1
|
Heim P, Spedalotto G, Lovisari M, Gericke R, O'Brien J, Farquhar ER, McDonald AR. Synthesis and Characterization of a Masked Terminal Nickel-Oxide Complex. Chemistry 2023; 29:e202203840. [PMID: 36696360 PMCID: PMC10101870 DOI: 10.1002/chem.202203840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
In exploring terminal nickel-oxo complexes, postulated to be the active oxidant in natural and non-natural oxidation reactions, we report the synthesis of the pseudo-trigonal bipyramidal NiII complexes (K)[NiII (LPh )(DMF)] (1[DMF]) and (NMe4 )2 [NiII (LPh )(OAc)] (1[OAc]) (LPh =2,2',2''-nitrilo-tris-(N-phenylacetamide); DMF=N,N-dimethylformamide; - OAc=acetate). Both complexes were characterized using NMR, FTIR, ESI-MS, and X-ray crystallography, showing the LPh ligand to bind in a tetradentate fashion, together with an ancillary donor. The reaction of 1[OAc] with peroxyphenyl acetic acid (PPAA) resulted in the formation of [(LPh )NiIII -O-H⋅⋅⋅OAc]2- , 2, that displays many of the characteristics of a terminal Ni=O species. 2 was characterized by UV-Vis, EPR, and XAS spectroscopies and ESI-MS. 2 decayed to yield a NiII -phenolate complex 3 (through aromatic electrophilic substitution) that was characterized by NMR, FTIR, ESI-MS, and X-ray crystallography. 2 was capable of hydroxylation of hydrocarbons and epoxidation of olefins, as well as oxygen atom transfer oxidation of phosphines at exceptional rates. While the oxo-wall remains standing, this complex represents an excellent example of a masked metal-oxide that displays all of the properties expected of the ever elusive terminal M=O beyond the oxo-wall.
Collapse
Affiliation(s)
- Philipp Heim
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Giuseppe Spedalotto
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Marta Lovisari
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Robert Gericke
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
- Current address: Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - John O'Brien
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Erik R Farquhar
- Center for Synchrotron Biosciences, National Synchrotron Light Source II, Brookhaven, National Laboratory Case Western Reserve University, Upton, NY 11973, USA
| | - Aidan R McDonald
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
2
|
Schumann H, Klein M, Prinzisky C, Burghaus O, Sundermeyer J. Juglophen: a tetradentate non-innocent electron sponge naphthoquinone-imine ligand and its reduced and oxidized nickel complexes [Ni(jp)] -,0,+ . Dalton Trans 2022; 51:9348-9356. [PMID: 35671192 DOI: 10.1039/d1dt03927j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of new tetradentate dianionic N2O2 ligand juglophen (H2jp, 1) and its nickel(II) complex [Ni(jp)] (2) is reported. The unprecedented ligand synthesis is accomplished via oxidative coupling of 1,5-dihydroxynapthalene and o-phenylenediamine by hypervalent phenyliodine(III)-diacetate. Ligand 1 and complex 2 were characterized via NMR, IR, UV-Vis spectroscopy, mass spectrometry, cyclic voltammetry and by XRD analysis. In order to investigate the non-innocent character of ligand 1, [Ni(jp)] (2) was oxidized using AgPF6 to form [Ni(jp)]+ [PF6]- (3) whereas one-electron reduction with [Cp2Co] generated [Cp2Co]+[Ni(jp)]- (4). The paramagnetic nature of the oxidized and reduced species 3 and 4 was validated via EPR spectroscopy and further investigated pursuing DFT calculations at the PBE-D3(BJ)/def2-TZVPP level of theory. Predominantly ligand-centered SOMOs of 3 and 4 are allowing insight towards a deeper understanding of the redox behavior of [Ni(jp)] (2).
Collapse
Affiliation(s)
- Henrik Schumann
- Department of Chemistry and Material Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | - Marius Klein
- Department of Chemistry and Material Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | - Christian Prinzisky
- Department of Chemistry and Material Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | - Olaf Burghaus
- Department of Chemistry and Material Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | - Jörg Sundermeyer
- Department of Chemistry and Material Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| |
Collapse
|
3
|
Takeyama T, Suzuki T, Kikuchi M, Kobayashi M, Oshita H, Kawashima K, Mori S, Abe H, Hoshino N, Iwatsuki S, Shimazaki Y. Solid State Characterization of One‐ and Two‐Electron Oxidized Cu
II
‐salen Complexes with
para
‐Substituents: Geometric Structure‐Magnetic Property Relationship. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomoyuki Takeyama
- Department of Chemistry Konan University Higashinada-ku Kobe 658-8501 Japan
| | - Takashi Suzuki
- Graduate School of Science and Engineering Ibaraki University Bunkyo Mito 310-8512 Japan
| | - Misa Kikuchi
- College of Science Ibaraki University Bunkyo Mito 310-8512 Japan
| | - Misato Kobayashi
- Department of Chemistry Konan University Higashinada-ku Kobe 658-8501 Japan
| | - Hiromi Oshita
- Institute of Materials Structure Science (IMSS) High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
| | - Kyohei Kawashima
- Institute for Materials Chemistry Engineering, Kyushu University 6-1 kasuga-koen Kasuga, Fukuoka 816-8580 Japan
| | - Seiji Mori
- Graduate School of Science and Engineering Ibaraki University Bunkyo Mito 310-8512 Japan
- College of Science Ibaraki University Bunkyo Mito 310-8512 Japan
| | - Hitoshi Abe
- Graduate School of Science and Engineering Ibaraki University Bunkyo Mito 310-8512 Japan
- Institute of Materials Structure Science (IMSS) High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
- School of High Energy Accelerator Science SOKENDAI (the Graduate University for Advanced Studies) 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
| | - Norihisa Hoshino
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM) Tohoku University 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Satoshi Iwatsuki
- Department of Chemistry Konan University Higashinada-ku Kobe 658-8501 Japan
| | - Yuichi Shimazaki
- Graduate School of Science and Engineering Ibaraki University Bunkyo Mito 310-8512 Japan
- College of Science Ibaraki University Bunkyo Mito 310-8512 Japan
| |
Collapse
|
4
|
Itoh S, Shinke T, Itoh M, Wada T, Morimoto Y, Yanagisawa S, Sugimoto H, Kubo M. Revisiting Alkane Hydroxylation with m-CPBA (mChloroperbenzoic Acid) Catalyzed by Nickel(II) Complexes. Chemistry 2021; 27:14730-14737. [PMID: 34402568 DOI: 10.1002/chem.202102532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/09/2022]
Abstract
Mechanistic studies are performed on the alkane hydroxylation with m -CPBA ( m -chloroperbenzoic acid) catalyzed by nickel(II) complexes, Ni II (L). In the oxidation of cycloalkanes, Ni II (TPA) acts as an efficient catalyst with a high yield and a high alcohol selectivity. In the oxidation of adamantane, the tertiary carbon is predominantly oxidized. The reaction rate shows first-order dependence on [substrate] and [Ni II (L)] but is independent on [ m CPBA]; v obs = k 2 [substrate][ Ni II (L)]. The reaction exhibited a relatively large kinetic deuterium isotope effect ( KIE ) of 6.7, demonstrating that the hydrogen atom abstraction is involved in the rate-limiting step of the catalytic cycle. Furthermore, Ni II (L) supported by related tetradentate ligands exhibit apparently different catalytic activity, suggesting contribution of the Ni II (L) in the catalytic cycle. Based on the kinetic analysis and the significant effects of O 2 and CCl 4 on the product distribution pattern, possible contributions of (L)Ni II -O• and the acyloxyl radical as the reactive oxidants are discussed.
Collapse
Affiliation(s)
- Shinobu Itoh
- Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, 565-0871, Suita, JAPAN
| | - Tomoya Shinke
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Mayu Itoh
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Takuma Wada
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Yuma Morimoto
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | | | - Hideki Sugimoto
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Minoru Kubo
- Graduate School of Science, Life Science, JAPAN
| |
Collapse
|
5
|
Suzuki T, Sato A, Oshita H, Yajima T, Tani F, Abe H, Mieda-Higa K, Yanagisawa S, Ogura T, Shimazaki Y. Formation of Ni(II)-phenoxyl radical complexes by O 2: a mechanistic insight into the reaction of Ni(II)-phenol complexes with O 2. Dalton Trans 2021; 50:5161-5170. [PMID: 33881085 DOI: 10.1039/d1dt00105a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A reaction of Ni(ClO4)2·6H2O with a tripodal ligand having two di(tert-butyl)phenol moieties, H2tbuL, and 1 equivalent of triethylamine in CH2Cl2/CH3OH (1 : 1, v/v) under N2 gave a NiII-(phenol)(phenolate) complex, [Ni(HtbuL)(CH3OH)2]ClO4. The formation of the NiII-phenoxyl radical complex by O2 was observed in the reaction of this complex in the solid state. On the other hand, the NiII-phenoxyl radical complex [Ni(Me2NL)(CH3OH)2]ClO4 was obtained by the reaction of H2Me2NL having a p-(dimethylamino)phenol moiety with Ni(ClO4)2·6H2O in a similar procedure under O2, through the oxidation of the NiII-(phenol)(phenolate) complex. However, a direct redox reaction of the NiII ion could not be detected in the phenoxyl radical formation. The results of the reaction kinetics, XAS and X-ray structure analyses suggested that the O2 oxidation from the NiII-(phenol)(phenolate) complex to the NiII-phenoxyl radical complex occurs via the proton transfer-electron transfer (PT-ET) type mechanism of the phenol moiety weakly coordinated to the nickel ion.
Collapse
Affiliation(s)
- Takashi Suzuki
- Graduate School of Science and Engineering, Ibaraki University, Mito 310-8512, Japan.
| | - Akari Sato
- Graduate School of Science and Engineering, Ibaraki University, Mito 310-8512, Japan.
| | - Hiromi Oshita
- Faculty of Chemistry of Functional Molecules, Konan University, Higashinada-ku, Kobe 658-8501, Japan
| | - Tatsuo Yajima
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Hitoshi Abe
- Graduate School of Science and Engineering, Ibaraki University, Mito 310-8512, Japan. and Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan and Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI (the Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kaoru Mieda-Higa
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan
| | - Sachiko Yanagisawa
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan
| | - Takashi Ogura
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan
| | - Yuichi Shimazaki
- Graduate School of Science and Engineering, Ibaraki University, Mito 310-8512, Japan.
| |
Collapse
|
6
|
Ovcharenko VI, Kuznetsova OV. New method for the synthesis of heterospin metal complexes with nitroxides. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Kanso H, Clarke RM, Kochem A, Arora H, Philouze C, Jarjayes O, Storr T, Thomas F. Effect of Distortions on the Geometric and Electronic Structures of One-Electron Oxidized Vanadium(IV), Copper(II), and Cobalt(II)/(III) Salen Complexes. Inorg Chem 2020; 59:5133-5148. [DOI: 10.1021/acs.inorgchem.0c00381] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hussein Kanso
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | - Ryan M. Clarke
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Amélie Kochem
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | - Himanshu Arora
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | | | | | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Fabrice Thomas
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| |
Collapse
|
8
|
Kunert R, Philouze C, Jarjayes O, Thomas F. Stable M(II)-Radicals and Nickel(III) Complexes of a Bis(phenol) N-Heterocyclic Carbene Chelated to Group 10 Metal Ions. Inorg Chem 2019; 58:8030-8044. [PMID: 31185559 DOI: 10.1021/acs.inorgchem.9b00784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The tetradentate ligand based on (1-imidazolium-3,5-di tert-butylphenol) units was prepared and chelated to group 10 metal ions (Ni(II), Pd(II), and Pt(II)), affording complexes 1, 2, and 3, respectively. The X-ray crystal structures of 1-3 show a square planar metal ion coordinated to two N-heterocyclic carbenes and two phenolate moieties. The cyclic voltammetry curves of complexes 1-3 show two reversible oxidation waves in the range 0.11-0.21 V ( E1/21) and 0.55-0.65 V ( E1/22) vs Fc+/Fc, which are assigned to the successive oxidations of the phenolate moieties. One-electron oxidation affords mononuclear ( S = 1/2) systems. Complex 1+·SbF6- was remarkably stable, and its structure was characterized. The coordination sphere is slightly dissymmetric, while the typical patterns of phenoxyl radicals were observed within the ligand framework. Complex 1+ exhibits a rhombic signal at g = 2.087, 2.016, and 1.992, confirming its predominant phenoxyl radical character. The g-values are slightly smaller for 2+ (2.021, 2.008, and 1.983) and larger for 3+ (2.140, 1.999, and 1.885) yet consistent with phenoxyl radical species. The electronic spectra of 1+-3+ display an intervalence charge-transfer (IVCT) transition at 2396, 2600, and 2294 nm, respectively. Its intensity supports the description of cations 1+ and 3+ as mixed-valent (Class II/III) compounds according to the Robin Day classification. Complex 2+ behaves as a mixed-valent class II radical compound. In the presence of pyridine, radical species 1+ is successively converted into stable mono and bis(adducts), which are both Ni(III) complexes. Dications 1+2-3+2 were prepared electrochemically. They are electron paramagnetic resonance (EPR)-silent and do not show IVCT transition in their NIR spectra, consistent with a bis(radical) formulation. The proposed electronic structures are fully supported by density functional theory calculations.
Collapse
Affiliation(s)
- Romain Kunert
- Université Grenoble Alpes , UMR CNRS-5250, Département de Chimie Moléculaire , Grenoble F-38000 , France
| | - Christian Philouze
- Université Grenoble Alpes , UMR CNRS-5250, Département de Chimie Moléculaire , Grenoble F-38000 , France
| | - Olivier Jarjayes
- Université Grenoble Alpes , UMR CNRS-5250, Département de Chimie Moléculaire , Grenoble F-38000 , France
| | - Fabrice Thomas
- Université Grenoble Alpes , UMR CNRS-5250, Département de Chimie Moléculaire , Grenoble F-38000 , France
| |
Collapse
|
9
|
Ji J, Chen X, Wang CJ, Jia AQ, Zhang QF. Syntheses, structures and electrochemical properties of ruthenium(II/III) complexes with tetradentate Schiff base ligands. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1566541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jiao Ji
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan, Anhui, P R China
| | - Xin Chen
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan, Anhui, P R China
| | - Chang-Jiu Wang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan, Anhui, P R China
| | | | - Qian-Feng Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan, Anhui, P R China
| |
Collapse
|
10
|
Chiang L, Wasinger EC, Shimazaki Y, Young V, Storr T, Stack TDP. Electronic Structure and Reactivity Studies of a Nonsymmetric One-Electron Oxidized Cu II Bis-phenoxide Complex. Inorganica Chim Acta 2018; 481:151-158. [PMID: 30581226 PMCID: PMC6301013 DOI: 10.1016/j.ica.2017.09.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The tetradentate mixed imino/amino phenoxide ligand (N-(3,5-di-tert-butylsalicylidene)-N'-(2-hydroxyl-3,5-di-tert-butylbenzyl))-trans-1,2-cyclohexanediamine (salalen) was complexed with CuII, and the resulting Cu complex (2) was characterized by a number of experimental techniques and theoretical calculations. Two quasi-reversible redox processes for 2, as observed by cyclic voltammetry, demonstrated the potential stability of oxidized forms, and also the increased electron-donating ability of the salalen ligand in comparison to the salen analogue. The electronic structure of the one-electron oxidized [2]+ was then studied in detail, and Cu K-edge X-ray Absorption Spectroscopy (XAS) measurements confirmed a CuII-phenoxyl radical complex in solution. Subsequent resonance Raman (rR) and variable temperature 1H NMR studies, coupled with theoretical calculations, showed that [2• ]+ is a triplet (S = 1) CuII-phenoxyl radical species, with localization of the radical on the more electron-rich aminophenoxide. Attempted isolation of X-ray quality crystals of [2• ]+ afforded [2H]+, with a protonated phenol bonded to CuII, and an additional H-bonding interaction with the SbF6 - counterion. Stoichiometric reaction of dilute solutions of [2• ]+ with benzyl alcohol showed that the complex reacted in a similar manner as the oxidized CuII-salen analogue, and does not exhibit a substrate-binding pre-equilibrium as observed for the oxidized bisaminophenoxide CuII-salan derivative.
Collapse
Affiliation(s)
- Linus Chiang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Erik C Wasinger
- Department of Chemistry and Biochemistry, California State University, Chico, CA 95928, USA
| | - Yuichi Shimazaki
- College of Science, Ibaraki University. Bunkyo, Mito, 310-8512, Japan
| | - Victor Young
- Department of Chemistry, The University of Minnesota, Minneapolis, MN 55455, USA
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - T Daniel P Stack
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Eckshtain-Levi M, Lavi R, Arora H, Orio M, Benisvy L. Tuning the locus of oxidation in Cu-diamido-diphenoxo complexes: From Cu(III) to Cu(II)-phenoxyl radical. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Erxleben A. Transition metal salen complexes in bioinorganic and medicinal chemistry. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.06.060] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
|
14
|
Doistau B, Benda L, Cantin JL, Chamoreau LM, Ruiz E, Marvaud V, Hasenknopf B, Vives G. Six States Switching of Redox-Active Molecular Tweezers by Three Orthogonal Stimuli. J Am Chem Soc 2017; 139:9213-9220. [PMID: 28605200 DOI: 10.1021/jacs.7b02945] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A six level molecular switch based on terpyridine(Ni-salphen)2 tweezers and addressable by three orthogonal stimuli (metal coordination, redox reaction, and guest binding) is reported. By a metal coordination stimulus, the tweezers can be mechanically switched from an open "W"-shaped conformation to a closed "U"-shaped form. Theses two states can each be reversibly oxidized by the redox stimulus and bind to a pyrazine guest resulting in four additional states. All six states are stable and accessible by the right combination of stimuli and were studied by NMR, XRD, EPR spectroscopy, and DFT calculations. The combination of the supramolecular concepts of mechanical motion and guest binding with the redox noninnocent and valence tautomerism properties of Ni-salphen complexes added two new dimensions to a mechanical switch.
Collapse
Affiliation(s)
- Benjamin Doistau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire , UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Lorien Benda
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire , UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Jean-Louis Cantin
- Sorbonne Universités, UPMC Univ Paris 06, INSP , 4 place Jussieu, 75005 Paris, France
| | - Lise-Marie Chamoreau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire , UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Eliseo Ruiz
- Departament de Química Inorgànica and Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona , Diagonal 645, E-08028 Barcelona, Spain
| | - Valérie Marvaud
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire , UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Bernold Hasenknopf
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire , UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Guillaume Vives
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire , UMR 8232, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
15
|
Baydoun H, Mazumder S, Schlegel HB, Verani CN. Deactivation of a Cobalt Catalyst for Water Reduction through Valence Tautomerism. Chemistry 2017; 23:9266-9271. [DOI: 10.1002/chem.201701783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Habib Baydoun
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
| | - Shivnath Mazumder
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
- Current address: Department of Chemistry Hofstra University Berliner Hall Hempstead NY 11549 USA
| | - H. Bernhard Schlegel
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
| | - Cláudio N. Verani
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
| |
Collapse
|
16
|
Dong YJ, Dong XY, Dong WK, Zhang Y, Zhang LS. Three asymmetric Salamo-type copper(II) and cobalt(II) complexes: Syntheses, structures and fluorescent properties. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.12.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Wickramasinghe LD, Mazumder S, Kpogo KK, Staples RJ, Schlegel HB, Verani CN. Electronic Modulation of the SOMO–HOMO Energy Gap in Iron(III) Complexes towards Unimolecular Current Rectification. Chemistry 2016; 22:10786-90. [DOI: 10.1002/chem.201602444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 11/08/2022]
Affiliation(s)
| | - Shivnath Mazumder
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
| | - Kenneth K. Kpogo
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
| | | | - H. Bernhard Schlegel
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
| | - Cláudio N. Verani
- Department of Chemistry Wayne State University 5101 Cass Ave Detroit MI 48202 USA
| |
Collapse
|
18
|
Ali A, Dhar D, Barman SK, Lloret F, Mukherjee R. Nickel(II) Complex of a Hexadentate Ligand with Two o-Iminosemiquinonato(1-) π-Radical Units and Its Monocation and Dication. Inorg Chem 2016; 55:5759-71. [PMID: 27232547 DOI: 10.1021/acs.inorgchem.5b02688] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aerobic reaction of a hexadentate redox-active o-aminophenol-based ligand, H4L(3) = N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2'-diamino(diphenyldithio)-ethane, in CH3OH with Ni(II)(O2CCH3)2·4H2O and Et3N afforded isolation of a reddish-brown crystalline solid [Ni(L(3))] 1. Cyclic voltammetry (CV) experiment exhibits two oxidative responses at E1/2 = 0.09 and 0.53 V vs SCE (saturated calomel electrode). Chemical oxidation of 1 in air by [Fe(III)(η(5)-C5H5)2][PF6] and AgBF4 in CH2Cl2 led to the isolation of one-electron oxidized species [1](1+) as purple [1][PF6]·CH2Cl2 and two-electron oxidized species [1](2+) as dark purple [1][BF4]2·CH2Cl2, respectively. X-ray crystallographic analysis at 100(2) K unambiguously established that the ligand is present in [Ni(II){(L(ISQ)O,N)(•-)}{(L(ISQ)O,N)(•-)}{(LS,S)(0)}] 1, [Ni(II){(L(IBQ)O,N)(0)}{(L(ISQ)O,N)(•-)}{(LS,S)(0)}][PF6]·CH2Cl2, and [Ni(II){(L(IBQ)O,N)(0)}{(L(IBQ)O,N)(0)}{(LS,S)(0)}][BF4]2·CH2Cl2, as monoanionic o-iminosemiquinonate(1-) π-radical (Srad = 1/2) (L(ISQ))(•-) and neutral o-iminoquinone (L(IBQ))(0) redox-levels. Complexes 1, [1][PF6]·CH2Cl2, and [1][BF4]2·CH2Cl2 possess an S = 2, 3/2, and 1 ground-state, respectively, established by temperature-dependent (2-300 K) magnetic behavior of 1 and [1][PF6]·CH2Cl2, and a μeff value of [1][BF4]2·CH2Cl2 at 300 K. Both 1 and [1][PF6]·CH2Cl2 exhibit ferromagnetic exchange-coupling between the two electrons of Ni(II) and two/one ligand π-radicals, respectively. The redox processes are shown to be ligand-based. Spectroscopic and redox properties, and density functional theory (DFT) calculations at the CAM-B3LYP-level of theory adequately describe the electronic structure of 1, [1](1+), and [1](2+). The observed UV-vis-NIR absorptions for 1, [1][PF6]·CH2Cl2, and [1][BF4]2·CH2Cl2 have been assigned, based on time-dependent (TD)-DFT calculations.
Collapse
Affiliation(s)
- Akram Ali
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India
| | - Debanjan Dhar
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India
| | - Suman K Barman
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata , Mohanpur 741 246, India
| | - Francesc Lloret
- Departament de Quımíca, Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de Valeńcia , Polígono de la Coma, s/n, 46980-Paterna, València, Spain
| | - Rabindranath Mukherjee
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata , Mohanpur 741 246, India
| |
Collapse
|
19
|
Prinzisky C, Jacob A, Harrer M, Elfferding M, Sundermeyer J. Anthraphen: A Salphen‐Like Non‐Innocent Tetradentate Anthraquinone Imine Dye – Coordination and Electrochemistry. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Prinzisky
- Department of Chemistry and Material Sciences Center, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße 4, 35032 Marburg, Germany, http://https://www.uni‐marburg.de/fb15/ag‐sundermeyer
| | - Andreas Jacob
- Department of Chemistry and Material Sciences Center, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße 4, 35032 Marburg, Germany, http://https://www.uni‐marburg.de/fb15/ag‐sundermeyer
| | - Marcus Harrer
- Department of Chemistry and Material Sciences Center, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße 4, 35032 Marburg, Germany, http://https://www.uni‐marburg.de/fb15/ag‐sundermeyer
| | - Michael Elfferding
- Department of Chemistry and Material Sciences Center, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße 4, 35032 Marburg, Germany, http://https://www.uni‐marburg.de/fb15/ag‐sundermeyer
| | - Jörg Sundermeyer
- Department of Chemistry and Material Sciences Center, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße 4, 35032 Marburg, Germany, http://https://www.uni‐marburg.de/fb15/ag‐sundermeyer
| |
Collapse
|
20
|
Thomas F. Ligand-centred oxidative chemistry in sterically hindered salen complexes: an interesting case with nickel. Dalton Trans 2016; 45:10866-77. [DOI: 10.1039/c6dt00942e] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Salen ligands are ubiquitous chelators, whose nickel complexes readily undergo a ligand-centred redox chemistry in non-coordinating solvents.
Collapse
Affiliation(s)
- F. Thomas
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250
- Université Grenoble-Alpes
- 38041 Grenoble cedex 9
- France
| |
Collapse
|
21
|
Chiang L, Clarke RM, Herasymchuk K, Sutherland M, Prosser KE, Shimazaki Y, Storr T. Electronic Structure Evaluation of an Oxidized Tris(methoxy)-Substituted Ni Salen Complex. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201501144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
de Bellefeuille D, Orio M, Barra AL, Aukauloo A, Journaux Y, Philouze C, Ottenwaelder X, Thomas F. Redox Noninnocence of the Bridge in Copper(II) Salophen and Bis(oxamato) Complexes. Inorg Chem 2015; 54:9013-26. [DOI: 10.1021/acs.inorgchem.5b01285] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- David de Bellefeuille
- Department
of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Maylis Orio
- Laboratoire
de Spectrochimie Infrarouge et Raman, Université des Sciences et Technologies de Lille, UMR CNRS 8516, 59655 Villeneuve
d’Ascq Cedex, France
| | - Anne-Laure Barra
- Laboratoire National des Champs Magnétiques Intenses, CNRS, 25 rue des Martyrs, 38042 Grenoble, France
| | - Ally Aukauloo
- Institut
de Chimie Moléculaire et des Matériaux d’Orsay,
UMR CNRS 8182, Université Paris-Sud XI, 91405 Orsay, France
- Service de Bioénergétique,
Biologie Structurale et Mécanismes (SB2SM), CEA, iBiTec-S;
Biochimie Biophysique et Biologie Structurale (B3S),
I2BC, UMR 9198, 91191 Gif-sur-Yvette, France
| | - Yves Journaux
- Institut
de Chimie Moléculaire et des Matériaux d’Orsay,
UMR CNRS 8182, Université Paris-Sud XI, 91405 Orsay, France
- Sorbonne Universités,
UPMC Université Paris 06, UMR CNRS 8232, Institut
Parisien de Chimie Moléculaire, France
| | - Christian Philouze
- Equipe
CIRE, Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble-Alpes, 38041 Grenoble Cedex 9, France
| | - Xavier Ottenwaelder
- Department
of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Fabrice Thomas
- Equipe
CIRE, Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble-Alpes, 38041 Grenoble Cedex 9, France
| |
Collapse
|
23
|
Cazacu M, Shova S, Soroceanu A, Machata P, Bucinsky L, Breza M, Rapta P, Telser J, Krzystek J, Arion VB. Charge and Spin States in Schiff Base Metal Complexes with a Disiloxane Unit Exhibiting a Strong Noninnocent Ligand Character: Synthesis, Structure, Spectroelectrochemistry, and Theoretical Calculations. Inorg Chem 2015; 54:5691-706. [DOI: 10.1021/acs.inorgchem.5b00229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Maria Cazacu
- “Petru Poni” Institute of Macromolecular Chemistry, Alea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Sergiu Shova
- “Petru Poni” Institute of Macromolecular Chemistry, Alea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Alina Soroceanu
- “Petru Poni” Institute of Macromolecular Chemistry, Alea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Peter Machata
- Institute of Physical Chemistry and Chemical Physics, Faculty of
Chemical and Food Technology, Slovak University of Technology, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | - Lukas Bucinsky
- Institute of Physical Chemistry and Chemical Physics, Faculty of
Chemical and Food Technology, Slovak University of Technology, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | - Martin Breza
- Institute of Physical Chemistry and Chemical Physics, Faculty of
Chemical and Food Technology, Slovak University of Technology, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of
Chemical and Food Technology, Slovak University of Technology, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | - Joshua Telser
- Department of Biological, Chemical and
Physical Sciences, Roosevelt University, 430 South Michigan Avenue, Chicago, Illinois 60605 United States
| | - J. Krzystek
- National
High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 United States
| | - Vladimir B. Arion
- Faculty of Chemistry, Institute of Inorganic
Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
24
|
Ali A, Barman SK, Mukherjee R. Palladium(II) Complex of a Redox-Active Amidophenolate-Based O,N,S,N Ligand: Its Monocation and Dication and Reactivity with PPh3. Inorg Chem 2015; 54:5182-94. [DOI: 10.1021/ic503103e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Akram Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Suman K. Barman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Rabindranath Mukherjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| |
Collapse
|
25
|
Morimoto Y, Takaichi J, Hanada S, Ohkubo K, Sugimoto H, Fujieda N, Fukuzumi S, Itoh S. Redox behavior of novel nickel and palladium complexes supported by trianionic non-innocent ligand containing β-diketiminate and phenol groups. J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424615500248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A new type of nickel and palladium complexes with non-innocent β-diketiminate ligand having redox active phenol groups, 2,4-di-tert-butyl-6-(((1E,2E)-3-((3,5-di-tert-butyl-2-hydroxyphenyl)amino)-2-nitroallylidene)amino)phenol ( L H 3, fully protonated form) have been developed, and the structure, physical properties, and reactivity of their one-electron and two-electron oxidized complexes, [MII(L•2-)] and [MII(L-)]+ ( M = Ni II or Pd II ) have been examined in detail. The two-electron oxidized forms of both complexes, [MII(L-)]+, exhibited hydrogen atom abstraction ability from 1,4-cyclohexadiene (CHD) comparable to its copper analog [ Cu II ( L -)]+ (Dalton Trans. 2013; 42: 2438-2444). The one-electron oxidized form of palladium complex, [ Pd II ( L •2-)], was also found to oxidize CHD, whereas the nickel analog, [ Ni II ( L •2-)], exhibited photo-induced oxidation ability of CHD.
Collapse
Affiliation(s)
- Yuma Morimoto
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - June Takaichi
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinichi Hanada
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kei Ohkubo
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Sugimoto
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobutaka Fujieda
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shunichi Fukuzumi
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinobu Itoh
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Pirovano P, Farquhar ER, Swart M, Fitzpatrick AJ, Morgan GG, McDonald AR. Characterization and reactivity of a terminal nickel(III)-oxygen adduct. Chemistry 2015; 21:3785-90. [PMID: 25612563 DOI: 10.1002/chem.201406485] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 11/06/2022]
Abstract
High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic Ni(II)-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = 1/2), square planar Ni(III)-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively.
Collapse
Affiliation(s)
- Paolo Pirovano
- School of Chemistry and CRANN/AMBER Nanoscience Institute, The University of Dublin, Trinity College, College Green, Dublin 2 (Ireland)
| | | | | | | | | | | |
Collapse
|
27
|
Kochem A, Gellon G, Jarjayes O, Philouze C, du Moulinet d'Hardemare A, van Gastel M, Thomas F. Nickel(ii) radical complexes of thiosemicarbazone ligands appended by salicylidene, aminophenol and aminothiophenol moieties. Dalton Trans 2015; 44:12743-56. [DOI: 10.1039/c5dt00944h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The neutral nickel(ii) complexes are chameleon pro-radical compounds: under their one-electron oxidized form they feature an iminosemiquinonate (or iminothiosemiquinonate) radical, while under their reduced form they are α-diimine π-radicals.
Collapse
Affiliation(s)
- Amélie Kochem
- Département de Chimie Moléculaire - Chimie Inorganique Redox Biomimétique (CIRE) - UMR CNRS 5250
- Université J. Fourier
- 38041 Grenoble cedex 9
- France
- Max Planck Institute for Chemical Energy Conversion
| | - Gisèle Gellon
- Département de Chimie Moléculaire - Chimie Inorganique Redox Biomimétique (CIRE) - UMR CNRS 5250
- Université J. Fourier
- 38041 Grenoble cedex 9
- France
| | - Olivier Jarjayes
- Département de Chimie Moléculaire - Chimie Inorganique Redox Biomimétique (CIRE) - UMR CNRS 5250
- Université J. Fourier
- 38041 Grenoble cedex 9
- France
| | - Christian Philouze
- Département de Chimie Moléculaire - Chimie Inorganique Redox Biomimétique (CIRE) - UMR CNRS 5250
- Université J. Fourier
- 38041 Grenoble cedex 9
- France
| | - Amaury du Moulinet d'Hardemare
- Département de Chimie Moléculaire - Chimie Inorganique Redox Biomimétique (CIRE) - UMR CNRS 5250
- Université J. Fourier
- 38041 Grenoble cedex 9
- France
| | - Maurice van Gastel
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Mülheim an der Ruhr
- Germany
| | - Fabrice Thomas
- Département de Chimie Moléculaire - Chimie Inorganique Redox Biomimétique (CIRE) - UMR CNRS 5250
- Université J. Fourier
- 38041 Grenoble cedex 9
- France
| |
Collapse
|
28
|
Alaji Z, Safaei E, Chiang L, Clarke RM, Mu C, Storr T. A Copper Complex of a Noninnocent Iminophenol-Amidopyridine Hybrid Ligand: Synthesis, Characterization, and Aerobic Alcohol Oxidation. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402687] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Kawai M, Yamaguchi T, Masaoka S, Tani F, Kohzuma T, Chiang L, Storr T, Mieda K, Ogura T, Szilagyi RK, Shimazaki Y. Influence of ligand flexibility on the electronic structure of oxidized Ni(III)-phenoxide complexes. Inorg Chem 2014; 53:10195-202. [PMID: 25254603 DOI: 10.1021/ic501181k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One-electron-oxidized Ni(III)-phenoxide complexes with salen-type ligands, [Ni(salen)py2](2+) ([1(en)-py](2+)) and [Ni(1,2-salcn)py2](2+) ([1(cn)-py](2+)), with a five-membered chelate dinitrogen backbone and [Ni(salpn)py2](2+) ([2(pn)-py](2+)), with a six-membered chelate backbone, have been characterized with a combination of experimental and theoretical methods. The five-membered chelate complexes [1(en)-py](2+) and [1(cn)-py](2+) were assigned as Ni(III)-phenoxyl radical species, while the six-membered chelate complex [2(pn)-py](2+) was concluded to be a Ni(II)-bis(phenoxyl radical) species with metal-centered reduction in the course of the one-electron oxidation of the Ni(III)-phenoxide complex [2(pn)-py](+). Thus, the oxidation state of the one-electron-oxidized Ni(III) salen-type complexes depends on the chelate ring size of the dinitrogen backbone.
Collapse
Affiliation(s)
- Minoru Kawai
- College of Science and ‡Graduate School of Science and Engineering, Ibaraki University , Bunkyo, Mito 310-8512, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jakhar A, Sadhukhan A, Khan NUH, Saravanan S, Kureshy RI, Abdi SHR, Bajaj HC. Asymmetric Hydrocyanation of Nitroolefins Catalyzed by an Aluminum(III) Salen Complex. ChemCatChem 2014. [DOI: 10.1002/cctc.201402373] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Takaichi J, Morimoto Y, Ohkubo K, Shimokawa C, Hojo T, Mori S, Asahara H, Sugimoto H, Fujieda N, Nishiwaki N, Fukuzumi S, Itoh S. Redox chemistry of nickel(II) complexes supported by a series of noninnocent β-diketiminate ligands. Inorg Chem 2014; 53:6159-69. [PMID: 24884152 DOI: 10.1021/ic5006693] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nickel complexes of a series of β-diketiminate ligands ((R)L(-), deprotonated form of 2-substituted N-[3-(phenylamino)allylidene]aniline derivatives (R)LH, R = Me, H, Br, CN, and NO2) have been synthesized and structurally characterized. One-electron oxidation of the neutral complexes [Ni(II)((R)L(-))2] by AgSbF6 or [Ru(III)(bpy)3](PF6)3 (bpy = 2,2'-bipyridine) gave the corresponding metastable cationic complexes, which exhibit an EPR spectrum due to a doublet species (S = 1/2) and a characteristic absorption band in near IR region ascribable to a ligand-to-ligand intervalence charge-transfer (LLIVCT) transition. DFT calculations have indicated that the divalent oxidation state of nickel ion (Ni(II)) is retained, whereas one of the β-diketiminate ligands is oxidized to give formally a mixed-valence complex, [Ni(II)((R)L(-))((R)L(•))](+). Thus, the doublet spin state of the oxidized cationic complex can be explained by taking account of the antiferromagnetic interaction between the high-spin nickel(II) ion (S = 1) and the organic radical (S = 1/2) of supporting ligand. A single-crystal structure of one of the cationic complexes (R = H) has been successfully determined to show that both ligands in the cationic complex are structurally equivalent. On the basis of theoretical analysis of the LLIVCT band and DFT calculations as well as the crystal structure, the mixed-valence complexes have been assigned to Robin-Day class III species, where the radical spin is equally delocalized between the two ligands to give the cationic complex, which is best described as [Ni(II)((R)L(0.5•-))2](+). One-electron reduction of the neutral complexes with decamethylcobaltocene gave the anionic complexes when the ligand has the electron-withdrawing substituent (R = CN, NO2, Br). The generated anionic complexes exhibited EPR spectra due to a doublet species (S = 1/2) but showed no LLIVCT band in the near-IR region. Thus, the reduced complexes are best described as the d(9) nickel(I) complexes supported by two anionic β-diketiminate ligands, [Ni(I)((R)L(-))2](-). This conclusion was also supported by DFT calculations. Substituent effects on the electronic structures of the three oxidation states (neutral, cationic, and anionic) of the complexes are systematically evaluated on the basis of DFT calculations.
Collapse
Affiliation(s)
- June Takaichi
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University , 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lecarme L, Chiang L, Philouze C, Jarjayes O, Storr T, Thomas F. Detailed Geometric and Electronic Structures of a One-Electron-Oxidized Ni Salophen Complex and Its Amido Derivatives. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Valence tautomerism in metal complexes: Stimulated and reversible intramolecular electron transfer between metal centers and organic ligands. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.01.014] [Citation(s) in RCA: 314] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Rajput A, Sharma AK, Barman SK, Koley D, Steinert M, Mukherjee R. Neutral, cationic, and anionic low-spin iron(III) complexes stabilized by amidophenolate and iminobenzosemiquinonate radical in N,N,O ligands. Inorg Chem 2014; 53:36-48. [PMID: 24387744 DOI: 10.1021/ic401985d] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A brownish-black complex [Fe(III)(L)2] (1) (S = 0), supported by two tridentate redox-active azo-appended o-amidophenolates [H2L = 2-(2-phenylazo)-anilino-4,6-di-tert-butylphenol], has been synthesized and structurally characterized. In CH2Cl2 1 displays two oxidative and two reductive 1e(-) redox processes at E1/2 values of 0.48 and 1.06 V and -0.42 and -1.48 V vs SCE, respectively. The one-electron oxidized form [1](+) isolated as a green solid [Fe(III)(L)2][BF4] (2) (S = 1/2) has been structurally characterized. Isolation of a dark ink-blue one-electron reduced form [1](-) has also been achieved [Co(III)(η(5)-C10H15)2][Fe(III)(L)2] (3) (S = 1/2). Mössbauer spectral parameters unequivocally establish that 1 is a low-spin (LS) Fe(III) complex. Careful analysis of Mössbauer spectral data of 2 and 3 at 200 and 80 K reveal that each complex has a major LS Fe(III) and a minor LS Fe(II) component (redox isomers): [Fe(III){(L(ISQ))(-•)}2](+) and [Fe(II){(L(IBQ))(0)}{(L(ISQ))(-•)}](+) (2) and [Fe(III){(L(AP))(2-)}2](-) and [Fe(II){(L(ISQ))(-•)}{(L(AP))(2-)}](-) (3). Notably, for both at 8 K mainly the major component exists. Broken-Symmetry (BS) Density Functional Theory (DFT) calculations at the B3LYP level reveals that in 1 the unpaired electron of LS Fe(III) is strongly antiferromagnetically coupled with a π-radical of o-iminobenzosemiquinonate(1-) (L(ISQ))(-•) form of the ligand, delocalized over two ligands providing 3- charge (X-ray structure). DFT calculations reveal that the unpaired electron in 2 is due to (L(ISQ))(-•) [LS Fe(III) (SFe = 1/2) is strongly antiferromagnetically coupled to one of the (L(ISQ))(-•) radicals (Srad = 1/2)] and 3 is primarily a LS Fe(III) complex, supported by two o-amidophenolate(2-) ligands. Time-Dependent-DFT calculations shed light on the origin of UV-vis-NIR spectral absorptions for 1-3. The collective consideration of Mössbauer, variable-temperature (77-298 K) electron paramagnetic resonance (EPR), and absorption spectral behavior at 298 K, and DFT results reveals that in 2 and 3 the valence-tautomerism is operative in the temperature range 80-300 K.
Collapse
Affiliation(s)
- Amit Rajput
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India
| | | | | | | | | | | |
Collapse
|
35
|
Asami K, Takashina A, Kobayashi M, Iwatsuki S, Yajima T, Kochem A, van Gastel M, Tani F, Kohzuma T, Thomas F, Shimazaki Y. Characterization of one-electron oxidized copper(ii)-salophen-type complexes; effects of electronic and geometrical structures on reactivities. Dalton Trans 2014; 43:2283-93. [DOI: 10.1039/c3dt52338a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Cao TPA, Nocton G, Ricard L, Le Goff XF, Auffrant A. A tetracoordinated phosphasalen nickel(III) complex. Angew Chem Int Ed Engl 2013; 53:1368-72. [PMID: 24375855 DOI: 10.1002/anie.201309222] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Indexed: 01/21/2023]
Abstract
The oxidation of a Ni(II) complex bearing a tetradentate phosphasalen ligand, which differs from salen by the presence of an iminophosphorane (PN) in place of an imine unit, was easily achieved by addition of a silver salt. The site of this oxidation was investigated with a combination of techniques (NMR, EPR, UV/Vis spectroscopy, X-ray diffraction, magnetic measurements) as well as DFT calculations. All data are in agreement with a high-valent Ni(III) center concentrating the spin density. This markedly differs from precedents in the salen series for which oxidation on the metal was only observed at low temperature or in the presence of additional ligands or anions. Therefore, thanks to the good electron-donating properties of the phosphasalen ligand, [Ni(Psalen)](+) represents a rare example of a tetracoordinated high-valent nickel complex in presence of a phenoxide ligand.
Collapse
Affiliation(s)
- Thi-Phuong-Anh Cao
- Laboratoire Hétéroéléments et Coordination, CNRS, École Polytechnique, Route de Saclay, 91128 Palaiseau (France) http://www.dcph.polytechnique.fr
| | | | | | | | | |
Collapse
|
37
|
Cao TPA, Nocton G, Ricard L, Le Goff XF, Auffrant A. A Tetracoordinated Phosphasalen Nickel(III) Complex. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201309222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Kochem A, Gellon G, Leconte N, Baptiste B, Philouze C, Jarjayes O, Orio M, Thomas F. Stable anilinyl radicals coordinated to nickel: X-ray crystal structure and characterization. Chemistry 2013; 19:16707-21. [PMID: 24281814 DOI: 10.1002/chem.201303228] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Indexed: 11/11/2022]
Abstract
Two anilinosalen and a mixed phenol-anilinosalen ligands involving sterically hindered anilines moieties were synthesized. Their nickel(II) complexes 1, 2, and 3 were prepared and characterized. They could be readily one-electron oxidized (E(1/2)=-0.30, -0.26 and 0.10 V vs. Fc(+)/Fc, respectively) into anilinyl radicals species [1](+), [2](+), and [3](+), respectively. The radical complexes are extremely stable and were isolated as single crystals. X-ray crystallographic structures reveal that the changes in bond length resulting from oxidation do not exceed 0.02 Å within the ligand framework in the symmetrical [1](+) and [2](+). No quinoid bond pattern was present. In contrast, larger structural rearrangements were evidenced for the unsymmetrical [3](+), with shortening of one C(ortho)-C(meta) bond. Radical species [1](+) and [2](+) exhibit a strong absorption band at around 6000 cm(-1) (class III mixed valence compounds). This band is significantly less intense than [3](+), consistent with a rather localized anilinyl radical character, and thus a classification of this species as class II mixed-valence compound. Magnetic and electronic properties, as well as structural parameters, have been computed by DFT methods.
Collapse
Affiliation(s)
- Amélie Kochem
- Département de Chimie Moléculaire, Chimie Inorganique Redox Biomimétique (CIRE), UMR-5250, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9 (France), Fax: (+33) 476-51-4836
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Dunn TJ, Chiang L, Ramogida CF, Hazin K, Webb MI, Katz MJ, Storr T. Class III Delocalization and Exciton Coupling in a Bimetallic Bis-ligand Radical Complex. Chemistry 2013; 19:9606-18. [DOI: 10.1002/chem.201300798] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Indexed: 11/07/2022]
|
40
|
Kurahashi T, Fujii H. Unique Ligand-Radical Character of an Activated Cobalt Salen Catalyst That Is Generated by Aerobic Oxidation of a Cobalt(II) Salen Complex. Inorg Chem 2013; 52:3908-19. [DOI: 10.1021/ic302677f] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Takuya Kurahashi
- Institute for Molecular Science & Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hiroshi Fujii
- Institute for Molecular Science & Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
41
|
Kasumov VT, Yerli Y, Kutluay A, Aslanoglu M. Synthesis, spectroscopy, magnetic and redox behaviors of copper(II) complexes with tert-butylated salen type ligands bearing bis(4-aminophenyl)ethane and bis(4-aminophenyl)amide backbones. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 104:203-212. [PMID: 23266695 DOI: 10.1016/j.saa.2012.11.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 11/07/2012] [Accepted: 11/16/2012] [Indexed: 06/01/2023]
Abstract
New salen type ligands, N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-ethylenedianiline [(X=H (1), 5-tert-butyl (2)] and N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-amidedianiline [X=H (3), 5-tert (4)] and their copper(II) complexes 5-8, have been synthesized. Their spectroscopic (IR, (1)H NMR, UV/vis, ESR) properties, as well as magnetic and redox-reactivity behavior are reported. IR spectra of 7 and 8 indicate the coordination of amide oxygen atoms of 3 and 4 ligands to Cu(II). The solid state ESR spectra of 5-8 exhibits less informative exchange narrowed isotropic or anisotropic signals with weak unresolved low field patterns. The magnetic moments of 5 (2.92 μ(B) per Cu(II)) and 6 (2.79 μ(B) per Cu(II)) are unusual for copper(II) complexes and considerably higher than those for complexes 7 and 8. Cryogenic measurements (300-10 K) show weak antiferromagnetic exchange interactions between the copper(II) centers in complexes 6 and 8. The results of electrochemical and chemical redox-reactivity studies are discussed.
Collapse
Affiliation(s)
- Veli T Kasumov
- Department of Chemistry, Harran University, Osmanbey, 63300 Şanlıurfa, Turkey.
| | | | | | | |
Collapse
|
42
|
Lyons CT, Stack TDP. Recent advances in phenoxyl radical complexes of salen-type ligands as mixed-valent galactose oxidase models. Coord Chem Rev 2013; 257:528-540. [PMID: 23264696 PMCID: PMC3524984 DOI: 10.1016/j.ccr.2012.06.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The interplay between redox-active transition metal ions and redox-active ligands in metalloenzyme sites is an area of considerable research interest. Galactose oxidase (GO) is the archetypical example, catalyzing the aerobic oxidation of primary alcohols to aldehydes via two one-electron cofactors: a copper atom and a cysteine-modified tyrosine residue. The electronic structure of the oxidized form of the enzyme (GO(ox)) has been investigated extensively through small molecule analogues including metal-salen phenoxyl radical complexes. Similar to GO(ox), one-electron oxidized metal-salen complexes are mixed-valent species, in which molecular orbitals (MOs) with predominantly phenolate and phenoxyl π-character act as redox-active centers bridged by mixing with metal d-orbitals. A detailed evaluation of the electronic distribution in these odd electron species using a variety of spectroscopic, electrochemical, and theoretical techniques has led to keen insights into the electronic structure of GO(ox).
Collapse
Affiliation(s)
| | - T. Daniel P. Stack
- Department of Chemistry, Stanford University, Sanford, CA 94305, United States
| |
Collapse
|
43
|
Franks M, Gadzhieva A, Ghandhi L, Murrell D, Blake AJ, Davies ES, Lewis W, Moro F, McMaster J, Schröder M. Five Coordinate M(II)-Diphenolate [M = Zn(II), Ni(II), and Cu(II)] Schiff Base Complexes Exhibiting Metal- and Ligand-Based Redox Chemistry. Inorg Chem 2013; 52:660-70. [DOI: 10.1021/ic301731w] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mark Franks
- School of
Chemistry, University of Nottingham, Nottingham
NG7 2RD, U.K
| | | | - Laura Ghandhi
- School of
Chemistry, University of Nottingham, Nottingham
NG7 2RD, U.K
| | - David Murrell
- School of
Chemistry, University of Nottingham, Nottingham
NG7 2RD, U.K
| | | | - E. Stephen Davies
- School of
Chemistry, University of Nottingham, Nottingham
NG7 2RD, U.K
| | - William Lewis
- School of
Chemistry, University of Nottingham, Nottingham
NG7 2RD, U.K
| | - Fabrizio Moro
- School of
Chemistry, University of Nottingham, Nottingham
NG7 2RD, U.K
| | - Jonathan McMaster
- School of
Chemistry, University of Nottingham, Nottingham
NG7 2RD, U.K
| | - Martin Schröder
- School of
Chemistry, University of Nottingham, Nottingham
NG7 2RD, U.K
| |
Collapse
|
44
|
Eckshtain-Levi M, Orio M, Lavi R, Benisvy L. Nickel(iii) complexes of di-amidato-di-phenolato ligands: effect of H-bonding. Dalton Trans 2013; 42:13323-6. [DOI: 10.1039/c3dt51543e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
45
|
Dunn TJ, Webb MI, Hazin K, Verma P, Wasinger EC, Shimazaki Y, Storr T. Double oxidation localizes spin in a Ni bis-phenoxyl radical complex. Dalton Trans 2013; 42:3950-6. [DOI: 10.1039/c2dt32632a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Asami K, Tsukidate K, Iwatsuki S, Tani F, Karasawa S, Chiang L, Storr T, Thomas F, Shimazaki Y. New Insights into the Electronic Structure and Reactivity of One-Electron Oxidized Copper(II)-(Disalicylidene)diamine Complexes. Inorg Chem 2012; 51:12450-61. [DOI: 10.1021/ic3018503] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kazutaka Asami
- College of Science, Ibaraki University, Bunkyo, Mito 310-8512, Japan
| | - Kazuaki Tsukidate
- College of Science, Ibaraki University, Bunkyo, Mito 310-8512, Japan
| | - Satoshi Iwatsuki
- Department of Chemistry, Konan University, Higashinada-ku, Kobe 658-8501, Japan
| | - Fumito Tani
- Institute for Materials Chemistry
and Engineering, Kyushu University, Higashi-ku,
Fukuoka 812-8581, Japan
| | - Satoru Karasawa
- Graduate School of Pharmaceutical
Sciences, Kyushu University, Higashi-ku,
Fukuoka 812-8582, Japan
| | - Linus Chiang
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia,
Canada
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia,
Canada
| | - Fabrice Thomas
- Département
de Chimie
Moléculaire-Chimie Inorganique Redox Biomimétique (CIRE)
- UMR CNRS 5250, Université Joseph Fourier, B. P. 53, 38041 Grenoble cedex 9, France
| | - Yuichi Shimazaki
- College of Science, Ibaraki University, Bunkyo, Mito 310-8512, Japan
| |
Collapse
|
47
|
Allard MM, Xavier FR, Heeg MJ, Schlegel HB, Verani CN. Sequential Phenolate Oxidations in Octahedral Cobalt(III) Complexes with [N2O3] Ligands. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Kochem A, Kanso H, Baptiste B, Arora H, Philouze C, Jarjayes O, Vezin H, Luneau D, Orio M, Thomas F. Ligand contributions to the electronic structures of the oxidized cobalt(II) salen complexes. Inorg Chem 2012; 51:10557-71. [PMID: 23013360 DOI: 10.1021/ic300763t] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Square planar cobalt(II) complexes of salen ligands N,N'-bis(3-tert-butyl-5R-salicylidene)-1,2-cyclohexanediamine), where R = OMe (1) and tert-butyl (2), were prepared. 1 and 2 were electrochemically reversibly oxidized into cations [1-H(2)O](+) and [2-H(2)O](+) in CH(2)Cl(2). The chemically generated [1-H(2)O](SbF(6))·0.68 H(2)O·0.82CH(2)Cl(2) and [2-H(2)O](SbF(6))·0.3H(2)O·0.85CH(2)Cl(2) were characterized by X-ray diffraction and NIR spectroscopy. Both complexes are paramagnetic species containing a square pyramidal cobalt ion coordinated at the apical position by an exogenous water molecule. They exhibit remarkable NIR bands at 1220 (7370 M(-1) cm(-1)) and 1060 nm (5560 M(-1) cm(-1)), respectively, assigned to a CT transition. DFT calculations and magnetic measurements confirm the paramagnetic (S = 1) ground spin state of the cations. They show that more than 70% of the total spin density in [1-H(2)O](+) and [2-H(2)O](+) is localized on the metal, the remaining spin density being distributed over the aromatic rings (30% phenoxyl character). In the presence of N-methylimidazole 1 and 2 are irreversibly oxidized by air into the genuine octahedral cobalt(III) bis(phenolate) complexes [1-im(2)](+) and [2-im(2)](+), the former being structurally characterized. Neither [1-im(2)](+) nor [2-im(2)](+) exhibits a NIR feature in its electronic spectrum. 1 and 2 were electrochemically two-electron oxidized into [1](2+) and [2](2+). The cations were identified as Co(III)-phenoxyl species by their characteristic absorption band at ca. 400 nm in the UV-vis spectrum. Coordination of the phenoxyl radical to the cobalt(III) metal ion is evidenced by the EPR signal centered at g = 2.00.
Collapse
Affiliation(s)
- Amélie Kochem
- Equipe de Chimie Inorganique Redox Biomimétique, Département de Chimie Moléculaire, Université Joseph Fourier, 38041 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chiang L, Kochem A, Jarjayes O, Dunn TJ, Vezin H, Sakaguchi M, Ogura T, Orio M, Shimazaki Y, Thomas F, Storr T. Radical Localization in a Series of Symmetric NiIIComplexes with Oxidized Salen Ligands. Chemistry 2012; 18:14117-27. [DOI: 10.1002/chem.201201410] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Indexed: 11/12/2022]
|
50
|
Shimazaki Y, Yamauchi O. Group-10 Metal Complexes of Biological Molecules and Related Ligands: Structural and Functional Properties. Chem Biodivers 2012; 9:1635-58. [DOI: 10.1002/cbdv.201100446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|