biological pathways. Thus, we confirmed that the hepatocellular carcinoma-targeting βCDC6 PC nanoparticles induce apoptosis, lower the rate of cell proliferation, hinder multidrug resistance and they are convenient carriers for eventual therapeutic administrations in HCC patients.
Collapse
Affiliation(s)
- Ayse Ercan
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara Turkey
| | - Mustafa Çelebier
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara Turkey
| | - Selin Oncul
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara Turkey
| | - Gamze Varan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara Turkey
| | - Engin Kocak
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100 Ankara Turkey
| | - Juan M Benito
- Institute for Chemical Research, CSIC-University of Sevilla, Sevilla, Spain
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara Turkey.
| |
Collapse
|
9
|
Liu J, Ding X, Fu Y, Xiang C, Yuan Y, Zhang Y, Yu P. Cyclodextrins based delivery systems for macro biomolecules. Eur J Med Chem 2020; 212:113105. [PMID: 33385835 DOI: 10.1016/j.ejmech.2020.113105] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Macro biomolecules are of vital importance in regulating the biofunctions in organisms, in which proteins (including peptides when mentioned below) and nucleic acids (NAs) are the most important. Therefore, these proteins and NAs can be applied as "drugs" to regulate the biofunctions from abnormal to normal. Either for proteins and NAs, the most challenging thing is to avoid the biodegradation or physicochemical degradation before they reach the targeted location, and then functions as complete functional structures. Hence, appropriate delivery systems are very important which can protect them from these degradations. Cyclodextrins (CDs) based delivery systems achieved mega successes due to their outstanding pharmaceutical properties and there have been several reviews on CDs based small molecule drug delivery systems recently. But for biomolecules, which are getting more and more important for modern therapies, however, there are very few reviews to systematically summarize and analyze the CDs-based macro biomolecules delivery systems, especially for proteins. In this review, there were some of the notable examples were summarized for the macro biomolecules (proteins and NAs) delivery based on CDs. For proteins, this review included insulin, lysozyme, bovine serum albumin (BSA), green fluorescent protein (GFP) and IgG's, etc. deliveries in slow release, stimulating responsive release or targeting release manners. For NAs, this review summarized cationic CD-polymers and CD-cluster monomers as NAs carriers, notably, including the multicomponents targeting CD-based carriers and the virus-like RNA assembly method siRNA carriers.
Collapse
Affiliation(s)
- Jiang Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Xin Ding
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yupeng Fu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Cen Xiang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yuan Yuan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yongmin Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China; Sorbonne Université, CNRS, IPCM, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
10
|
Neva T, Carbajo-Gordillo AI, Benito JM, Lana H, Marcelo G, Ortiz Mellet C, Tros de Ilarduya C, Mendicuti F, García Fernández JM. Tuning the Topological Landscape of DNA-Cyclodextrin Nanocomplexes by Molecular Design. Chemistry 2020; 26:15259-15269. [PMID: 32710799 DOI: 10.1002/chem.202002951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 12/25/2022]
Abstract
Original molecular vectors that ensure broad flexibility to tune the shape and surface properties of plasmid DNA (pDNA) condensates are reported herein. The prototypic design involves a cyclodextrin (CD) platform bearing a polycationic cluster at the primary face and a doubly linked aromatic module bridging two consecutive monosaccharide units at the secondary face that behaves as a topology-encoding element. Subtle differences at the molecular level then translate into disparate morphologies at the nanoscale, including rods, worms, toroids, globules, ellipsoids, and spheroids. In vitro evaluation of the transfection capabilities revealed marked selectivity differences as a function of nanocomplex morphology. Remarkably high transfection efficiencies were associated with ellipsoidal or spherical shapes with a lamellar internal arrangement of pDNA chains and CD bilayers. Computational studies support that the stability of such supramolecular edifices is directly related to the tendency of the molecular vector to form noncovalent dimers upon DNA templating. Because the stability of the dimers depends on the protonation state of the polycationic clusters, the coaggregates display pH responsiveness, which facilitates endosomal escape and timely DNA release, a key step in successful transfection. The results provide a versatile strategy for the construction of fully synthetic and perfectly monodisperse nonviral gene delivery systems uniquely suited for optimization schemes.
Collapse
Affiliation(s)
- Tania Neva
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Ana I Carbajo-Gordillo
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Juan M Benito
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| | - Hugo Lana
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080, Pamplona, Spain
| | - Gema Marcelo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Instituto de Investigación Química, "Andrés M. del Rio" (IQAR), University of Alcalá, Campus Universitario Ctra. Madrid-Barcelona, Km 33.600, 28871, Alcalá de Henares, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/ Prof García González 1, 41012, Sevilla, Spain
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080, Pamplona, Spain
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Instituto de Investigación Química, "Andrés M. del Rio" (IQAR), University of Alcalá, Campus Universitario Ctra. Madrid-Barcelona, Km 33.600, 28871, Alcalá de Henares, Spain
| | - José M García Fernández
- Institute for Chemical Research, IIQ, CSIC-Univ. Sevilla, C/ Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
11
|
Carbajo-Gordillo AI, Jiménez Blanco JL, Benito JM, Lana H, Marcelo G, Di Giorgio C, Przybylski C, Hinou H, Ceña V, Ortiz Mellet C, Mendicuti F, Tros de Ilarduya C, García Fernández JM. Click Synthesis of Size- and Shape-Tunable Star Polymers with Functional Macrocyclic Cores for Synergistic DNA Complexation and Delivery. Biomacromolecules 2020; 21:5173-5188. [PMID: 33084317 DOI: 10.1021/acs.biomac.0c01283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The architectural perfection and multivalency of dendrimers have made them useful for biodelivery via peripheral functionalization and the adjustment of dendrimer generations. Modulation of the core-forming and internal matrix-forming structures offers virtually unlimited opportunities for further optimization, but only in a few cases this has been made compatible with strict diastereomeric purity over molecularly diverse series, low toxicity, and limited synthetic effort. Fully regular star polymers built on biocompatible macrocyclic platforms, such as hyperbranched cyclodextrins, offer advantages in terms of facile synthesis and flexible compositions, but core elaboration in terms of shape and function becomes problematic. Here we report the synthesis and characterization of star polymers consisting of functional trehalose-based macrocyclic cores (cyclotrehalans, CTs) and aminothiourea dendron arms, which can be efficiently synthesized from sequential click reactions of orthogonal monomers, display no cytotoxicity, and efficiently complex and deliver plasmid DNA in vitro and in vivo. When compared with some commercial cationic dendrimers or polymers, the new CT-scaffolded star polymers show better transfection efficiencies in several cell lines and structure-dependent cell selectivity patterns. Notably, the CT core could be predefined to exert Zn(II) complexing or molecular inclusion capabilities, which has been exploited to synergistically boost cell transfection by orders of magnitude and modulate the organ tropism in vivo.
Collapse
Affiliation(s)
- Ana I Carbajo-Gordillo
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - José L Jiménez Blanco
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/Profesor García González 1, 41012 Sevilla, Spain
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Hugo Lana
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - Gema Marcelo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Christophe Di Giorgio
- Institut de Chimie Nice, UMR 7272, Université Côte d'Azur, 28 Avenue de Valrose, F-06108 Nice, France
| | - Cédric Przybylski
- CNRS, Institut Parisien de Chimie Moléculaire, IPCM, Sorbonne Université, Paris, France
| | - Hiroshi Hinou
- Graduate School and Faculty of Advanced Life Science, Laboratory of Advanced Chemical Biology, Hokkaido University, N21 W11, Sapporo 001-0021, Japan
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, c/Profesor García González 1, 41012 Sevilla, Spain
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
12
|
Rodríguez-Lavado J, Lorente A, Flores E, Ochoa A, Godoy F, Jaque P, Saitz C. Elucidating sensing mechanisms of a pyrene excimer-based calix[4]arene for ratiometric detection of Hg(ii) and Ag(i) and chemosensor behaviour as INHIBITION or IMPLICATION logic gates. RSC Adv 2020; 10:21963-21973. [PMID: 35516608 PMCID: PMC9054513 DOI: 10.1039/d0ra04092d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022] Open
Abstract
This article reports the synthesis and characterisation of two lower rim calix[4]arene derivatives with thiourea as spacer and pyrene or methylene-pyrene as fluorophore. Both derivatives exhibit a fluorimetric response towards Hg2+, Ag+ and Cu2+. Only methylene-pyrenyl derivative 2 allows for selective detection of Hg2+ and Ag+ by enhancement or decrease of excimer emission, respectively. The limits of detection of 2 are 8.11 nM (Hg2+) and 2.09 nM (Ag+). DFT and TD-DFT computational studies were carried out and used to identify possible binding modes that explain the observed response during fluorescence titrations. Calculations revealed the presence of different binding sites depending on the conformation of 2, which suggest a reasonable explanation for non-linear changes in fluorescence depending on the physical nature of the interaction between metal centre and conformer. INHIBITION and IMPLICATION logic gates have also been generated monitoring signal outputs at pyrene monomer (395 nm) and excimer (472 nm) emission, respectively. Thus 2 is a potential primary sensor towards Ag+ and Hg2+ able to configure two different logic gate operations.
Collapse
Affiliation(s)
- Julio Rodríguez-Lavado
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile Olivos 1007 Independencia Santiago Chile
| | - Alejandro Lorente
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile Olivos 1007 Independencia Santiago Chile
| | - Erick Flores
- Departamento de Química de Los Materiales, Universidad de Santiago de Chile Libertador Bernardo ÓHiggins 3363 Santiago RM Chile
| | - Andrés Ochoa
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile Olivos 1007 Independencia Santiago Chile
| | - Fernando Godoy
- Departamento de Química de Los Materiales, Universidad de Santiago de Chile Libertador Bernardo ÓHiggins 3363 Santiago RM Chile
| | - Pablo Jaque
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile Olivos 1007 Independencia Santiago Chile
| | - Claudio Saitz
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile Olivos 1007 Independencia Santiago Chile
| |
Collapse
|
13
|
Cao M, Gao Y, Qiu N, Shen Y, Shen P. Folic acid directly modified low molecular weight of polyethyleneimine for targeted pDNA delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Karimian R, Aghajani M. Cyclodextrins and their Derivatives as Carrier Molecules in Drug and Gene Delivery Systems. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190627115422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides containing
six (α-CD), seven (β-CD), eight (γ-CD) and more glucopyranose units linked with α-(1,4)
bonds, having a terminal hydrophilic part and central lipophilic cavity. α-, β- and γ-CDs
are widely used in many industrial products, technologies and analytical methods owing to
their unique, versatile and tunable characteristics. In the pharmaceutical industry, CDs are
used as complexing agents to enhance aqueous solubility, physico-chemical stability and
bio-availability of administered drugs. Herein, special attention is given to the use of α-, β-
and γ-CDs and their derivatives in different areas of drug and gene delivery systems in the
past few decades through various routes of administration with a major emphasis on the
more recent developments.
Collapse
Affiliation(s)
- Ramin Karimian
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Milad Aghajani
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Star-shaped poly(2-aminoethyl methacrylate)s as non-viral gene carriers: Exploring structure-function relationship. Colloids Surf B Biointerfaces 2019; 181:721-727. [PMID: 31228855 DOI: 10.1016/j.colsurfb.2019.06.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/02/2019] [Accepted: 06/13/2019] [Indexed: 11/22/2022]
Abstract
Gene therapy shows much promise in treating many inheritable and acquired diseases, but challenges remain in the design of gene vectors with low cytotoxicity and high transfection efficiency. Elucidating the structure-function relationship of non-viral polymer-based gene carriers is crucial for improving the design and performance of safe and effective gene therapy approaches. The cationic poly(2-aminoethyl methacrylate) (PAEM) containing primary amino side groups is an attractive carrier for gene delivery. This study focuses on four PAEM-based polycations with well-defined molecular weight and chain architecture. The polymers include three cyclodextrin (CD)-cored star-shaped PAEM polycations (s-PAEM), synthesized by atom transfer radical polymerization (ATRP), and a linear PAEM polycation (l-PAEM), synthesized via activators regenerated by electron transfer (ARGET) ATRP. All four polycations could condense plasmid DNA (pDNA) into spherical polyplexes with small sizes (<200 nm). The polyplexes showed excellent stability during storage and were able to resist electrostatic destabilization. The cytotoxicity of these polycations was depended on dose and target cell type and was influenced by molecular weight and chain architecture, yet the polyplexes showed little cytotoxicity regardless of the type of polymer used. The transfection efficiency of PAEM polycations was highly dependent upon molecular weight, molecular architecture (star versus linear) and target cell type. In most cases, polyplexes formed by high-molecular-weight s-PAEM performed the best. Moreover, at a specific N/P ratio, the transfection efficiency mediated by s-PAEM was higher in MCF-7 breast cancer cells than in COS-7 fibroblast-like cells, but such cell-type dependence was not obvious for l-PAEM. These findings indicate that the star-shaped PAEM polycations could be promising gene carriers for gene therapy applications.
Collapse
|
16
|
Mahmoodi Chalbatani G, Dana H, Gharagouzloo E, Grijalvo S, Eritja R, Logsdon CD, Memari F, Miri SR, Rad MR, Marmari V. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int J Nanomedicine 2019; 14:3111-3128. [PMID: 31118626 PMCID: PMC6504672 DOI: 10.2147/ijn.s200253] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/23/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer is one of the most complex diseases that has resulted in multiple genetic disorders and cellular abnormalities. Globally, cancer is the most common health concern disease that is affecting human beings. Great efforts have been made over the past decades in biology with the aim of searching novel and more efficient tools in therapy. Thus, small interfering RNAs (siRNAs) have been considered one of the most noteworthy developments which are able to regulate gene expression following a process known as RNA interference (RNAi). RNAi is a post-transcriptional mechanism that involves the inhibition of gene expression through promoting cleavage on a specific area of a target messenger RNA (mRNA). This technology has shown promising therapeutic results for a good number of diseases, especially in cancer. However, siRNA therapeutics have to face important drawbacks in therapy including stability and successful siRNA delivery in vivo. In this regard, the development of effective siRNA delivery systems has helped addressing these issues by opening novel therapeutic windows which have allowed to build up important advances in Nanomedicine. In this review, we discuss the progress of siRNA therapy as well as its medical application via nanoparticle-mediated delivery for cancer treatment.
Collapse
Affiliation(s)
| | - Hassan Dana
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Elahe Gharagouzloo
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona08034, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Madrid, Spain
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona08034, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Madrid, Spain
| | - Craig D Logsdon
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
- Department of GI Medical Oncology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Fereidoon Memari
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | | | - Vahid Marmari
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
17
|
Design of cyclodextrin-based systems for intervention execution. DELIVERY OF THERAPEUTICS FOR BIOGERONTOLOGICAL INTERVENTIONS 2019. [PMCID: PMC7150343 DOI: 10.1016/b978-0-12-816485-3.00005-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Technologies for nucleic acid delivery have displayed high practical potential in mediating genetic manipulation to modulate metabolic pathways to combat aging. In the previous chapter, we have delineated a series of techniques for designing and developing polymeric vectors as nonviral carriers. Based on what we have discussed, this chapter will introduce how the delivery performance and versatility of polymeric vectors can be further enhanced by using cyclodextrins (CDs). Over the years, CDs have shown promising application potential in different areas, ranging from controlled drug release to chiral separation of basic drugs. These applications are largely mediated by the ability of CDs to undergo host–guest inclusion complexation. Upon incorporation of CDs into the design of a polymeric vector, not only can the flexibility of the design be increased, but the development of a multifunctional carrier for genetic manipulation can also be facilitated.
Collapse
|
18
|
Revealing cooperative binding of polycationic cyclodextrins with DNA oligomers by capillary electrophoresis coupled to mass spectrometry. Anal Chim Acta 2018; 1002:70-81. [DOI: 10.1016/j.aca.2017.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 11/23/2022]
|
19
|
Gallego-Yerga L, Benito JM, Blanco-Fernández L, Martínez-Negro M, Vélaz I, Aicart E, Junquera E, Ortiz Mellet C, Tros de Ilarduya C, García Fernández JM. Plasmid-Templated Control of DNA-Cyclodextrin Nanoparticle Morphology through Molecular Vector Design for Effective Gene Delivery. Chemistry 2018; 24:3825-3835. [PMID: 29341305 DOI: 10.1002/chem.201705723] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Indexed: 12/14/2022]
Abstract
Engineering self-assembled superstructures through complexation of plasmid DNA (pDNA) and single-isomer nanometric size macromolecules (molecular nanoparticles) is a promising strategy for gene delivery. Notably, the functionality and overall architecture of the vector can be precisely molded at the atomic level by chemical tailoring, thereby enabling unprecedented opportunities for structure/self-assembling/pDNA delivery relationship studies. Beyond this notion, by judiciously preorganizing the functional elements in cyclodextrin (CD)-based molecular nanoparticles through covalent dimerization, here we demonstrate that the morphology of the resulting nanocomplexes (CDplexes) can be tuned, from spherical to ellipsoidal, rod-type, or worm-like nanoparticles, which makes it possible to gain understanding of their shape-dependent transfection properties. The experimental findings are in agreement with a shift from chelate to cross-linking interactions on going from primary-face- to secondary-face-linked CD dimers, the pDNA partner acting as an active payload and as a template. Most interestingly, the transfection efficiency in different cells was shown to be differently impacted by modifications of the CDplex morphology, which has led to the identification of an optimal prototype for tissue-selective DNA delivery to the spleen in vivo.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/ Prof. García González 1, 41012, Sevilla, Spain
| | - Juan M Benito
- Institute for Chemical Research (IIQ), CSIC, University of Sevilla, Av. Américo Vespucio 49, 41092, Sevilla, Spain
| | - Laura Blanco-Fernández
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, IdiSNA, Navarra Institute for Health Research, University of Navarra, 31080, Pamplona, Spain
| | - María Martínez-Negro
- Department of Physical Chemistry I, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Itziar Vélaz
- Department of Chemistry, Faculty of Sciences, University of Navarra, E-31080, Pamplona, Spain
| | - Emilio Aicart
- Department of Physical Chemistry I, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Elena Junquera
- Department of Physical Chemistry I, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, C/ Prof. García González 1, 41012, Sevilla, Spain
| | - Conchita Tros de Ilarduya
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, IdiSNA, Navarra Institute for Health Research, University of Navarra, 31080, Pamplona, Spain
| | - Jose M García Fernández
- Institute for Chemical Research (IIQ), CSIC, University of Sevilla, Av. Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
20
|
Ardeleanu R, Dascalu AI, Neamtu A, Peptanariu D, Uritu CM, Maier SS, Nicolescu A, Simionescu BC, Barboiu M, Pinteala M. Multivalent polyrotaxane vectors as adaptive cargo complexes for gene therapy. Polym Chem 2018. [DOI: 10.1039/c7py01256j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The philosophy to design and construct polyrotaxane carriers, as efficient gene delivery systems.
Collapse
Affiliation(s)
- Rodinel Ardeleanu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Andrei I. Dascalu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Andrei Neamtu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
- Regional Institute of Oncology (IRO)
| | - Dragos Peptanariu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Cristina M. Uritu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Stelian S. Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
- Department of Textile and Leather Chemical Engineering
| | - Alina Nicolescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Bogdan C. Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
- Department of Natural and Synthetic Polymers
| | - Mihail Barboiu
- Adaptive Supramolecular Nanosystems Group
- Institut
- Européen des Membranes
- ENSCM/UMII/UMR-CNRS 5635
- 34095 Montpellier, Cedex 5
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| |
Collapse
|
21
|
Jiménez Blanco JL, Benito JM, Ortiz Mellet C, García Fernández JM. Molecular nanoparticle-based gene delivery systems. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Mazzaglia A, Micali N, Villari V, Zagami R, Pennisi RM, Mellet CO, Fernández JMG, Sciortino MT, Scolaro LM. A novel potential nanophototherapeutic based on the assembly of an amphiphilic cationic β-cyclodextrin and an anionic porphyrin. J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s108842461750033x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The development of cyclodextrin nanoassemblies as useful carriers for photosensitizer drugs (PS) delivery in biological environment is a topic of increasing interest. In this paper, we present a spectroscopic investigation on a nanosystem based on an amphiphilic cationic β-cyclodextrin derivative (CD-N) and an anionic porphyrin (TPPS). Nanoassemblies were prepared by hydration of an organic film containing the two species. The system was characterized by complementary techniques such as UV-vis, stationary and time-resolved fluorescence, and Dynamic Light Scattering (DLS) at different TPPS/CD-N molar ratios. Time-resolved fluorescence data showed that, at all the investigated molar ratios, TPPS is present both as self-aggregated species and monomers forming supramolecular adducts with CD-N. Moreover, DLS measurements evidenced families of aggregates having hydrodynamic radii ranging between 50 and 350 nm and the size distribution profile depending on the TPPS/CD-N molar ratio. At the highest CD-N concentration, the hydrodynamic radii of the aggregates were nearly the same as those of neat CD-N in the absence of TPPS (50 nm). No aging phenomena were registered, pointing out the high stability of these nanoassemblies in aqueous solution for at least a month. Preliminary studies on the internalization in tumoral cells and subsequent irradiation for PDT application were carried out. The results support the feasibility of these nanoaggregates to promote PS internalization in HeLa cells, inducing cell death upon visible light irradiation.
Collapse
Affiliation(s)
- Antonino Mazzaglia
- CNR-ISMN Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell’Università di Messina, Viale, Ferdinando Stagno d’Alcontres 31, 98166, Messina, Italy
| | - Norberto Micali
- CNR-IPCF Istituto per i Processi Chimico-Fisici, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Valentina Villari
- CNR-IPCF Istituto per i Processi Chimico-Fisici, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina, Italy
| | - Roberto Zagami
- CNR-ISMN Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell’Università di Messina, Viale, Ferdinando Stagno d’Alcontres 31, 98166, Messina, Italy
| | - Rosa Maria Pennisi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 98166, Messina, Italy
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/ Profesor García González 1, 41012 Sevilla, Spain
| | - José Manuel Garcia Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC — Universidad de Sevilla, Avda. Américo Vespucio 49, E-41092 Sevilla, Spain
| | - Maria Teresa Sciortino
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 98166, Messina, Italy
| | - Luigi Monsù Scolaro
- CNR-ISMN Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali dell’Università di Messina, Viale, Ferdinando Stagno d’Alcontres 31, 98166, Messina, Italy
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d’Alcontres 98166, Messina, Italy
- CIRCMSB, Unità di Messina, Italy
| |
Collapse
|
23
|
Varan G, Benito JM, Mellet CO, Bilensoy E. Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1457-1468. [PMID: 28900599 PMCID: PMC5530618 DOI: 10.3762/bjnano.8.145] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/14/2017] [Indexed: 06/01/2023]
Abstract
Background: Paclitaxel is a potent anticancer drug that is effective against a wide spectrum of cancers. To overcome its bioavailability problems arising from very poor aqueous solubility and tendency to recrystallize upon dilution, paclitaxel is commercially formulated with co-solvents such as Cremophor EL® that are known to cause serious side effects during chemotherapy. Amphiphilic cyclodextrins are favored oligosaccharides as drug delivery systems for anticancer drugs, having the ability to spontaneously form nanoparticles without surfactant or co-solvents. In the past few years, polycationic, amphiphilic cyclodextrins were introduced as effective agents for gene delivery in the form of nanoplexes. In this study, the potential of polycationic, amphiphilic cyclodextrin nanoparticles were evaluated in comparison to non-ionic amphiphilic cyclodextrins and core-shell type cyclodextrin nanoparticles for paclitaxel delivery to breast tumors. Pre-formulation studies were used as a basis for selecting the suitable organic solvent and surfactant concentration for the novel polycationic cyclodextrin nanoparticles. The nanoparticles were then extensively characterized with particle size distribution, polydispersity index, zeta potential, drug loading capacity, in vitro release profiles and cytotoxicity studies. Results: Paclitaxel-loaded cyclodextrin nanoparticles were obtained in the diameter range of 80-125 nm (depending on the nature of the cyclodextrin derivative) where the smallest diameter nanoparticles were obtained with polycationic (PC) βCDC6. A strong positive charge also helped to increase the loading capacity of the nanoparticles with paclitaxel up to 60%. Interestingly, cyclodextrin nanoparticles were able to stabilize paclitaxel in aqueous solution for 30 days. All blank cyclodextrin nanoparticles were demonstrated to be non-cytotoxic against L929 mouse fibroblast cell line. In addition, paclitaxel-loaded nanoparticles have a significant anticancer effect against MCF-7 human breast cancer cell line as compared with a paclitaxel solution in DMSO. Conclusion: According to the results of this study, both amphiphilic cyclodextrin derivatives provide suitable nanometer-sized drug delivery systems for safe and efficient intravenous paclitaxel delivery for chemotherapy. In the light of these studies, it can be said that amphiphilic cyclodextrin nanoparticles of different surface charge can be considered as a promising alternative for self-assembled nanometer-sized drug carrier systems for safe and efficient chemotherapy.
Collapse
Affiliation(s)
- Gamze Varan
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, 06800, Turkey
| | - Juan M Benito
- Institute for Chemical Research, CSIC - University of Sevilla, Av. Américo Vespucio 49, Sevilla, 41092, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, University of Sevilla, C/ Prof García Gonzalez 1, Sevilla, 41012, Spain
| | - Erem Bilensoy
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, 06800, Turkey
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkey
| |
Collapse
|
24
|
Manzanares D, Araya-Durán I, Gallego-Yerga L, Játiva P, Márquez-Miranda V, Canan J, Jiménez Blanco JL, Mellet CO, González-Nilo FD, García Fernández JM, Ceña V. Molecular determinants for cyclo-oligosaccharide-based nanoparticle-mediated effective siRNA transfection. Nanomedicine (Lond) 2017. [PMID: 28621615 DOI: 10.2217/nnm-2017-0123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
AIM To study the structural requirements that a cyclooligosaccharide-based nanoparticle must fulfill to be an efficient siRNA transfection vector. MATERIALS & METHODS siRNA protection from degradation by RNAses, transfection efficiency and the thermodynamic parameters of the nanoparticle/siRNA interactions were studied on pairs of amphiphilic molecules using biochemical techniques and molecular dynamics. RESULTS The lower the siRNA solvent accessible surface area in the presence of the nanoparticle, higher the protection from RNAse-mediated degradation in the corresponding nanocomplex; a moderate nanoparticle/siRNA binding energy value further facilitates reversible complexation and binding to the target cellular mRNA. CONCLUSION The use, in advance, of these parameters will provide a useful indication of the potential of a molecular nanoparticle as siRNA transfecting vector.
Collapse
Affiliation(s)
- Darío Manzanares
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Ingrid Araya-Durán
- Universidad Andres Bello, Facultad de Ciencias Biológicas, Center for Bioinformatics & Integrative Biology (CBIB), Av. República 239, Santiago, 8370146, Chile
| | - Laura Gallego-Yerga
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Profesor García González 1, 41012-Sevilla Sevilla, Spain
| | - Pablo Játiva
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Valeria Márquez-Miranda
- Universidad Andres Bello, Facultad de Ciencias Biológicas, Center for Bioinformatics & Integrative Biology (CBIB), Av. República 239, Santiago, 8370146, Chile
| | - Jonathan Canan
- Universidad Andres Bello, Facultad de Ciencias Biológicas, Center for Bioinformatics & Integrative Biology (CBIB), Av. República 239, Santiago, 8370146, Chile
| | - José Luis Jiménez Blanco
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Profesor García González 1, 41012-Sevilla Sevilla, Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/Profesor García González 1, 41012-Sevilla Sevilla, Spain
| | - Fernando Danilo González-Nilo
- Universidad Andres Bello, Facultad de Ciencias Biológicas, Center for Bioinformatics & Integrative Biology (CBIB), Av. República 239, Santiago, 8370146, Chile.,Fundación Fraunhofer Chile Research, Las Condes, 7550296, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2360102, Chile
| | - José Manuel García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Vda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Minnaert AK, Dakwar GR, Benito JM, García Fernández JM, Ceelen W, De Smedt SC, Remaut K. High-Pressure Nebulization as Application Route for the Peritoneal Administration of siRNA Complexes. Macromol Biosci 2017; 17. [PMID: 28614632 DOI: 10.1002/mabi.201700024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/31/2017] [Indexed: 01/29/2023]
Abstract
Peritoneal carcinomatosis is a severe form of cancer in the abdomen, currently treated with cytoreductive surgery and intravenous chemotherapy. Recently, nebulization has been proposed as a less invasive strategy for the local delivery of chemotherapeutic drugs. Also, RNA interference has been considered as a potential therapeutic approach for treatment of cancer. In this study, Lipofectamine RNAiMAX/siRNA complexes and cyclodextrin/siRNA complexes are evaluated before and after nebulization. Nebulization of the siRNA complexes does not significantly lower transfection efficiency when compared to non-nebulized complexes. After incubation in ascites fluid, however, the cyclodextrin/siRNA complexes show a drastic decrease in transfection efficiency. For the Lipofectamine RNAiMAX/siRNA complexes, this decrease is less pronounced. It is concluded that nebulization is an interesting technique to distribute siRNA complexes into the peritoneal cavity, providing the complexes are stable in ascites fluid which might be present in the peritoneal cavity.
Collapse
Affiliation(s)
- An-Katrien Minnaert
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent Research Group on Nanomedicines, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - George R Dakwar
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent Research Group on Nanomedicines, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Juan M Benito
- Institute for Chemical Research, CSIC, University of Sevilla, Americo Vespucio 49, Isla de la Cartuja, E-41092, Sevilla, Spain
| | - José M García Fernández
- Institute for Chemical Research, CSIC, University of Sevilla, Americo Vespucio 49, Isla de la Cartuja, E-41092, Sevilla, Spain
| | - W Ceelen
- Department of Surgery, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.,Cancer Research Institute Ghent Webpage: http://www.crig.ugent.be/
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent Research Group on Nanomedicines, Ottergemsesteenweg 460, 9000, Ghent, Belgium.,Cancer Research Institute Ghent Webpage: http://www.crig.ugent.be/
| | - Katrien Remaut
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent Research Group on Nanomedicines, Ottergemsesteenweg 460, 9000, Ghent, Belgium.,Cancer Research Institute Ghent Webpage: http://www.crig.ugent.be/
| |
Collapse
|
26
|
Martínez-Negro M, Caracciolo G, Palchetti S, Pozzi D, Capriotti AL, Cavaliere C, Laganà A, Ortiz Mellet C, Benito JM, García Fernández JM, Aicart E, Junquera E. Biophysics and protein corona analysis of Janus cyclodextrin-DNA nanocomplexes. Efficient cellular transfection on cancer cells. Biochim Biophys Acta Gen Subj 2017; 1861:1737-1749. [PMID: 28315770 DOI: 10.1016/j.bbagen.2017.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/26/2017] [Accepted: 03/14/2017] [Indexed: 11/18/2022]
Abstract
The self-assembling processes underlining the capabilities of facially differentiated ("Janus") polycationic amphiphilic cyclodextrins (paCDs) as non-viral gene nanocarriers have been investigated by a pluridisciplinary approach. Three representative Janus paCDs bearing a common tetradecahexanoyl multitail domain at the secondary face and differing in the topology of the cluster of amino groups at the primary side were selected for this study. All of them compact pEGFP-C3 plasmid DNA and promote transfection in HeLa and MCF-7 cells, both in absence and in presence of human serum. The electrochemical and structural characteristics of the paCD-pDNA complexes (CDplexes) have been studied by using zeta potential, DLS, SAXS, and cryo-TEM. paCDs and pDNA, when assembled in CDplexes, render effective charges that are lower than the nominal ones. The CDplexes show a self-assembling pattern corresponding to multilamellar lyotropic liquid crystal phases, characterized by a lamellar stacking of bilayers of the CD-based vectors with anionic pDNA sandwiched among them. When exposed to human serum, either in the absence or in the presence of pDNA, the surface of the cationic CD-based vector becomes coated by a protein corona (PC) whose composition has been analyzed by nanoLC-MS/MS. Some of the CDplexes herein studied showed moderate-to-high transfection levels in HeLa and MCF-7 cancer cells combined with moderate-to-high cell viabilities, as determined by FACS and MTT reduction assays. The ensemble of data provides a detail picture of the paCD-pDNA-PC association processes and a rational base to exploit the protein corona for targeted gene delivery on future in vivo applications.
Collapse
Affiliation(s)
- M Martínez-Negro
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - G Caracciolo
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - S Palchetti
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - D Pozzi
- Department of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - A L Capriotti
- Department of Chemistry, "La Sapienza" University of Rome, Pzle Aldo Moro 5, 00185 Rome, Italy
| | - C Cavaliere
- Department of Chemistry, "La Sapienza" University of Rome, Pzle Aldo Moro 5, 00185 Rome, Italy
| | - A Laganà
- Department of Chemistry, "La Sapienza" University of Rome, Pzle Aldo Moro 5, 00185 Rome, Italy
| | - C Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, c/ Profesor García González 1, 41012 Sevilla, Spain
| | - J M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda., Américo Vespucio 49, 41092 Sevilla, Spain
| | - J M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda., Américo Vespucio 49, 41092 Sevilla, Spain
| | - E Aicart
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - E Junquera
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
27
|
Przybylski C, Benito JM, Bonnet V, Mellet CO, García Fernández JM. Toward a suitable structural analysis of gene delivery carrier based on polycationic carbohydrates by electron transfer dissociation tandem mass spectrometry. Anal Chim Acta 2016; 948:62-72. [PMID: 27871611 DOI: 10.1016/j.aca.2016.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/02/2016] [Accepted: 11/04/2016] [Indexed: 01/01/2023]
Abstract
Polycationic carbohydrates represent an attractive class of biomolecules for several applications and particularly as non viral gene delivery vectors. In this case, the establishment of structure-biological activity relationship requires sensitive and accurate characterization tools to both control and achieve fine structural deciphering. Electrospray-tandem mass spectrometry (ESI-MS/MS) appears as a suitable approach to address these questions. In the study herein, we have investigated the usefulness of electron transfer dissociation (ETD) to get structural data about five polycationic carbohydrates demonstrated as promising gene delivery agents. A particular attention was paid to determine the influence of charge states as well as both fluoranthene reaction time and supplementary activation (SA) on production of charge reduced species, fragmentation yield, varying from 2 to 62%, as well as to obtain the most higher both diversity and intensity of fragments, according to charge states and targeted compounds. ETD fragmentation appeared to be mainly directed toward pending group rather than carbohydrate cyclic scaffold leading to a partial sequencing for building blocks when amino groups are close to carbohydrate core, but allowing to complete structural deciphering of some of them, such as those including dithioureidocysteaminyl group which was not possible with CID only. Such findings clearly highlight the potential to help the rational choice of the suitable analytical conditions, according to the nature of the gene delivery molecules exhibiting polycationic features. Moreover, our ETD-MS/MS approach open the way to a fine sequencing/identification of grafted groups carried on various sets of oligo-/polysaccharides in various fields such as glycobiology or nanomaterials, even with unknown or questionable extraction, synthesis or modification steps.
Collapse
Affiliation(s)
- Cédric Przybylski
- Université d'Evry-Val-d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, CNRS UMR 8587, Bâtiment Maupertuis, Bld F. Mitterrand, F-91025 Evry, France.
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain
| | - Véronique Bonnet
- Université de Picardie Jules Verne, Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, CNRS UMR 7378, 80039 Amiens, France
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain
| |
Collapse
|
28
|
Varan G, Öncül S, Ercan A, Benito JM, Ortiz Mellet C, Bilensoy E. Cholesterol-Targeted Anticancer and Apoptotic Effects of Anionic and Polycationic Amphiphilic Cyclodextrin Nanoparticles. J Pharm Sci 2016; 105:3172-3182. [DOI: 10.1016/j.xphs.2016.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 06/07/2016] [Accepted: 06/24/2016] [Indexed: 01/11/2023]
|
29
|
Liu K, Jiang X, Hunziker P. Carbohydrate-based amphiphilic nano delivery systems for cancer therapy. NANOSCALE 2016; 8:16091-16156. [PMID: 27714108 DOI: 10.1039/c6nr04489a] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanoparticles (NPs) are novel drug delivery systems that have been attracting more and more attention in recent years, and have been used for the treatment of cancer, infection, inflammation and other diseases. Among the numerous classes of materials employed for constructing NPs, organic polymers are outstanding due to the flexibility of design and synthesis and the ease of modification and functionalization. In particular, NP based amphiphilic polymers make a great contribution to the delivery of poorly-water soluble drugs. For example, natural, biocompatible and biodegradable products like polysaccharides are widely used as building blocks for the preparation of such drug delivery vehicles. This review will detail carbohydrate based amphiphilic polymeric systems for cancer therapy. Specifically, it focuses on the nature of the polymer employed for the preparation of targeted nanocarriers, the synthetic methods, as well as strategies for the application and evaluation of biological activity. Applications of the amphiphilic polymer systems include drug delivery, gene delivery, photosensitizer delivery, diagnostic imaging and specific ligand-assisted cellular uptake. As a result, a thorough understanding of the relationship between chemical structure and biological properties facilitate the optimal design and rational clinical application of the resulting carbohydrate based nano delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Kegang Liu
- Nanomedicine Research Lab CLINAM, University Hospital Basel, Bernoullistrasse 20, Basel, CH-4056, Switzerland.
| | - Xiaohua Jiang
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Patrick Hunziker
- Nanomedicine Research Lab CLINAM, University Hospital Basel, Bernoullistrasse 20, Basel, CH-4056, Switzerland. and CLINAM Foundation for Clinical Nanomedicine, Alemannengasse 12, Basel, CH-4016, Switzerland.
| |
Collapse
|
30
|
Wan N, Jia YY, Hou YL, Ma XX, He YS, Li C, Zhou SY, Zhang BL. Preparation, Physicochemical Properties, and Transfection Activities of Tartaric Acid-Based Cationic Lipids as Effective Nonviral Gene Delivery Vectors. Biol Pharm Bull 2016; 39:1112-20. [PMID: 27118165 DOI: 10.1248/bpb.b16-00007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this work two novel cationic lipids using natural tartaric acid as linking backbone were synthesized. These cationic lipids were simply constructed by tartaric acid backbone using head group 6-aminocaproic acid and saturated hydrocarbon chains dodecanol (T-C12-AH) or hexadecanol (T-C16-AH). The physicochemical properties, gel electrophoresis, transfection activities, and cytotoxicity of cationic liposomes were tested. The optimum formulation for T-C12-AH and T-C16-AH was at cationic lipid/dioleoylphosphatidylethanolamine (DOPE) molar ratio of 1 : 0.5 and 1 : 2, respectively, and N/P charge molar ratio of 1 : 1 and 1 : 1, respectively. Under optimized conditions, T-C12-AH and T-C16-AH showed effective gene transfection capabilities, superior or comparable to that of commercially available transfecting reagent 3β-[N-(N',N'-dimethylaminoethyl)carbamoyl]cholesterol (DC-Chol) and N-[2,3-dioleoyloxypropyl]-N,N,N-trimethylammonium chloride (DOTAP). The results demonstrated that the two novel tartaric acid-based cationic lipids exhibited low toxicity and efficient transfection performance, offering an excellent prospect as nonviral vectors for gene delivery.
Collapse
Affiliation(s)
- Ning Wan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Przybylski C, Benito JM, Bonnet V, Mellet CO, García Fernández JM. Deciphering of polycationic carbohydrate based non-viral gene delivery agents by ESI-LTQ-Orbitrap using CID/HCD pairwise tandem mass spectrometry. RSC Adv 2016. [DOI: 10.1039/c6ra14508f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the study herein, we demonstrated that ESI-(MS)MS combining CID and HCD is a useful tool for the structural deciphering of five representative members of a polycationic cyclodextrin library used as non viral agents for gene delivery.
Collapse
Affiliation(s)
- Cédric Przybylski
- Université d’Evry-Val-d’Essonne
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement
- CNRS UMR 8587
- F-91025 Evry
- France
| | - Juan M. Benito
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- E-41092 Sevilla
- Spain
| | - Véronique Bonnet
- Université de Picardie Jules Verne
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources
- CNRS UMR 7378
- 80039 Amiens
- France
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- E-41012 Sevilla
- Spain
| | | |
Collapse
|
32
|
Pflueger I, Charrat C, Mellet CO, García Fernández JM, Di Giorgio C, Benito JM. Cyclodextrin-based facial amphiphiles: assessing the impact of the hydrophilic–lipophilic balance in the self-assembly, DNA complexation and gene delivery capabilities. Org Biomol Chem 2016; 14:10037-10049. [DOI: 10.1039/c6ob01882c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precise tailoring of cationic and lipophilic domains of cyclodextrin-based amphiphiles permits the control of their self-assembling and gene delivery capabilities.
Collapse
Affiliation(s)
- Iris Pflueger
- Instituto de Investigaciones Químicas (IIQ)
- CSIC - Universidad de Sevilla
- E-41092 Sevilla
- Spain
| | - Coralie Charrat
- Institut de Chimie Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- F-06108 Nice
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- E-41012 Sevilla
- Spain
| | | | | | - Juan M. Benito
- Instituto de Investigaciones Químicas (IIQ)
- CSIC - Universidad de Sevilla
- E-41092 Sevilla
- Spain
| |
Collapse
|
33
|
Bartolami E, Bouillon C, Dumy P, Ulrich S. Bioactive clusters promoting cell penetration and nucleic acid complexation for drug and gene delivery applications: from designed to self-assembled and responsive systems. Chem Commun (Camb) 2016; 52:4257-73. [DOI: 10.1039/c5cc09715k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent developments in the (self-)assembly of cationic clusters promoting nucleic acids complexation and cell penetration open the door to applications in drug and gene delivery.
Collapse
Affiliation(s)
- Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Camille Bouillon
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
34
|
Hu P, Chen Y, Li JJ, Liu Y. Construction, Enzyme Response, and Substrate Capacity of a Hyaluronan-Cyclodextrin Supramolecular Assembly. Chem Asian J 2015; 11:505-11. [PMID: 26556213 DOI: 10.1002/asia.201501029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 01/08/2023]
Abstract
A supramolecular assembly was constructed with a cationic cyclodextrin (EICD) and native hyaluronan (HA). The cationic carboxylic ester pendants on HA support hyaluronidase (HAase)-responsive sites and the EICD supports artificial carboxylic esterase responsive sites. Substrate-binding models were investigated by using environment-sensitive fluorescence probes 2-p-toluidino-6-naphthalenesulfoniate sodium (2,6-TNS) and thioflavin T (ThT). On a HA/EICD assembly, EICD was able to bind an anionic substrate and HA and EICD constructed the cationic substrate binding site together. This assembly could be used as a sequential dual-substrate carrier.
Collapse
Affiliation(s)
- Ping Hu
- Department Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Yong Chen
- Department Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China.,Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, P.R. China
| | - Jing-Jing Li
- Department Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China
| | - Yu Liu
- Department Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P.R. China. .,Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, P.R. China.
| |
Collapse
|
35
|
Gallego-Yerga L, Lomazzi M, Franceschi V, Sansone F, Ortiz Mellet C, Donofrio G, Casnati A, García Fernández JM. Cyclodextrin- and calixarene-based polycationic amphiphiles as gene delivery systems: a structure-activity relationship study. Org Biomol Chem 2015; 13:1708-23. [PMID: 25474077 DOI: 10.1039/c4ob02204a] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multi-head/multi-tail facial amphiphiles built on cyclodextrin (CD) and calixarene (CA) scaffolds are paradigmatic examples of monodisperse gene delivery systems. The possibility to precisely control the architectural features at the molecular level offers unprecedented opportunities for conducting structure-activity relationship studies. A major requirement for those channels is the design of a sufficiently diverse ensemble of compounds for parallel evaluation of their capabilities to condense DNA into transfection nanoparticles where the gene material is protected from the environment. Here we have undertaken the preparation of an oriented library of β-cyclodextrin (βCD) and calix[4]arene (CA4) vectors with facial amphiphilic character designed to ascertain the effect of the cationic head nature (aminothiourea-, arginine- or guanidine-type groups) and the macrocyclic platform on the abilities to complex plasmid DNA (pDNA) and in the efficiency of the resulting nanocomplexes to transfect cells in vitro. The hydrophobic domain, formed by hexanoyl or hexyl chains, remains constant in each series, matching the overall structure found to be optimal in previous studies. DLS, TEM and AFM data support that all the compounds self-assemble in the presence of pDNA through a process that involves initially electrostatic interactions followed by formation of βCD or CA4 bilayers between the oligonucleotide filaments. Spherical transfectious nanoparticles that are monomolecular in DNA are thus obtained. Evaluation in epithelial COS-7 and human rhabdomyosarcoma RD-4 cells evidenced the importance of having primary amino groups in the vector to warrant high levels of transfection, probably because of their buffering capacity. The results indicate that the optimal cationic head depends on the macrocyclic core, aminothiourea groups being preferred in the βCD series and arginine groups in the CA4 series. Whereas the transfection efficiency relationships remain essentially unchanged within each series, irrespective of the cell type, the optimal platform (βD or CA4) strongly depends on the cell type. The results illustrate the potential of monodisperse vector prototypes and diversity-oriented strategies on identifying the optimal candidates for gene therapy applications.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Dept. Química Orgánica, Facultad de Química, Universidad de Sevilla, c/Profesor García González 1, 41012 Sevilla, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
This review describes recent results in the investigation of macrocyclic amphiphiles, which are classified based on different macrocyclic frameworks including cyclodextrins, calixarenes, cucurbiturils, pillararenes, and other macrocycles involved.
Collapse
Affiliation(s)
- Kecheng Jie
- State Key Laboratory of Chemical Engineering
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Yujuan Zhou
- State Key Laboratory of Chemical Engineering
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Yong Yao
- State Key Laboratory of Chemical Engineering
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
37
|
Guilloteau N, Bienvenu C, Charrat C, Jiménez Blanco JL, Díaz-Moscoso A, Mellet CO, García Fernández JM, Vierling P, Di Giorgio C. Cell uptake mechanisms of glycosylated cationic pDNA–cyclodextrin nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra00964b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
β-Cyclodextrin-based glycoCDplexes are internalized through several redundant pathways whose relative prevalence depends on the coating sugar and on the cell line.
Collapse
Affiliation(s)
- Nicolas Guilloteau
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- F-06108 Nice
| | - Céline Bienvenu
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- F-06108 Nice
| | - Coralie Charrat
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- F-06108 Nice
| | - José L. Jiménez Blanco
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- E-41012 Sevilla
- Spain
| | - Alejandro Díaz-Moscoso
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- E-41092 Sevilla
- Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- E-41012 Sevilla
- Spain
| | | | - Pierre Vierling
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- F-06108 Nice
| | - Christophe Di Giorgio
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- F-06108 Nice
| |
Collapse
|
38
|
Abstract
Switchable DNA condensers based on β-CD bearing imidazolium and hydrolysable linkages were synthesized, showing base or enzyme-responsive switchable condensation ability.
Collapse
Affiliation(s)
- Ping Hu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yong Chen
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
39
|
Méndez-Ardoy A, Díaz-Moscoso A, Ortiz Mellet C, Di Giorgio C, Vierling P, Benito JM, García Fernández JM. Harmonized tuning of nucleic acid and lectin binding properties with multivalent cyclodextrins for macrophage-selective gene delivery. RSC Adv 2015. [DOI: 10.1039/c5ra16087a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polycationic amphiphilic cyclodextrins (paCDs) have been shown to behave as efficient non-viral gene carriers paralleling the efficacy of commercial vectors towards a variety of cell lines.
Collapse
Affiliation(s)
- Alejandro Méndez-Ardoy
- Departamento de Química Orgánica
- Facultad de Química
- Univ. Sevilla
- C/Prof. García González 1
- E-41012 Sevilla
| | | | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Univ. Sevilla
- C/Prof. García González 1
- E-41012 Sevilla
| | - Christophe Di Giorgio
- Institut de Chimie de Nice
- ICN – Université de Nice Sophia Antipolis – CNRS UMR 7272
- F-06100 Nice
- France
| | - Pierre Vierling
- Institut de Chimie de Nice
- ICN – Université de Nice Sophia Antipolis – CNRS UMR 7272
- F-06100 Nice
- France
| | - Juan M. Benito
- Instituto de Investigaciones Químicas
- CSIC – Univ. Sevilla
- E-41092 Sevilla
- Spain
| | | |
Collapse
|
40
|
Bartolami E, Bessin Y, Bettache N, Gary-Bobo M, Garcia M, Dumy P, Ulrich S. Multivalent DNA recognition by self-assembled clusters: deciphering structural effects by fragments screening and evaluation as siRNA vectors. Org Biomol Chem 2015; 13:9427-38. [DOI: 10.1039/c5ob01404b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fragment self-assembly was used for producing clusters with a variety of scaffolds and ligands, and an effective siRNA vector was identified.
Collapse
Affiliation(s)
- Eline Bartolami
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Marcel Garcia
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247
- CNRS
- Université Montpellier
- ENSCM
| |
Collapse
|
41
|
Ma X, Zhao Y. Biomedical Applications of Supramolecular Systems Based on Host–Guest Interactions. Chem Rev 2014; 115:7794-839. [PMID: 25415447 DOI: 10.1021/cr500392w] [Citation(s) in RCA: 817] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xing Ma
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School
of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yanli Zhao
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School
of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
42
|
Seguin J, Dhotel H, Kai-Luen R, Bessodes M, Mignet N. Fine tuning of mixed ionic and hydrogen bond interactions for plasmid delivery using lipoplexes. Eur J Pharm Biopharm 2014; 90:63-9. [PMID: 25448076 DOI: 10.1016/j.ejpb.2014.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 01/25/2023]
Abstract
Non viral gene transfection has been mostly reached via cationic polymer and lipid, required for DNA complexation and cell internalisation. However, cationic charges often induce cytotoxicity and limit the efficacy of the lipoplexes in vivo due to their fast elimination from the blood stream. Few years ago, we had developed noncationic lipid interacting with DNA via hydrogen bond interactions. To take advantage of both the internalisation efficacy of cationic complexes and the higher DNA release efficacy of non cationic lipids, we chose to mix both ionic and hydrogen bond interactions within one lipoplex. The idea behind this strategy would be to reduce the overall charge while maintaining a high level of transfection. Four mixed formulations of cationic lipid and thiourea lipid were prepared. We found that decreasing ionic interactions and increasing hydrogen bond interactions improved cationic lipoplexes properties. Indeed, we showed that replacement of net positive charges by hydrogen bond interactions with DNA phosphates led to efficient lipoplexes for in vitro DNA transfection at lower cationic charge content, which consequently reduced lipoplex cytotoxicity.
Collapse
Affiliation(s)
- Johanne Seguin
- Paris Sorbonne Cité, Paris Descartes University, Faculty of Pharmacy, Team Vectors for Targeted Therapy and Molecular Imaging, CNRS UMR 8258, INSERM U1022, 75270 Paris Cedex 06, France
| | - Hélène Dhotel
- Paris Sorbonne Cité, Paris Descartes University, Faculty of Pharmacy, Team Vectors for Targeted Therapy and Molecular Imaging, CNRS UMR 8258, INSERM U1022, 75270 Paris Cedex 06, France
| | - René Kai-Luen
- Cell and Molecular Imaging Platform, CRP2 - UMS 3612 CNRS - US25 Inserm-IRD - Université Paris Descartes Paris Sorbonne Cité, Faculty of Pharmacy, 75270 Paris Cedex 06, France
| | - Michel Bessodes
- Paris Sorbonne Cité, Paris Descartes University, Faculty of Pharmacy, Team Vectors for Targeted Therapy and Molecular Imaging, CNRS UMR 8258, INSERM U1022, 75270 Paris Cedex 06, France
| | - Nathalie Mignet
- Paris Sorbonne Cité, Paris Descartes University, Faculty of Pharmacy, Team Vectors for Targeted Therapy and Molecular Imaging, CNRS UMR 8258, INSERM U1022, 75270 Paris Cedex 06, France.
| |
Collapse
|
43
|
Rodriguez Lavado J, Sestito SE, Cighetti R, Aguilar Moncayo EM, Oblak A, Lainšček D, Jiménez Blanco JL, García Fernández JM, Ortiz Mellet C, Jerala R, Calabrese V, Peri F. Trehalose- and glucose-derived glycoamphiphiles: small-molecule and nanoparticle Toll-like receptor 4 (TLR4) modulators. J Med Chem 2014; 57:9105-23. [PMID: 25268544 DOI: 10.1021/jm501182w] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An increasing number of pathologies have been linked to Toll-like receptor 4 (TLR4) activation and signaling, therefore new hit and lead compounds targeting this receptor activation process are urgently needed. We report on the synthesis and biological properties of glycolipids based on glucose and trehalose scaffolds which potently inhibit TLR4 activation and signaling in vitro and in vivo. Structure-activity relationship studies on these compounds indicate that the presence of fatty ester chains in the molecule is a primary prerequisite for biological activity and point to facial amphiphilicity as a preferred architecture for TLR4 antagonism. The cationic glycolipids here presented can be considered as new lead compounds for the development of drugs targeting TLR4 activation and signaling in infectious, inflammatory, and autoimmune diseases. Interestingly, the biological activity of the best drug candidate was retained after adsorption at the surface of colloidal gold nanoparticles, broadening the options for clinical development.
Collapse
Affiliation(s)
- Julio Rodriguez Lavado
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla , E-41012 Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
He XP, Li RH, Maisonneuve S, Ruan Y, Chen GR, Xie J. Fluorogenic supramolecular complexes formed between pyrenyl-β-cyclodextrin and glyco-rhodamine for the selective detection of lectins. Chem Commun (Camb) 2014; 50:14141-4. [DOI: 10.1039/c4cc06356b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
45
|
Bouillon C, Paolantoni D, Rote JC, Bessin Y, Peterson LW, Dumy P, Ulrich S. Degradable Hybrid Materials Based on Cationic Acylhydrazone Dynamic Covalent Polymers Promote DNA Complexation through Multivalent Interactions. Chemistry 2014; 20:14705-14. [DOI: 10.1002/chem.201403695] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 12/28/2022]
|
46
|
Supramolecular polymers based on cyclodextrins for drug and gene delivery. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 125:207-49. [PMID: 20839082 DOI: 10.1007/10_2010_91] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Supramolecular polymers based on cyclodextrins (CDs) have inspired interesting and rapid developments as novel biomaterials in a broad range of drug and gene delivery applications, due to their low cytotoxicity, controllable size, and unique architecture. This review will summarize the potential applications of polyrotaxanes in the field of drug delivery and gene delivery. Generally, cyclodextrin-based biodegradable polypseudorotaxane hydrogels could be used as a promising injectable drug delivery system for sustained and controlled drug release. Temperature-responsive, pH-sensitive, and controllable hydrolyzable polyrotaxane hydrogels have attracted much attention because of their controllable properties, and the self-assembly micelles formed by amphiphilic copolymer threaded with CDs could be used as a carrier for controlled and sustained drug release. Polyrotaxanes with drug or ligand conjugated CDs threaded on a polymer chain with a biodegradable end group could be useful for controlled and multivalent targeted delivery. In the field of gene delivery, cationic polyrotaxanes consisting of multiple OEI-grafted CDs threaded on a block copolymer chain are attractive non-viral gene carries due to the strong DNA-binding ability, low cytotoxicity, and high gene delivery capability. Furthermore, cytocleavable end-caps were introduced in the polyrotaxane systems in order to ensure efficient endosomal escape for intracellular trafficking of DNA. The development of the supramolecular approach using CD-containing polyrotaxanes is expected to provide a new paradigm for biomaterials.
Collapse
|
47
|
|
48
|
Gallego-Yerga L, González-Álvarez MJ, Mayordomo N, Santoyo-González F, Benito JM, Ortiz Mellet C, Mendicuti F, García Fernández JM. Dynamic Self-Assembly of Polycationic Clusters Based on Cyclodextrins for pH-Sensitive DNA Nanocondensation and Delivery by Component Design. Chemistry 2014; 20:6622-7. [DOI: 10.1002/chem.201402026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Indexed: 01/07/2023]
|
49
|
Aguilar Moncayo EM, Guilloteau N, Bienvenu C, Jiménez Blanco JL, Di Giorgio C, Vierling P, Benito JM, Ortiz Mellet C, García Fernández JM. Cyclodextrin-scaffolded amphiphilic aminoglucoside clusters: self-assembling and gene delivery capabilities. NEW J CHEM 2014. [DOI: 10.1039/c4nj00700j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The self-assembling and gene transfer capabilities of monodisperse amphiphilic aminoglucoside–cyclodextrin conjugates depend on the amino disposition at the glycationic head.
Collapse
Affiliation(s)
- Eva M. Aguilar Moncayo
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- E-41012 Sevilla, Spain
| | - Nicolas Guilloteau
- LCMBA UMR 6001
- Université de Nice Sophia Antipolis – CNRS
- F-06100 Nice, France
| | - Céline Bienvenu
- LCMBA UMR 6001
- Université de Nice Sophia Antipolis – CNRS
- F-06100 Nice, France
| | - José L. Jiménez Blanco
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- E-41012 Sevilla, Spain
| | | | - Pierre Vierling
- LCMBA UMR 6001
- Université de Nice Sophia Antipolis – CNRS
- F-06100 Nice, France
| | - Juan M. Benito
- Instituto de Investigaciones Químicas
- CSIC – Universidad de Sevilla
- E-41092 Sevilla, Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- E-41012 Sevilla, Spain
| | | |
Collapse
|
50
|
Nierengarten I, Nothisen M, Sigwalt D, Biellmann T, Holler M, Remy J, Nierengarten J. Polycationic Pillar[5]arene Derivatives: Interaction with DNA and Biological Applications. Chemistry 2013; 19:17552-8. [DOI: 10.1002/chem.201303029] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Iwona Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2 (France)
| | - Marc Nothisen
- Laboratoire V‐SAT and laboratory of excellence Medalis, Université de Strasbourg et CNRS (UMR 7199), Faculté de Pharmacie, 74 route du Rhin, B.P. 60024, 67401 Illkirch (France)
| | - David Sigwalt
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2 (France)
- Laboratoire V‐SAT and laboratory of excellence Medalis, Université de Strasbourg et CNRS (UMR 7199), Faculté de Pharmacie, 74 route du Rhin, B.P. 60024, 67401 Illkirch (France)
| | - Thomas Biellmann
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2 (France)
| | - Michel Holler
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2 (France)
| | - Jean‐Serge Remy
- Laboratoire V‐SAT and laboratory of excellence Medalis, Université de Strasbourg et CNRS (UMR 7199), Faculté de Pharmacie, 74 route du Rhin, B.P. 60024, 67401 Illkirch (France)
| | - Jean‐François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2 (France)
| |
Collapse
|