1
|
Jaiswal M, Dasgupta S. Tuning Stopper Size in Multiresponsive [2]Rotaxanes for Fluoride Anion Selective Metastability. Org Lett 2024; 26:6776-6781. [PMID: 39053506 DOI: 10.1021/acs.orglett.4c02544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
[23]Crown-7-ether incorporated [2]rotaxanes, comprising an anthracene blocker and 4-isopropylphenyl/cyclohexyl end groups, exhibited varying degrees of metastability with a range of chemical (base, halide anions) and physical (solvent, heat) stimuli. Among halides, fluoride, chloride, and bromide anions affected the deslippage of 23-crown-7-ether in 4-isopropylphenyl stoppered [2]rotaxane. Surprisingly, only fluoride anions could selectively induce deslippage in cyclohexyl stoppered [2]rotaxane, whose fluorescence quenching provided an additional tool to selectively detect the fluoride anions down to 2.49 × 10-7 M.
Collapse
Affiliation(s)
- Mukesh Jaiswal
- Department of Chemistry, National Institute of Technology Patna, Patna 800005, India
| | - Suvankar Dasgupta
- Department of Chemistry, National Institute of Technology Patna, Patna 800005, India
| |
Collapse
|
2
|
Capocasa G, Frateloreto F, Valentini M, Di Stefano S. Molecular entanglement can strongly increase basicity. Commun Chem 2024; 7:116. [PMID: 38806668 PMCID: PMC11133330 DOI: 10.1038/s42004-024-01205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Brønsted basicity is a fundamental chemical property featured by several kinds of inorganic and organic compounds. In this Review, we treat a particularly high basicity resulting from the mechanical entanglement involving two or more molecular subunits in catenanes and rotaxanes. Such entanglement allows a number of basic sites to be in close proximity with each other, highly increasing the proton affinity in comparison with the corresponding, non-entangled counterparts up to obtain superbases, properly defined as mechanically interlocked superbases. In the following pages, the development of this kind of superbases will be described with a historical perusal, starting from the initial, serendipitous findings up to the most recent reports where the strong basic property of entangled molecular units is the object of a rational design.
Collapse
Affiliation(s)
- Giorgio Capocasa
- Department of Chemistry Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione P.le A. Moro 5, I-00185, Roma, Italy
| | - Federico Frateloreto
- Department of Chemistry Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione P.le A. Moro 5, I-00185, Roma, Italy
| | - Matteo Valentini
- Department of Chemistry Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione P.le A. Moro 5, I-00185, Roma, Italy
| | - Stefano Di Stefano
- Department of Chemistry Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione P.le A. Moro 5, I-00185, Roma, Italy.
| |
Collapse
|
3
|
Prakashni M, Dasgupta S. BP23C7: high-yield synthesis and application in constructing [3]rotaxanes and responsive pseudo[2]rotaxanes. Org Biomol Chem 2024; 22:1871-1884. [PMID: 38349013 DOI: 10.1039/d3ob02094k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A biphenyl-23-crown-7 ether (BP23C7) is synthesized in 86% yield from commercially available starting materials. BP23C7 forms pseudo[2]rotaxane with a dibenzylammonium ion (DBA+), exhibiting a good association constant value (ka = 1 × 103 M-1). Subsequently, fluorophoric properties of BP23C7 and anthracene terminated axles are blended to create responsive pseudo[2]rotaxanes. The "turn-on" fluorescence response of BP23C7 due to the addition of fluoride and chloride anions to pseudo[2]rotaxane systems has been investigated. Concomitant fluorescence quenching of the anthracene moiety of corresponding axles due to ion-pair formation has been addressed. Furthermore, two variants of [23]crown ethers, i.e. BP23C7 and o-xylene-23-crown-7 ether (X23C7), are applied for constructing homo[3]rotaxane architectures. A half-axle comprising of DBA+ moiety and a terminal olefin is mixed separately with two [23]crown ethers and subjected to self-metathesis using Grubbs' first-generation catalyst.
Collapse
Affiliation(s)
- Manisha Prakashni
- Department of Chemistry, National Institute of Technology Patna, Patna - 800005, India.
| | - Suvankar Dasgupta
- Department of Chemistry, National Institute of Technology Patna, Patna - 800005, India.
| |
Collapse
|
4
|
Dhara A, Dmitrienko A, Hussein RN, Sotomayor A, Wilson BH, Loeb SJ. A translationally active ligand based on a [2]rotaxane molecular shuttle with a 2,2'-bipyridyl core. Chem Sci 2023; 14:7215-7220. [PMID: 37416700 PMCID: PMC10321530 DOI: 10.1039/d3sc01346d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/04/2023] [Indexed: 07/08/2023] Open
Abstract
A rigid H-shaped, [2]rotaxane molecular shuttle comprised of an axle containing two benzimidazole recognition sites and a central 2,2'-bipyridyl (bipy) group interlocked with a 24-crown-8 (24C8) wheel was synthesized using a threading followed by stoppering protocol. The central bipy chelating unit was shown to act as a speed bump that raised the barrier to shuttling for the [2]rotaxane. Coordination of a PtCl2 moiety to the bipy unit in a square planar geometry created an insurmountable steric barrier to shuttling. Addition of one equivalent of NaB(3,5-(CF3)2C6H3)4 removed one of the chloride ligands allowing for translation of the crown ether along the axle into the coordination sphere of the Pt(ii) centre but full shuttling of the crown ether could not be activated. In contrast, addition of Zn(ii) ions in a coordinating solvent (DMF) allowed shuttling to occur using a ligand exchange mechanism. DFT calculations showed this likely occurs via coordination of the 24C8 macrocycle to the Zn(ii) centre bound to the bipy chelate. This interplay of the rotaxane axle and wheel components is an example of a translationally active ligand that utilises the large amplitude displacement of a macrocycle along an axle in a molecular shuttle to access ligand coordination modes not possible with conventional ligand designs.
Collapse
Affiliation(s)
- Ayan Dhara
- Department of Chemistry and Biochemistry, University of Windsor Windsor ON N9B 3P4 Canada
| | - Anton Dmitrienko
- Department of Chemistry and Biochemistry, University of Windsor Windsor ON N9B 3P4 Canada
| | - Rahaf N Hussein
- Department of Chemistry and Biochemistry, University of Windsor Windsor ON N9B 3P4 Canada
| | - Ariel Sotomayor
- Department of Chemistry and Biochemistry, University of Windsor Windsor ON N9B 3P4 Canada
| | - Benjamin H Wilson
- Department of Chemistry and Biochemistry, University of Windsor Windsor ON N9B 3P4 Canada
| | - Stephen J Loeb
- Department of Chemistry and Biochemistry, University of Windsor Windsor ON N9B 3P4 Canada
| |
Collapse
|
5
|
Ishiwari F, Takata T. Rotaxanes with dynamic mechanical chirality: Systematic studies on synthesis, enantiomer separation, racemization, and chiral-prochiral interconversion. Front Chem 2022; 10:1025977. [PMID: 36386001 PMCID: PMC9650364 DOI: 10.3389/fchem.2022.1025977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 12/02/2022] Open
Abstract
Dynamic mechanical chirality of [2]rotaxane consisting of a C s symmetric wheel and a C 2v symmetric axle is discussed via the synthesis, enantiomer separation, racemization, and chiral-prochiral interconversion. This [2]rotaxane is achiral and/or prochiral when its wheel locates at the center of the axle, but becomes chiral when the wheel moves from the center of the axle. These were proved by the experiments on the enantiomer separation and racemization. The racemization energy of the isolated single enantiomers was controlled by the bulkiness of the central substituents on the axle. Furthermore, the chiral-prochiral interconversion was achieved by relative positional control of the components. The present systematic studies will provide new insight into mechanically chiral interlocked compounds as well as the utility as dynamic chiral sources.
Collapse
Affiliation(s)
- Fumitaka Ishiwari
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Japan
| | - Toshikazu Takata
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Ferrocene-Containing Pseudorotaxanes in Crystals: Aromatic Interactions with Hammett Correlation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051745. [PMID: 35268846 PMCID: PMC8911870 DOI: 10.3390/molecules27051745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022]
Abstract
Single crystals of pseudorotaxanes, [(FcCH2NH2CH2Ar)(DB24C8)][PF6] (DB24C8 = dibenzo[24]crown-8, Fc = Fe(C5H4)(C5H5), Ar = -C6H3-3,4-Cl2, -C6H3-3,4-F2, -C6H4-4-F, -C6H4-4-Cl, -C6H4-4-Br, -C6H3-3-F-4-Me, -C6H4-4-I) and [(FcCH2NH2CH2C6H4-4-Me)(DB24C8)][Ni(dmit)2] (dmit = 1,3-dithiole-2,4,5-dithiolate), were obtained from solutions containing DB24C8 and ferrocenylmethyl(arylmethyl)ammonium. X-ray crystallographic analyses of the pseudorotaxanes revealed that the aryl ring of the axle moiety and the catechol ring of the macrocyclic component were at close centroid distances and parallel or tilted orientation. The structures with parallel aromatic rings showed correlation of the distances between the centroids to Hammett substituent constants of the aryl groups.
Collapse
|
7
|
Zhao D, Zhang Z, Zhao J, Liu K, Liu Y, Li G, Zhang X, Bai R, Yang X, Yan X. A Mortise-and-Tenon Joint Inspired Mechanically Interlocked Network. Angew Chem Int Ed Engl 2021; 60:16224-16229. [PMID: 33979478 DOI: 10.1002/anie.202105620] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 11/08/2022]
Abstract
Mortise-and-tenon joints have been widely used for thousands of years in wooden architectures in virtue of their artistic and functional performance. However, imitation of similar structural and mechanical design philosophy to construct mechanically adaptive materials at the molecular level is a challenge. Herein, we report a mortise-and-tenon joint inspired mechanically interlocked network (MIN), in which the [2]rotaxane crosslink not only mimics the joint in structure, but also reproduces its function in modifying mechanical properties of the MIN. Benefiting from the hierarchical energy dissipative ability along with the controllable intramolecular movement of the mechanically interlocked crosslink, the resultant MIN simultaneously exhibits notable mechanical adaptivity and structural stability in a single system, as manifested by decent stiffness, strength, toughness, and deformation recovery capacity.
Collapse
Affiliation(s)
- Dong Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guangfeng Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xue Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
8
|
Zhao D, Zhang Z, Zhao J, Liu K, Liu Y, Li G, Zhang X, Bai R, Yang X, Yan X. A Mortise‐and‐Tenon Joint Inspired Mechanically Interlocked Network. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dong Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Kai Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Guangfeng Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xinhai Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xue Yang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
9
|
Curcio M, Nicoli F, Paltrinieri E, Fois E, Tabacchi G, Cavallo L, Silvi S, Baroncini M, Credi A. Chemically Induced Mismatch of Rings and Stations in [3]Rotaxanes. J Am Chem Soc 2021; 143:8046-8055. [PMID: 33915051 PMCID: PMC8176457 DOI: 10.1021/jacs.1c02230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
The mechanical interlocking
of molecular components can lead to
the appearance of novel and unconventional properties and processes,
with potential relevance for applications in nanoscience, sensing,
catalysis, and materials science. We describe a [3]rotaxane in which
the number of recognition sites available on the axle component can
be changed by acid–base inputs, encompassing cases in which
this number is larger, equal to, or smaller than the number of interlocked
macrocycles. These species exhibit very different properties and give
rise to a unique network of acid–base reactions that leads
to a fine pKa tuning of chemically equivalent
acidic sites. The rotaxane where only one station is available for
two rings exhibits a rich coconformational dynamics, unveiled by an
integrated experimental and computational approach. In this compound,
the two crown ethers compete for the sole recognition site, but can
also come together to share it, driven by the need to minimize free
energy without evident inter-ring interactions.
Collapse
Affiliation(s)
- Massimiliano Curcio
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna 40136, Italy.,Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy
| | - Federico Nicoli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna 40136, Italy.,Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy
| | - Erica Paltrinieri
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna 40136, Italy.,Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy
| | - Ettore Fois
- Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Como 22100, Italy
| | - Gloria Tabacchi
- Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Como 22100, Italy
| | - Luigi Cavallo
- Kaust Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Serena Silvi
- Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy.,Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Bologna 40126, Italy
| | - Massimo Baroncini
- Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Bologna 40127, Italy
| | - Alberto Credi
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna 40136, Italy.,Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy
| |
Collapse
|
10
|
Aoki D, Aibara G, Takata T. Reversible cyclic-linear topological transformation using a long-range rotaxane switch. Polym Chem 2021. [DOI: 10.1039/d1py01197a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A reversible linear-cyclic topological transformation of polymers facilitated by a long-range rotaxane switch.
Collapse
Affiliation(s)
- Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8552, Japan
| | - Gota Aibara
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8552, Japan
| | - Toshikazu Takata
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8552, Japan
- JST-CREST, Ookayama, Meguro, Tokyo 152-8552, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
11
|
Gaedke M, Hupatz H, Schröder HV, Suhr S, Hoffmann KF, Valkonen A, Sarkar B, Riedel S, Rissanen K, Schalley CA. Dual-stimuli pseudorotaxane switches under kinetic control. Org Chem Front 2021. [DOI: 10.1039/d1qo00503k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dual-stimuli pseudorotaxane switches: Threaded complexes dissociate upon deprotonation or oxidation. A mechanical bond changes the influence of a ‘speed bump’ on the outcome of a switching event.
Collapse
Affiliation(s)
- Marius Gaedke
- Institut für Chemie und Biochemie der Freien Universität Berlin
- 14195 Berlin
- Germany
| | - Henrik Hupatz
- Institut für Chemie und Biochemie der Freien Universität Berlin
- 14195 Berlin
- Germany
| | - Hendrik V. Schröder
- Institut für Chemie und Biochemie der Freien Universität Berlin
- 14195 Berlin
- Germany
| | - Simon Suhr
- Lehrstuhl für Anorganische Koordinationschemie
- Institut für Anorganische Chemie
- Universität Stuttgart
- 70569 Stuttgart
- Germany
| | - Kurt F. Hoffmann
- Institut für Chemie und Biochemie der Freien Universität Berlin
- Berlin
- Germany
| | - Arto Valkonen
- Department of Chemistry P.O. Box 35
- 40014 Jyväskylä
- Finland
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische Koordinationschemie
- Institut für Anorganische Chemie
- Universität Stuttgart
- 70569 Stuttgart
- Germany
| | - Sebastian Riedel
- Institut für Chemie und Biochemie der Freien Universität Berlin
- Berlin
- Germany
| | - Kari Rissanen
- Department of Chemistry P.O. Box 35
- 40014 Jyväskylä
- Finland
| | | |
Collapse
|
12
|
Miyagawa S, Kimura M, Kagami S, Kawasaki T, Tokunaga Y. Utilization of a Crown Ether/Amine-Type Rotaxane as a Probe for the Versatile Detection of Anions and Acids by Thin-Layer Chromatography. Chem Asian J 2020; 15:3044-3049. [PMID: 32783335 DOI: 10.1002/asia.202000746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/31/2020] [Indexed: 11/05/2022]
Abstract
A crown ether/amine-type [2]rotaxane was synthesized and utilized as a probe for the detection of acids and anions. The addition of acids to the amine-type [2]rotaxane solution generated corresponding crown ether/ammonium-type [2]rotaxanes, which were purified by silica gel column chromatography as ammonium salts. The isolated yields of the [2]rotaxanes, possessing a variety of anions, depended on the acidity and polarity of the counter anions. The behaviours of the ammonium-type [2]rotaxanes on thin-layer chromatography (TLC) silica gel reflected the properties of the counter anions. The treatment of the amine-type [2]rotaxane with acids afforded the corresponding ammonium-type [2]rotaxanes bearing several different anions. The ammonium-type [2]rotaxanes behaved similarly to the purified [2]rotaxanes on the TLC silica gel. Furthermore, we succeeded in the analysis of anions using mixtures of the amine-type [2]rotaxane and salts in an appropriate solvent. We demonstrated the detection of anions by the combination of TLC and the utilization of the [2]rotaxane probe.
Collapse
Affiliation(s)
- Shinobu Miyagawa
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui, 910-8507, Japan
| | - Masaki Kimura
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui, 910-8507, Japan
| | - Shin Kagami
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui, 910-8507, Japan
| | - Tsuneomi Kawasaki
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui, 910-8507, Japan.,Research and Education Center for Regional Environment, University of Fukui, Bunkyo, Fukui, 910-8507, Japan
| |
Collapse
|
13
|
Van Raden JM, Jarenwattananon NN, Zakharov LN, Jasti R. Active Metal Template Synthesis and Characterization of a Nanohoop [
c
2]Daisy Chain Rotaxane. Chemistry 2020; 26:10205-10209. [DOI: 10.1002/chem.202001389] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Indexed: 11/10/2022]
|
14
|
Takata T. Switchable Polymer Materials Controlled by Rotaxane Macromolecular Switches. ACS CENTRAL SCIENCE 2020; 6:129-143. [PMID: 32123731 PMCID: PMC7047276 DOI: 10.1021/acscentsci.0c00002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Indexed: 05/31/2023]
Abstract
The synthesis and dynamic nature of macromolecular systems controlled by rotaxane macromolecular switches are introduced to discuss the significance of rotaxane linking of polymer chains and its topological switching. Macromolecular switches have been synthesized from macromolecular [2]rotaxanes (M2Rs) using sec-ammonium salt/crown ether couples. The successful synthesis of M2Rs possessing a single polymer axle and one crown ether wheel, constituting a key component of the macromolecular switch, has allowed us to develop various unique applications such as the development of topology-transformable polymers. Polymer topological transformations (e.g., linear-star and linear-cyclic) are achieved using rotaxane-linked polymers and rotaxane macromolecular switches. The pronounced dynamic nature of these polymer systems is sufficiently interesting to design sophisticated stimuli-responsive molecules, polymers, and materials.
Collapse
Affiliation(s)
- Toshikazu Takata
- School of Materials and Chemical
Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama 226-8503, Japan
| |
Collapse
|
15
|
Soto MA, Lelj F, MacLachlan MJ. Programming permanent and transient molecular protection via mechanical stoppering. Chem Sci 2019; 10:10422-10427. [PMID: 32110334 PMCID: PMC6988755 DOI: 10.1039/c9sc03744f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/28/2019] [Indexed: 01/09/2023] Open
Abstract
Chemical protection is an essential tool in synthetic chemistry, which involves blocking reactive sites on a molecule through covalent bonds. Physical approaches, such as encapsulation and host-mediated protection, have emerged as interesting alternatives that use steric bulk to inhibit reactivity. Here, we report the protection of a redox-active viologen through its incorporation into mechanically interlocked molecules (MIMs), namely hetero[4]rotaxanes. The viologen was confined inside a host cavity and flanked by two mechanical stoppers, which allowed for permanent and transient protection. Deprotection occurred on-demand via an unstoppering process, triggered by a proton transfer, polarity effect, or a thermal stimulus. We anticipate that permanent and transient mechanical stoppering could be incorporated into devices to function as molecular probes, transport/delivery systems, or stimuli-controlled degradable materials.
Collapse
Affiliation(s)
- Miguel A Soto
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , BC , V6T 1Z1 Canada .
| | - Francesco Lelj
- La.M.I. and LaSCAMM INSTM Sezione Basilicata , Dipartimento di Chimica , Università della Basilicata , via dell'Ateneo Lucano 10 , Potenza , 85100 Italy
| | - Mark J MacLachlan
- Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , BC , V6T 1Z1 Canada .
- Quantum Matter Institute , University of British Columbia , 2355 East Mall , Vancouver , BC , V6T 1Z4 Canada
- WPI Nano Life Science Institute , Kanazawa University , Kanazawa , 920-1192 Japan
| |
Collapse
|
16
|
Takata T. Stimuli-Responsive Molecular and Macromolecular Systems Controlled by Rotaxane Molecular Switches. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180330] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Toshikazu Takata
- Department of Chemical Science and Engineering and Research Institute of Polymer Science and Technology (RIPST), Tokyo Institute of Technology, and JST-CREST, Ookayama, Meguro, Tokyo 152-8552, Japan
| |
Collapse
|
17
|
Gauthier M, Coutrot F. Weinreb Amide as Secondary Station for the Dibenzo-24-crown-8 in a Molecular Shuttle. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Maxime Gauthier
- Supramolecular Machines and ARchitectures Team; Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS; Université de Montpellier; ENSCM, case courrier 1706; Bâtiment Chimie (17), 3ème étage, Faculté des Sciences; Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Frédéric Coutrot
- Supramolecular Machines and ARchitectures Team; Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS; Université de Montpellier; ENSCM, case courrier 1706; Bâtiment Chimie (17), 3ème étage, Faculté des Sciences; Place Eugène Bataillon 34095 Montpellier cedex 5 France
| |
Collapse
|
18
|
Shi H, Zhang K, Lin RL, Sun WQ, Chu XF, Liu XH, Liu JX. pH-Controlled Multiple Interconversion between Cucurbit[7]uril-Based Molecular Shuttle, [3]Pseudorotaxane and [2]Pseudorotaxane. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201800708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hao Shi
- College of Chemistry and Chemical Engineering; Anhui University of Technology; Maanshan 243002 China
| | - Kun Zhang
- College of Chemistry and Chemical Engineering; Anhui University of Technology; Maanshan 243002 China
| | - Rui-Lian Lin
- College of Chemistry and Chemical Engineering; Anhui University of Technology; Maanshan 243002 China
| | - Wen-Qi Sun
- College of Chemistry and Chemical Engineering; Anhui University of Technology; Maanshan 243002 China
| | - Xiang-Feng Chu
- College of Chemistry and Chemical Engineering; Anhui University of Technology; Maanshan 243002 China
| | - Xin-Hua Liu
- School of Pharmacy; Anhui Medical University; Hefei 230032 China
| | - Jing-Xin Liu
- College of Chemistry and Chemical Engineering; Anhui University of Technology; Maanshan 243002 China
| |
Collapse
|
19
|
Leigh DA, Pirvu L, Schaufelberger F, Tetlow DJ, Zhang L. Securing a Supramolecular Architecture by Tying a Stopper Knot. Angew Chem Int Ed Engl 2018; 57:10484-10488. [PMID: 29708636 PMCID: PMC6099318 DOI: 10.1002/anie.201803871] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Indexed: 11/11/2022]
Abstract
We report on a rotaxane-like architecture secured by the in situ tying of an overhand knot in the tris(2,6-pyridyldicarboxamide) region of the axle through complexation with a lanthanide ion (Lu3+ ). The increase in steric bulk caused by the knotting locks a crown ether onto the thread. Removal of the lutetium ion unties the knot, and when the axle binding site for the ring is deactivated, the macrocycle spontaneously dethreads. When the binding interaction is switched on again, the crown ether rethreads over the 10 nm length of the untangled strand. The overhand knot can be retied, relocking the threaded structure, by once again adding lutetium ions.
Collapse
Affiliation(s)
- David A. Leigh
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Lucian Pirvu
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | | | - Daniel J. Tetlow
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Liang Zhang
- School of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
20
|
Leigh DA, Pirvu L, Schaufelberger F, Tetlow DJ, Zhang L. Securing a Supramolecular Architecture by Tying a Stopper Knot. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- David A. Leigh
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| | - Lucian Pirvu
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| | | | - Daniel J. Tetlow
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| | - Liang Zhang
- School of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
21
|
Riss-Yaw B, Clavel C, Laurent P, Waelès P, Coutrot F. The Importance of Length and Flexibility of Macrocycle-Containing Molecular Translocators for the Synthesis of Improbable [2]Rotaxanes. Chemistry 2018; 24:13659-13666. [PMID: 29969523 DOI: 10.1002/chem.201802831] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/02/2018] [Indexed: 12/20/2022]
Abstract
This work reports on the use of molecular translocators to capture a dibenzo-24-crown-8 (DB24C8) and then release it onto targeted molecular axles to afford, after removal of the translocator, [2]rotaxanes that do not hold any template site. Various translocators were studied and successfully aided the synthesis, with more or less efficacy, of [2]rotaxanes of different lengths. During the releasing step, the DB24C8 macrocycle shuttles along the thread, and the localization of the macrocycle might be driven by steric repulsion on the translocator part and/or electronic attraction of the targeted part of the axle to be encircled, which depends on both the nature of the translocator and the targeted thread to be encircled.
Collapse
Affiliation(s)
- Benjamin Riss-Yaw
- Supramolecular Machines and Architectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Caroline Clavel
- Supramolecular Machines and Architectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Philippe Laurent
- Supramolecular Machines and Architectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Philip Waelès
- Supramolecular Machines and Architectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Frédéric Coutrot
- Supramolecular Machines and Architectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| |
Collapse
|
22
|
Kwan CS, Zhao R, Van Hove MA, Cai Z, Leung KCF. Higher-generation type III-B rotaxane dendrimers with controlling particle size in three-dimensional molecular switching. Nat Commun 2018; 9:497. [PMID: 29402942 PMCID: PMC5799186 DOI: 10.1038/s41467-018-02902-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/05/2018] [Indexed: 12/20/2022] Open
Abstract
Type III-B rotaxane dendrimers (T3B-RDs) are hyperbranched macromolecules with mechanical bonds on every branching unit. Here we demonstrate the design, synthesis, and characterization of first to third (G1–G3), and up to the fourth (G4) generation (MW > 22,000 Da) of pure organic T3B-RDs and dendrons through the copper-catalyzed alkyne–azide cycloaddition (CuAAC) reaction. By utilizing multiple molecular shuttling of the mechanical bonds within the sphere-like macromolecule, a collective three-dimensional contract-extend molecular motion is demonstrated by diffusion ordered spectroscopy (DOSY) and atomic force microscopy (AFM). The discrete T3B-RDs are further observed and characterized by AFM, dynamic light scattering (DLS), and mass spectrometry (MS). The binding of chlorambucil and pH-triggered switching of the T3B-RDs are also characterized by 1H-NMR spectroscopy. The complexity of rotaxane dendrimers poses a great synthetic challenge and the synthesis of higher generation rotaxane dendrimers has therefore rarely been reported. Here the authors report the synthesis of acid-base switchable rotaxane dendrimers up to generation 4 and demonstrate the uptake and release of guest molecules.
Collapse
Affiliation(s)
- Chak-Shing Kwan
- Department of Chemistry and Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Rundong Zhao
- Department of Physics and Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Michel A Van Hove
- Department of Physics and Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Zongwei Cai
- Department of Chemistry and Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Ken Cham-Fai Leung
- Department of Chemistry and Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong. .,Institute of Molecular Functional Materials, University Grants Committee, Hong Kong.
| |
Collapse
|
23
|
Remote electrochemical modulation of pK a in a rotaxane by co-conformational allostery. Proc Natl Acad Sci U S A 2017; 115:9385-9390. [PMID: 29255033 DOI: 10.1073/pnas.1712783115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Allosteric control, one of Nature's most effective ways to regulate functions in biomolecular machinery, involves the transfer of information between distant sites. The mechanistic details of such a transfer are still an object of intensive investigation and debate, and the idea that intramolecular communication could be enabled by dynamic processes is gaining attention as a complement to traditional explanations. Mechanically interlocked molecules, owing to the particular kind of connection between their components and the resulting dynamic behavior, are attractive systems to investigate allosteric mechanisms and exploit them to develop functionalities with artificial species. We show that the pKa of an ammonium site located on the axle component of a [2]rotaxane can be reversibly modulated by changing the affinity of a remote recognition site for the interlocked crown ether ring through electrochemical stimulation. The use of a reversible ternary redox switch enables us to set the pKa to three different values, encompassing more than seven units. Our results demonstrate that in the axle the two sites do not communicate, and that in the rotaxane the transfer of information between them is made possible by the shuttling of the ring, that is, by a dynamic intramolecular process. The investigated coupling of electron- and proton-transfer reactions is reminiscent of the operation of the protein complex I of the respiratory chain.
Collapse
|
24
|
Riss-Yaw B, Morin J, Clavel C, Coutrot F. How Secondary and Tertiary Amide Moieties are Molecular Stations for Dibenzo-24-crown-8 in [2]Rotaxane Molecular Shuttles? Molecules 2017; 22:E2017. [PMID: 29160822 PMCID: PMC6150268 DOI: 10.3390/molecules22112017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022] Open
Abstract
Interlocked molecular machines like [2]rotaxanes are intriguing aesthetic molecules. The control of the localization of the macrocycle, which surrounds a molecular axle, along the thread leads to translational isomers of very different properties. Although many moieties have been used as sites of interactions for crown ethers, the very straightforwardly obtained amide motif has more rarely been envisaged as molecular station. In this article, we report the use of secondary and tertiary amide moieties as efficient secondary molecular station in pH-sensitive molecular shuttles. Depending on the N-substitution of the amide station, and on deprotonation or deprotonation-carbamoylation, the actuation of the molecular machinery differs accordingly to very distinct interactions between the axle and the DB24C8.
Collapse
Affiliation(s)
- Benjamin Riss-Yaw
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université Montpellier, ENSCM, Case Courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France.
| | - Justine Morin
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université Montpellier, ENSCM, Case Courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France.
| | - Caroline Clavel
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université Montpellier, ENSCM, Case Courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France.
| | - Frédéric Coutrot
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université Montpellier, ENSCM, Case Courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France.
| |
Collapse
|
25
|
Altmann PJ, Pöthig A. A pH-Dependent, Mechanically Interlocked Switch: Organometallic [2]Rotaxane vs. Organic [3]Rotaxane. Angew Chem Int Ed Engl 2017; 56:15733-15736. [PMID: 29044899 DOI: 10.1002/anie.201709921] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Indexed: 11/07/2022]
Abstract
We present the first [2]rotaxane featuring a functional organometallic host. In contrast to the known organic scaffolds, this assembly shows a high post-synthetic modifiability. The reactivity of the Ag8 pillarplex host is fully retained, as is exemplified by the first transmetalation in a rotaxane framework to provide the respective Au8 analogue. Additionally, a transformation under acidic conditions to give a purely organic [3]rotaxane is demonstrated which is reversible upon addition of a suitable base, rendering the assembly a pH-dependent switch. Hereby, it is shown that the mechanically interlocked nature of the system enhances the kinetic stability of the NHC host complex by a factor of >1000 and corresponds to the first observation of a stabilizing "rotaxand effect".
Collapse
Affiliation(s)
- Philipp J Altmann
- Catalysis Research Center & Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer-Strasse 1, 85747, Garching, Germany
| | - Alexander Pöthig
- Catalysis Research Center & Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer-Strasse 1, 85747, Garching, Germany
| |
Collapse
|
26
|
Altmann PJ, Pöthig A. Ein pH-abhängiger, mechanisch verzahnter Schalter: organometallisches [2]Rotaxan und organisches [3]Rotaxan. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Philipp J. Altmann
- Catalysis Research Center & Fakultät für Chemie; Technische Universität München; Ernst-Otto-Fischer-Straße 1 85747 Garching Deutschland
| | - Alexander Pöthig
- Catalysis Research Center & Fakultät für Chemie; Technische Universität München; Ernst-Otto-Fischer-Straße 1 85747 Garching Deutschland
| |
Collapse
|
27
|
Topology-transformable polymers: linear–branched polymer structural transformation via the mechanical linking of polymer chains. Polym J 2017. [DOI: 10.1038/pj.2017.60] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Mechanically linked supramolecular polymer architectures derived from macromolecular [2]rotaxanes: Synthesis and topology transformation. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Schröder HV, Sobottka S, Nößler M, Hupatz H, Gaedke M, Sarkar B, Schalley CA. Impact of mechanical bonding on the redox-switching of tetrathiafulvalene in crown ether-ammonium [2]rotaxanes. Chem Sci 2017; 8:6300-6306. [PMID: 28989663 PMCID: PMC5628401 DOI: 10.1039/c7sc02694c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/07/2017] [Indexed: 12/15/2022] Open
Abstract
Switchable crown ether-ammonium [2]rotaxanes with a redox-active tetrathiafulvalene (TTF) unit implemented in their wheels were synthesised and fully characterised. Reversible operation in two modes is possible, in which the [2]rotaxane's axle is either charged or neutral. Cyclic voltammetry experiments reveal the effects of mechanical bonding on the electrochemical properties of TTF and show the [2]rotaxanes to perform a distinct function in both modes. In the charged mode, redox-switching is dominated by strong electrostatic repulsion in the [2]rotaxane which subsequently leads to a macrocycle translation along the axle. In the non-charged mode, a selective energetic stabilisation of TTF radical cations is observed, which can be attributed to an interplay of weak electrostatic interactions between wheel and axle.
Collapse
Affiliation(s)
- Hendrik V Schröder
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie , Freie Universität Berlin , Fabeckstr. 34/36 , 14195 Berlin , Germany
| | - Maite Nößler
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| | - Henrik Hupatz
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| | - Marius Gaedke
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie , Freie Universität Berlin , Fabeckstr. 34/36 , 14195 Berlin , Germany
| | - Christoph A Schalley
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| |
Collapse
|
30
|
Yu G, Suzaki Y, Osakada K. Cationic and Neutral Rotaxanes Having Different Functional Groups in the Axle Molecule and Their Coordination to Pt II. Chem Asian J 2017; 12:372-377. [PMID: 27973709 DOI: 10.1002/asia.201601554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 01/07/2023]
Abstract
Dibenzo[24]crown-8 (DB24C8) forms rotaxanes with a linear molecule having a dialkylammonium group and a triazole group as well as with the acetylation product of a cationic axle molecule. The former cationic rotaxane is stabilized by multiple intermolecular hydrogen bonds between the NH2+ and oxyethylene groups. The neutral rotaxane contains the macrocycle in the vicinity of the terminal aryl group. The co-conformation of both the cationic and neutral rotaxanes can be fixed by coordination of the triazole group of the axle molecule to PtCl2 (dmso)2 . A 1 H NMR spectroscopic study on the thermodynamics of the Pt coordination revealed a larger association constant for the rotaxanes than for the corresponding axle molecules and a larger value for the neutral rotaxane than for the cationic rotaxane.
Collapse
Affiliation(s)
- Gilbert Yu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama, 226-8503, Japan.,Chemistry Department, School of Science and Engineering, Ateneo de Manila University, Quezon City, Manila, 1108, Philippines
| | - Yuji Suzaki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Kohtaro Osakada
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagastuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
31
|
Ragazzon G, Credi A, Colasson B. Thermodynamic Insights on a Bistable Acid-Base Switchable Molecular Shuttle with Strongly Shifted Co-conformational Equilibria. Chemistry 2017; 23:2149-2156. [PMID: 27918617 DOI: 10.1002/chem.201604783] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 12/31/2022]
Abstract
Bistable [2]rotaxanes in which the affinities of the two stations can be reversed form the basis of molecular shuttles. Gaining quantitative information on such rotaxanes in which the ring distribution between the two stations is largely nonsymmetric has proven to be very challenging. Herein, we report on two independent experimental methodologies, based on luminescence lifetime measurements and acid-base titrations, to determine the relative populations of the two co-conformations of a [2]rotaxane. The assays yield convergent results and are sensitive enough to measure an equilibrium constant (K≈4000) out of reach for NMR spectroscopy. We also estimate the ring distribution constant in the switched (deprotonated) state (K'<10-4 ), and report the highest positional efficiency for stimuli-induced shuttling to date (>99.92 %). Finally, our results show that the pKa of the pH-responsive station depends on the ring affinity of the pH-insensitive station, an observation that paves the way for the design of new artificial allosteric systems.
Collapse
Affiliation(s)
- Giulio Ragazzon
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Alberto Credi
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Benoit Colasson
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, 40126, Bologna, Italy.,Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques (CNRS UMR 8601), Université Paris Descartes Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006, Paris, France
| |
Collapse
|
32
|
Affiliation(s)
| | - Toshikazu Takata
- Department of Chemical Science and Engineering, Tokyo Institute of Technology
| |
Collapse
|
33
|
Nagai H, Suzaki Y, Osakada K. Chemical Modification of a [2]Rotaxane Composed of Dithiacrown Ether and Dialkylammonium with Organic and Inorganic Compounds. CHEM LETT 2016. [DOI: 10.1246/cl.160345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Quiroga M, Parajó M, Rodríguez-Dafonte P, García-Río L. Kinetic Study of [2]Pseudorotaxane Formation with an Asymmetrical Thread. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6367-6375. [PMID: 27232769 DOI: 10.1021/acs.langmuir.6b01348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Kinetic and thermodynamic studies on cyclodextrin (CD)-based [2]pseudorotaxane formation have been carried out by a combination of NMR and calorimetric techniques using bolaform surfactants as axles. Experimental evidence of the formation of an external complex between the trimethylammonium head groups of the axle and the external hydrogen atoms of α-cyclodextrin (α-CD) is reported. Inclusion of this external complex in the reaction pathway allows us to explain the kinetic behavior as well as the nonlinear dependence of the observed rate constant on CD concentrations. The equilibrium constant for [2]pseudorotaxane formation is strongly affected by the spacer length of the axle. This effect is a consequence of increasing rotaxane stability because the threading rate constant is almost independent of the spacer length, but dethreading strongly decreases on increasing the axle size. Using a nonsymmetrical axle with tripropyl and trimethylammonium cations precludes CD threading by the large head side. CDs will thread this asymmetrical bolaform by both their wide and narrow sides, yielding two isomeric [2]pseudorotaxanes. Threading by the wide side of the CD is 60% more favorable than that by the narrow one, but dethreading rate constants are the same for both isomers.
Collapse
Affiliation(s)
- Miguel Quiroga
- Departamento de Química Física, Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Facultade de Química, Universidade de Santiago de Compostela , 15782 Santiago, Spain
| | - Mercedes Parajó
- Departamento de Química Física, Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Facultade de Química, Universidade de Santiago de Compostela , 15782 Santiago, Spain
| | - Pedro Rodríguez-Dafonte
- Departamento de Química Física, Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Facultade de Química, Universidade de Santiago de Compostela , 15782 Santiago, Spain
| | - Luis García-Río
- Departamento de Química Física, Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Facultade de Química, Universidade de Santiago de Compostela , 15782 Santiago, Spain
| |
Collapse
|
35
|
Sato H, Aoki D, Takata T. Synthesis and Star/Linear Topology Transformation of a Mechanically Linked ABC Terpolymer. ACS Macro Lett 2016; 5:699-703. [PMID: 35614675 DOI: 10.1021/acsmacrolett.6b00320] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of an ABC star terpolymer containing one polymer chain connected mechanically through a rotaxane linkage and its topology transformation to a linear structure are reported. Pseudo[2]rotaxane, which was designed as the key trifunctional species for the star polymer synthesis, comprised a sec-ammonium axle with ethynyl and hydroxy groups and a crown ether wheel with a trithiocarbonate group. Stepwise polymer connections to the pseudo[2]rotaxane using the three groups afforded a rotaxane-linked ABC star terpolymer. The topology transformation from star to linear by the removal of the attractive interaction between the axle and wheel components yielded a linear ABC terpolymer via the wheel shifting to the axle end. The spectroscopic and solution property changes clearly indicated the occurrence of the polymer topology change.
Collapse
Affiliation(s)
- Hiroki Sato
- Department of Chemical Science and Engineering and ‡JST-CREST, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering and ‡JST-CREST, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Toshikazu Takata
- Department of Chemical Science and Engineering and ‡JST-CREST, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
36
|
Farahani N, Zhu K, O'Keefe CA, Schurko RW, Loeb SJ. Thermally Driven Dynamics of a Rotaxane Wheel about an Imidazolium Axle inside a Metal-Organic Framework. Chempluschem 2016; 81:836-841. [PMID: 31968814 DOI: 10.1002/cplu.201600176] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Indexed: 01/28/2023]
Abstract
A new mechanically interlocked molecular linker was prepared by using ring-closing metathesis (Grubbs I) to clip a [24]crown-6 ether wheel around an axle containing both Y-shaped diphenylimidazole and isophthalic acid groups. A metal-organic framework (MOF) material was prepared using this linker and ZnII ions. Single-crystal X-ray diffraction experiments showed that the MOF contains an imidazolium-based rotaxane linked by dimeric [Zn2 (NO3 )(DEF)] secondary building units (SBUs). Variable-temperature (VT), 2 H solid-state NMR spectroscopy was used to characterize the motion of the "soft" wheel component around the rigid "hard" lattice of the framework. At higher temperatures (above 150 °C), it was demonstrated that the 24-membered, macrocyclic ring of the MOF undergoes rapid, thermally driven rotation about the axle inside the voids of the lattice.
Collapse
Affiliation(s)
- Nasim Farahani
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Kelong Zhu
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Christopher A O'Keefe
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Robert W Schurko
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Stephen J Loeb
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
37
|
|
38
|
Affiliation(s)
- Chak-Shing Kwan
- Department
of Chemistry, Institute of Creativity, Institute of Molecular Functional
Materials, Partner State Key Laboratory of Environmental and Biological
Analysis, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong
Kong SAR, P. R. China
| | - Albert S. C. Chan
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Ken Cham-Fai Leung
- Department
of Chemistry, Institute of Creativity, Institute of Molecular Functional
Materials, Partner State Key Laboratory of Environmental and Biological
Analysis, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong
Kong SAR, P. R. China
| |
Collapse
|
39
|
Chen Z, Aoki D, Uchida S, Marubayashi H, Nojima S, Takata T. Effect of Component Mobility on the Properties of Macromolecular [2]Rotaxanes. Angew Chem Int Ed Engl 2016; 55:2778-81. [DOI: 10.1002/anie.201510953] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/16/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Zhen Chen
- Department of Organic and Polymeric Materials; Tokyo Institute of Technology; 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Daisuke Aoki
- Department of Organic and Polymeric Materials; Tokyo Institute of Technology; 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- ACT-C; Japan Science and Technology Agency (JST); 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Satoshi Uchida
- Department of Organic and Polymeric Materials; Tokyo Institute of Technology; 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- ACT-C; Japan Science and Technology Agency (JST); 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Hironori Marubayashi
- Department of Organic and Polymeric Materials; Tokyo Institute of Technology; 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Shuichi Nojima
- Department of Organic and Polymeric Materials; Tokyo Institute of Technology; 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Toshikazu Takata
- Department of Organic and Polymeric Materials; Tokyo Institute of Technology; 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- ACT-C; Japan Science and Technology Agency (JST); 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| |
Collapse
|
40
|
Chen Z, Aoki D, Uchida S, Marubayashi H, Nojima S, Takata T. Effect of Component Mobility on the Properties of Macromolecular [2]Rotaxanes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhen Chen
- Department of Organic and Polymeric Materials Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Daisuke Aoki
- Department of Organic and Polymeric Materials Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- ACT-C Japan Science and Technology Agency (JST) 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Satoshi Uchida
- Department of Organic and Polymeric Materials Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- ACT-C Japan Science and Technology Agency (JST) 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Hironori Marubayashi
- Department of Organic and Polymeric Materials Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Shuichi Nojima
- Department of Organic and Polymeric Materials Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| | - Toshikazu Takata
- Department of Organic and Polymeric Materials Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- ACT-C Japan Science and Technology Agency (JST) 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
| |
Collapse
|
41
|
Vukotic VN, O’Keefe CA, Zhu K, Harris KJ, To C, Schurko RW, Loeb SJ. Mechanically Interlocked Linkers inside Metal–Organic Frameworks: Effect of Ring Size on Rotational Dynamics. J Am Chem Soc 2015; 137:9643-51. [DOI: 10.1021/jacs.5b04674] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- V. Nicholas Vukotic
- Department of Chemistry and
Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Christopher A. O’Keefe
- Department of Chemistry and
Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Kelong Zhu
- Department of Chemistry and
Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Kristopher J. Harris
- Department of Chemistry and
Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Christine To
- Department of Chemistry and
Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Robert W. Schurko
- Department of Chemistry and
Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Stephen J. Loeb
- Department of Chemistry and
Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| |
Collapse
|
42
|
Xue M, Yang Y, Chi X, Yan X, Huang F. Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications. Chem Rev 2015; 115:7398-501. [DOI: 10.1021/cr5005869] [Citation(s) in RCA: 605] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Min Xue
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yong Yang
- Department
of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Xiaodong Chi
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Xuzhou Yan
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
43
|
Witus LS, Hartlieb KJ, Wang Y, Prokofjevs A, Frasconi M, Barnes JC, Dale EJ, Fahrenbach AC, Stoddart JF. Relative contractile motion of the rings in a switchable palindromic [3]rotaxane in aqueous solution driven by radical-pairing interactions. Org Biomol Chem 2014; 12:6089-93. [PMID: 25010832 PMCID: PMC4110165 DOI: 10.1039/c4ob01228c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/24/2014] [Indexed: 01/01/2023]
Abstract
Artificial muscles are an essential component for the development of next-generation prosthetic devices, minimally invasive surgical tools, and robotics. This communication describes the design, synthesis, and characterisation of a mechanically interlocked molecule (MIM), capable of switchable and reversible linear molecular motion in aqueous solution that mimics muscular contraction and extension. Compatibility with aqueous solution was achieved in the doubly bistable palindromic [3]rotaxane design by using radical-based molecular recognition as the driving force to induce switching.
Collapse
Affiliation(s)
- Leah S. Witus
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - Karel J. Hartlieb
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - Yuping Wang
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - Aleksandrs Prokofjevs
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - Marco Frasconi
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - Jonathan C. Barnes
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , MA 02139 , USA
| | - Edward J. Dale
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| | - Albert C. Fahrenbach
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
- Howard Hughes Medical Institute , Department of Molecular Biology , and Center for Computational and Integrative Biology , Massachusetts General Hospital , Boston , Massachusetts 02114 , USA
- Earth-Life Science Institute , Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku , Tokyo 152-8551 , Japan
| | - J. Fraser Stoddart
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA .
| |
Collapse
|
44
|
Abstract
CONSPECTUS: More than two decades of investigating the chemistry of bistable mechanically interlocked molecules (MIMs), such as rotaxanes and catenanes, has led to the advent of numerous molecular switches that express controlled translational or circumrotational movement on the nanoscale. Directed motion at this scale is an essential feature of many biomolecular assemblies known as molecular machines, which carry out essential life-sustaining functions of the cell. It follows that the use of bistable MIMs as artificial molecular machines (AMMs) has been long anticipated. This objective is rarely achieved, however, because of challenges associated with coupling the directed motions of mechanical switches with other systems on which they can perform work. A natural source of inspiration for designing AMMs is muscle tissue, since it is a material that relies on the hierarchical organization of molecular machines (myosin) and filaments (actin) to produce the force and motion that underpin locomotion, circulation, digestion, and many other essential life processes in humans and other animals. Muscle is characterized at both microscopic and macroscopic length scales by its ability to generate forces that vary the distance between two points at the expense of chemical energy. Artificial muscles that mimic this ability are highly sought for applications involving the transduction of mechanical energy. Rotaxane-based molecular switches are excellent candidates for artificial muscles because their architectures intrinsically possess movable filamentous molecular components. In this Account, we describe (i) the different types of rotaxane "molecular muscle" architectures that express contractile and extensile motion, (ii) the molecular recognition motifs and corresponding stimuli that have been used to actuate them, and (iii) the progress made on integrating and scaling up these motions for potential applications. We identify three types of rotaxane muscles, namely, "daisy chain", "press", and "cage" rotaxanes, and discuss their mechanical actuation driven by ions, pH, light, solvents, and redox stimuli. Different applications of these rotaxane-based molecular muscles are possible at various length scales. On a molecular level, they have been harnessed to create adjustable receptors and to control electronic communication between chemical species. On the mesoscale, they have been incorporated into artificial muscle materials that amplify their concerted motions and forces, making future applications at macroscopic length scales look feasible. We emphasize how rotaxanes constitute a remarkably versatile platform for directing force and motion, owing to the wide range of stimuli that can be used to actuate them and their diverse modes of mechanical switching as dictated by the stereochemistry of their mechanical bonds, that is, their mechanostereochemistry. We hope that this Account will serve as an exposition that sets the stage for new applications and materials that exploit the capabilities of rotaxanes to transduce mechanical energy and help in paving the path going forward to genuine AMMs.
Collapse
Affiliation(s)
- Carson J. Bruns
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60201-3113, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60201-3113, United States
| |
Collapse
|
45
|
Aoki D, Uchida S, Takata T. Mechanically Linked Block/Graft Copolymers: Effective Synthesis via Functional Macromolecular [2]Rotaxanes. ACS Macro Lett 2014; 3:324-328. [PMID: 35590740 DOI: 10.1021/mz5001306] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An effective method to synthesize mechanically linked transformable block polymer was developed utilizing functional macromolecular [2]rotaxane with a "fixed" or "movable" wheel. The interaction between a sec-ammonium and a dibenzo-24-crown-8-ether was the key to control the mobility of the wheel component, indicating the capability of the transformation from linear block copolymer to block/graft copolymer in which the grafting polymer chain is movable along the axle polymer chain.
Collapse
Affiliation(s)
- Daisuke Aoki
- Department
of Organic and
Polymeric Materials, Tokyo Institute of Technology, 2-12-1 (H-126),
Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Satoshi Uchida
- Department
of Organic and
Polymeric Materials, Tokyo Institute of Technology, 2-12-1 (H-126),
Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Toshikazu Takata
- Department
of Organic and
Polymeric Materials, Tokyo Institute of Technology, 2-12-1 (H-126),
Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
46
|
Liang J, Wang XL, Jiao YQ, Qin C, Shao KZ, Su ZM, Wu QY. Metal ion directed metal-organic rotaxane frameworks with intrinsic features of self-penetration and interpenetration. Chem Commun (Camb) 2014; 49:8555-7. [PMID: 23945843 DOI: 10.1039/c3cc43990a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three novel self-catenated 4-connected uninodal (6(5)·8)- metal-organic rotaxane frameworks (MORFs) containing cucurbit[6]uril were constructed from the in situ trans/cis-configuration (1 : 1) of rotaxanes by taking advantage of a d(10) metal ion directed synthesis. It was revealed that the effect of hydrogen bonds and π-π stacking interactions play significant roles in the self-assembly process.
Collapse
Affiliation(s)
- Jun Liang
- Institute of Functional Material Chemistry, Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, 130024 Jilin, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Koyama Y. Synthesis of topologically crosslinked polymers with rotaxane-crosslinking points. Polym J 2014. [DOI: 10.1038/pj.2014.9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Hu F, Huang J, Cao M, Chen Z, Yang YW, Liu SH, Yin J. Dithienylethene-based rotaxanes: synthesis, characterization and properties. Org Biomol Chem 2014; 12:7712-20. [DOI: 10.1039/c4ob01213e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photochromic materials have been widely applied in many fields.
Collapse
Affiliation(s)
- Fang Hu
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079, PR China
| | - Juanyun Huang
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079, PR China
| | - Meijiao Cao
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079, PR China
| | - Zhao Chen
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079, PR China
| | - Ying-Wei Yang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun, PR China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079, PR China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079, PR China
| |
Collapse
|
49
|
Lu TW, Chang CF, Lai CC, Chiu SH. Molecular Switch Based on Very Weak Association between BPX26C6 and Two Recognition Units. Org Lett 2013; 15:5742-5. [DOI: 10.1021/ol4027864] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tsan-Wen Lu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan. R.O.C., and Institute of Molecular Biology, National Chung Hsing University and Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Fong Chang
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan. R.O.C., and Institute of Molecular Biology, National Chung Hsing University and Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chien-Chen Lai
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan. R.O.C., and Institute of Molecular Biology, National Chung Hsing University and Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Sheng-Hsien Chiu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan. R.O.C., and Institute of Molecular Biology, National Chung Hsing University and Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan, R.O.C
| |
Collapse
|
50
|
Koyama Y, Matsumura T, Yui T, Ishitani O, Takata T. Fluorescence Control of Boron Enaminoketonate Using a Rotaxane Shuttle. Org Lett 2013; 15:4686-9. [DOI: 10.1021/ol401984j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yasuhito Koyama
- Catalysis Research Center, Hokkaido University, N21 W10, Kita-ku, Sapporo 001-0021, Japan, Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 (H-126), Ookayama, Meguro, Tokyo 152-8552, Japan, Department of Material Science and Technology, Faculty of Engineering, Niigata University, Igarashi 2-8050, Niigata 950-2181, Japan, and Department of Chemistry, Tokyo Institute of Technology, 2-12-1 (E1-9), Ookayama, Meguro, Tokyo 152-8551, Japan
| | - Tohru Matsumura
- Catalysis Research Center, Hokkaido University, N21 W10, Kita-ku, Sapporo 001-0021, Japan, Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 (H-126), Ookayama, Meguro, Tokyo 152-8552, Japan, Department of Material Science and Technology, Faculty of Engineering, Niigata University, Igarashi 2-8050, Niigata 950-2181, Japan, and Department of Chemistry, Tokyo Institute of Technology, 2-12-1 (E1-9), Ookayama, Meguro, Tokyo 152-8551, Japan
| | - Tatsuto Yui
- Catalysis Research Center, Hokkaido University, N21 W10, Kita-ku, Sapporo 001-0021, Japan, Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 (H-126), Ookayama, Meguro, Tokyo 152-8552, Japan, Department of Material Science and Technology, Faculty of Engineering, Niigata University, Igarashi 2-8050, Niigata 950-2181, Japan, and Department of Chemistry, Tokyo Institute of Technology, 2-12-1 (E1-9), Ookayama, Meguro, Tokyo 152-8551, Japan
| | - Osamu Ishitani
- Catalysis Research Center, Hokkaido University, N21 W10, Kita-ku, Sapporo 001-0021, Japan, Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 (H-126), Ookayama, Meguro, Tokyo 152-8552, Japan, Department of Material Science and Technology, Faculty of Engineering, Niigata University, Igarashi 2-8050, Niigata 950-2181, Japan, and Department of Chemistry, Tokyo Institute of Technology, 2-12-1 (E1-9), Ookayama, Meguro, Tokyo 152-8551, Japan
| | - Toshikazu Takata
- Catalysis Research Center, Hokkaido University, N21 W10, Kita-ku, Sapporo 001-0021, Japan, Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1 (H-126), Ookayama, Meguro, Tokyo 152-8552, Japan, Department of Material Science and Technology, Faculty of Engineering, Niigata University, Igarashi 2-8050, Niigata 950-2181, Japan, and Department of Chemistry, Tokyo Institute of Technology, 2-12-1 (E1-9), Ookayama, Meguro, Tokyo 152-8551, Japan
| |
Collapse
|