1
|
Quintana JI, Atxabal U, Unione L, Ardá A, Jiménez-Barbero J. Exploring multivalent carbohydrate-protein interactions by NMR. Chem Soc Rev 2023; 52:1591-1613. [PMID: 36753338 PMCID: PMC9987413 DOI: 10.1039/d2cs00983h] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Indexed: 02/09/2023]
Abstract
Nuclear Magnetic Resonance (NMR) has been widely employed to assess diverse features of glycan-protein molecular recognition events. Different types of qualitative and quantitative information at different degrees of resolution and complexity can be extracted from the proper application of the available NMR-techniques. In fact, affinity, structural, kinetic, conformational, and dynamic characteristics of the binding process are available. Nevertheless, except in particular cases, the affinity of lectin-sugar interactions is weak, mostly at the low mM range. This feature is overcome in biological processes by using multivalency, thus augmenting the strength of the binding. However, the application of NMR methods to monitor multivalent lectin-glycan interactions is intrinsically challenging. It is well known that when large macromolecular complexes are formed, the NMR signals disappear from the NMR spectrum, due to the existence of fast transverse relaxation, related to the large size and exchange features. Indeed, at the heart of the molecular recognition event, the associated free-bound chemical exchange process for both partners takes place in a particular timescale. Thus, these factors have to be considered and overcome. In this review article, we have distinguished, in a subjective manner, the existence of multivalent presentations in the glycan or in the lectin. From the glycan perspective, we have also considered whether multiple epitopes of a given ligand are presented in the same linear chain of a saccharide (i.e., poly-LacNAc oligosaccharides) or decorating different arms of a multiantennae scaffold, either natural (as in multiantennae N-glycans) or synthetic (of dendrimer or polymer nature). From the lectin perspective, the presence of an individual binding site at every monomer of a multimeric lectin may also have key consequences for the binding event at different levels of complexity.
Collapse
Affiliation(s)
- Jon I Quintana
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
| | - Unai Atxabal
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
| | - Luca Unione
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
| | - Ana Ardá
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
- Department of Organic Chemistry, II Faculty of Science and Technology, EHU-UPV, 48940 Leioa, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
2
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
3
|
Topchiy MA, Ageshina AA, Chesnokov GA, Sterligov GK, Rzhevskiy SA, Gribanov PS, Osipov SN, Nechaev MS, Asachenko AF. Alkynyl‐ or Azido‐Functionalized 1,2,3‐Triazoles: Selective MonoCuAAC Promoted by Physical Factors. ChemistrySelect 2019. [DOI: 10.1002/slct.201902135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Maxim A. Topchiy
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| | - Alexandra A. Ageshina
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
| | - Gleb A. Chesnokov
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
| | - Grigorii K. Sterligov
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| | - Sergey A. Rzhevskiy
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
| | - Pavel S. Gribanov
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences 28 Vavilov str. 119991 Moscow Russian Federation
| | - Sergey N. Osipov
- A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences 28 Vavilov str. 119991 Moscow Russian Federation
| | - Mikhail S. Nechaev
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| | - Andrey F. Asachenko
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| |
Collapse
|
4
|
A post-translational modification of human Norovirus capsid protein attenuates glycan binding. Nat Commun 2019; 10:1320. [PMID: 30899001 PMCID: PMC6428809 DOI: 10.1038/s41467-019-09251-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/27/2019] [Indexed: 01/06/2023] Open
Abstract
Attachment of human noroviruses to histo blood group antigens (HBGAs) is essential for infection, but how this binding event promotes the infection of host cells is unknown. Here, we employ protein NMR experiments supported by mass spectrometry and crystallography to study HBGA binding to the P-domain of a prevalent virus strain (GII.4). We report a highly selective transformation of asparagine 373, located in an antigenic loop adjoining the HBGA binding site, into an iso-aspartate residue. This spontaneous post-translational modification (PTM) proceeds with an estimated half-life of a few days at physiological temperatures, independent of the presence of HBGAs but dramatically affecting HBGA recognition. Sequence conservation and the surface-exposed position of this PTM suggest an important role in infection and immune recognition for many norovirus strains. Attachment of human noroviruses to histo blood group antigens (HBGAs) is essential for infection. Here the authors report that an asparagine residue located near the HBGA-attachment site can convert into an iso-aspartate residue through spontaneous deamidation and influence HBGA recognition.
Collapse
|
5
|
Bücher KS, Konietzny PB, Snyder NL, Hartmann L. Heteromultivalent Glycooligomers as Mimetics of Blood Group Antigens. Chemistry 2019; 25:3301-3309. [PMID: 30431195 DOI: 10.1002/chem.201804505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/26/2018] [Indexed: 12/19/2022]
Abstract
Precision glycomacromolecules have proven to be important tools for the investigation of multivalent carbohydrate-lectin interactions by presenting multiple glycan epitopes on a highly-defined synthetic scaffold. Herein, we present a new strategy for the versatile assembly of heteromultivalent glycomacromolecules that contain different carbohydrate motifs in proximity within the side chains. A new building block suitable for the solid-phase polymer synthesis of precision glycomacromolecules was developed with a branching point in the side chain that bears a free alkyne and a TIPS-protected alkyne moiety, which enables the subsequent attachment of different carbohydrate motifs by on-resin copper-mediated azide-alkyne cycloaddition reactions. Applying this synthetic strategy, heteromultivalent glycooligomers presenting fragments of histo-blood group antigens and human milk oligosaccharides were synthesized and tested for their binding behavior towards bacterial lectin LecB.
Collapse
Affiliation(s)
- Katharina S Bücher
- Institute of Organic and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick B Konietzny
- Institute of Organic and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, NC, USA
| | - Laura Hartmann
- Institute of Organic and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Agramunt J, Saltor L, Pedroso E, Grandas A. Compatibility between the cysteine-cyclopentenedione reaction and the copper(i)-catalyzed azide-alkyne cycloaddition. Org Biomol Chem 2018; 16:9185-9190. [PMID: 30457146 DOI: 10.1039/c8ob02451k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cysteine-cyclopentenedione reaction can be combined with the copper(i)-catalyzed azide-alkyne cycloaddition provided that the former is carried out first. If not, the azide and the cyclopentenedione undergo a 1,3-dipolar cycloaddition, which furnishes triazole-containing compounds and products resulting from nitrogen loss. Both of these products were fully characterized. Attempts to obtain either of them as the main compound or to drive the reaction nearly to completion were unsuccessful, which points to the azide-cyclopentenedione reaction as not being useful for bioconjugation.
Collapse
Affiliation(s)
- Jordi Agramunt
- Departament de Química Inorgànica i Orgànica (secció de Química Orgànica) and IBUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
7
|
Bücher KS, Yan H, Creutznacher R, Ruoff K, Mallagaray A, Grafmüller A, Dirks JS, Kilic T, Weickert S, Rubailo A, Drescher M, Schmidt S, Hansman G, Peters T, Uetrecht C, Hartmann L. Fucose-Functionalized Precision Glycomacromolecules Targeting Human Norovirus Capsid Protein. Biomacromolecules 2018; 19:3714-3724. [PMID: 30071731 DOI: 10.1021/acs.biomac.8b00829] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Norovirus infection is the major cause of nonbacterial gastroenteritis in humans and has been the subject of numerous studies investigating the virus's biophysical properties and biochemical function with the aim of deriving novel and highly potent entry inhibitors to prevent infection. Recently, it has been shown that the protruding P domain dimer (P-dimer) of a GII.10 Norovirus strain exhibits two new binding sites for l-fucose in addition to the canonical binding sites. Thus, these sites provide a novel target for the design of multivalent fucose ligands as entry inhibitors of norovirus infections. In this current study, a first generation of multivalent fucose-functionalized glycomacromolecules was synthesized and applied as model structures to investigate the potential targeting of fucose binding sites in human norovirus P-dimer. Following previously established solid phase polymer synthesis, eight precision glycomacromolecules varying in number and position of fucose ligands along an oligo(amidoamine) backbone were obtained and then used in a series of binding studies applying native MS, NMR, and X-ray crystallography. We observed only one fucose per glycomacromolecule binding to one P-dimer resulting in similar binding affinities for all fucose-functionalized glycomacromolecules, which based on our current findings we attribute to the overall size of macromolecular ligands and possibly to steric hindrance.
Collapse
Affiliation(s)
- Katharina Susanne Bücher
- Heinrich-Heine-University Düsseldorf , Institute for Organic Chemistry and Macromolecular Chemistry , Düsseldorf , Germany
| | - Hao Yan
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany
| | - Robert Creutznacher
- Institute of Chemistry and Metabolomics , University of Lübeck , Lübeck , Germany
| | - Kerstin Ruoff
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany and Department of Infectious Diseases, Virology , University of Heidelberg , Heidelberg , Germany
| | - Alvaro Mallagaray
- Institute of Chemistry and Metabolomics , University of Lübeck , Lübeck , Germany
| | - Andrea Grafmüller
- Max-Planck-Institute of Colloids and Interfaces , Department of Theory and Bio-Systems , Potsdam , Germany
| | - Jan Sebastian Dirks
- Heinrich-Heine-University Düsseldorf , Institute for Organic Chemistry and Macromolecular Chemistry , Düsseldorf , Germany
| | - Turgay Kilic
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany and Department of Infectious Diseases, Virology , University of Heidelberg , Heidelberg , Germany
| | - Sabrina Weickert
- University of Konstanz , Department of Chemistry and Konstanz Research School Chemical Biology , Konstanz , Germany
| | - Anna Rubailo
- University of Konstanz , Department of Chemistry and Konstanz Research School Chemical Biology , Konstanz , Germany
| | - Malte Drescher
- University of Konstanz , Department of Chemistry and Konstanz Research School Chemical Biology , Konstanz , Germany
| | - Stephan Schmidt
- Heinrich-Heine-University Düsseldorf , Institute for Organic Chemistry and Macromolecular Chemistry , Düsseldorf , Germany
| | - Grant Hansman
- Schaller Research Group at the University of Heidelberg and the DKFZ, Heidelberg, Germany and Department of Infectious Diseases, Virology , University of Heidelberg , Heidelberg , Germany
| | - Thomas Peters
- Institute of Chemistry and Metabolomics , University of Lübeck , Lübeck , Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , Hamburg , Germany.,European XFEL GmbH , Schenefeld , Germany
| | - Laura Hartmann
- Heinrich-Heine-University Düsseldorf , Institute for Organic Chemistry and Macromolecular Chemistry , Düsseldorf , Germany
| |
Collapse
|
8
|
New branched amino acids for high affinity dendrimeric DC-SIGN ligands. Bioorg Med Chem 2018; 26:1006-1015. [DOI: 10.1016/j.bmc.2017.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/22/2017] [Accepted: 12/24/2017] [Indexed: 11/19/2022]
|
9
|
Daskhan GC, Tran HTT, Meloncelli PJ, Lowary TL, West LJ, Cairo CW. Construction of Multivalent Homo- and Heterofunctional ABO Blood Group Glycoconjugates Using a Trifunctional Linker Strategy. Bioconjug Chem 2018; 29:343-362. [PMID: 29237123 DOI: 10.1021/acs.bioconjchem.7b00679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The design and synthesis of multivalent ligands displaying complex oligosaccharides is necessary for the development of therapeutics, diagnostics, and research tools. Here, we report an efficient conjugation strategy to prepare complex glycoconjugates with 4 copies of 1 or 2 separate glycan epitopes, providing 4-8 carbohydrate residues on a tetravalent poly(ethylene glycol) scaffold. This strategy provides complex glycoconjugates that approach the size of glycoproteins (15-18 kDa) while remaining well-defined. The synthetic strategy makes use of three orthogonal functional groups, including a reactive N-hydroxysuccinimide (NHS)-ester moiety on the linker to install the first carbohydrate epitope via reaction with an amine. A masked amine functionality on the linker is revealed after the removal of a fluorenylmethyloxycarbonyl (Fmoc)-protecting group, allowing the attachment to the NHS-activated poly(ethylene glycol) (PEG) scaffold. An azide group in the linker was then used to incorporate the second carbohydrate epitope via catalyzed alkyne-azide cycloaddition. Using a known tetravalent PEG scaffold (PDI, 1.025), we prepared homofunctional glycoconjugates that display four copies of lactose and the A-type II or the B-type II human blood group antigens. Using our trifunctional linker, we expanded this strategy to produce heterofunctional conjugates with four copies of two separate glycan epitopes. These heterofunctional conjugates included Neu5Ac, 3'-sialyllactose, or 6'-sialyllactose as a second antigen. Using an alternative strategy, we generated heterofunctional conjugates with three copies of the glycan epitope and one fluorescent group (on average) using a sequential dual-amine coupling strategy. These conjugation strategies should be easily generalized for conjugation of other complex glycans. We demonstrate that the glycan epitopes of heterofunctional conjugates engage and cluster target B-cell receptors and CD22 receptors on B cells, supporting the application of these reagents for investigating cellular response to carbohydrate antigens of the ABO blood group system.
Collapse
Affiliation(s)
- Gour Chand Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Hanh-Thuc Ton Tran
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Peter J Meloncelli
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Todd L Lowary
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.,Canadian National Transplant Research Program, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Lori J West
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.,Department of Pediatrics, Surgery, Medical Microbiology and Immunology, and Laboratory Medicine and Pathology, Alberta Transplant Institute, University of Alberta Edmonton, Alberta T6G 2E1, Canada.,Canadian National Transplant Research Program, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Christopher W Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.,Canadian National Transplant Research Program, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
10
|
Ali ES, Rajapaksha H, Carr JM, Petrovsky N. Norovirus drug candidates that inhibit viral capsid attachment to human histo-blood group antigens. Antiviral Res 2016; 133:14-22. [PMID: 27421712 DOI: 10.1016/j.antiviral.2016.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/02/2016] [Accepted: 07/06/2016] [Indexed: 01/11/2023]
Abstract
Human noroviruses are the leading causative agents of epidemic and sporadic viral gastroenteritis and childhood diarrhoea worldwide. Human histo-blood group antigens (HBGA) serve as receptors for norovirus capsid protein attachment and play a critical role in infection. This makes HBGA-norovirus binding a promising target for drug development. Recently solved crystal structures of norovirus bound to HBGA have provided a structural basis for identification of potential anti-norovirus drugs and subsequently performed in silico and in vitro drug screens have identified compounds that block norovirus binding and may thereby serve as structural templates for design of therapeutic norovirus inhibitors. This review explores norovirus therapeutic options based on the strategy of blocking norovirus-HBGA binding.
Collapse
Affiliation(s)
- Eunüs S Ali
- School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Harinda Rajapaksha
- Vaxine Pty Ltd, Flinders Medical Centre/Flinders University, Adelaide, South Australia, Australia
| | - Jillian M Carr
- Department of Microbiology & Infectious Diseases, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Nikolai Petrovsky
- School of Medicine, Flinders University, Adelaide, South Australia, Australia; Vaxine Pty Ltd, Flinders Medical Centre/Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
11
|
Zheng ZJ, Wang D, Xu Z, Xu LW. Synthesis of bi- and bis-1,2,3-triazoles by copper-catalyzed Huisgen cycloaddition: A family of valuable products by click chemistry. Beilstein J Org Chem 2015; 11:2557-76. [PMID: 26734102 PMCID: PMC4685768 DOI: 10.3762/bjoc.11.276] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/20/2015] [Indexed: 12/15/2022] Open
Abstract
The Cu(I)-catalyzed azide-alkyne cycloaddition reaction, also known as click chemistry, has become a useful tool for the facile formation of 1,2,3-triazoles. Specifically, the utility of this reaction has been demonstrated by the synthesis of structurally diverse bi- and bis-1,2,3-triazoles. The present review focuses on the synthesis of such bi- and bistriazoles and the importance of using copper-promoted click chemistry (CuAAC) for such transformations. In addition, the application of bitriazoles and the related CuAAAC reaction in different fields, including medicinal chemistry, coordination chemistry, biochemistry, and supramolecular chemistry, have been highlighted.
Collapse
Affiliation(s)
- Zhan-Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, P. R. China
| | - Ding Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, P. R. China; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China
| |
Collapse
|
12
|
Attachment of Norovirus to Histo Blood Group Antigens: A Cooperative Multistep Process. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Mallagaray A, Lockhauserbäumer J, Hansman G, Uetrecht C, Peters T. Attachment of norovirus to histo blood group antigens: a cooperative multistep process. Angew Chem Int Ed Engl 2015; 54:12014-9. [PMID: 26329854 DOI: 10.1002/anie.201505672] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 11/11/2022]
Abstract
Human noroviruses recognize histo blood group antigens (HBGAs) as cellular attachment factors. Recently, it has been discovered that norovirus infection can be significantly enhanced by HBGA binding. Yet the attachment process and how it promotes host-cell entry is only poorly understood. The binding of a norovirus protruding (P) domain of a predominant GII.4 Saga strain to HBGAs at atomic resolution was studied. So far, independent and equivalent multiple binding sites were held responsible for attachment. Using NMR experiments we show that norovirus-HBGA binding is a cooperative multi-step process, and native mass spectrometry reveals four instead of two HBGA binding sites per P-dimer. An accompanying crystallographic study has disclosed four instead of two L-fucose binding sites per P-dimer of a related GII.10 strain1 further supporting our findings. We have uncovered a novel paradigm for norovirus-HBGA recognition that will inspire further studies into norovirus-host interactions.
Collapse
Affiliation(s)
- Alvaro Mallagaray
- Center of Structural and Cell Biology in Medicine, Institute of Chemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck (Germany)
| | - Julia Lockhauserbäumer
- Dynamics of Viral Structures, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg (Germany).,Sample Environment Group, European XFEL GmbH, Notkestrasse 85, 22607 Hamburg (Germany)
| | - Grant Hansman
- Schaller Research Group at the University of Heidelberg and the DKFZ, 69120 Heidelberg (Germany).,Department of Infectious Diseases and Virology, University of Heidelberg, 69120 Heidelberg (Germany)
| | - Charlotte Uetrecht
- Dynamics of Viral Structures, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg (Germany).,Sample Environment Group, European XFEL GmbH, Notkestrasse 85, 22607 Hamburg (Germany)
| | - Thomas Peters
- Center of Structural and Cell Biology in Medicine, Institute of Chemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck (Germany).
| |
Collapse
|
14
|
Kim Y, Galasiti Kankanamalage AC, Chang KO, Groutas WC. Recent Advances in the Discovery of Norovirus Therapeutics. J Med Chem 2015; 58:9438-50. [PMID: 26258852 DOI: 10.1021/acs.jmedchem.5b00762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Noroviruses are members of the family Caliciviridae. Norovirus infections are a global health burden that impacts >20 million individuals annually in the U.S. alone. Noroviruses are associated with high morbidity among vulnerable populations, particularly immunocompromised patients. This perspective highlights recent developments related to the discovery and development of norovirus-specific small-molecule therapeutics as well as recent advances in our understanding of norovirus biology and pathogenesis. Most of the work in this area is at the early discovery stage and has been primarily focused on inhibitors of norovirus 3C-like protease and RNA dependent RNA polymerase. However, recent discoveries emanating from basic studies in norovirus research have resulted in the identification of new host-related drug targets that can be exploited. A repurposed compound has been advanced to human clinical studies.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas 66506, United States
| | | | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas 66506, United States
| | - William C Groutas
- Department of Chemistry, Wichita State University , 1845 North Fairmount Avenue, Wichita, Kansas 67260, United States
| |
Collapse
|
15
|
Cecioni S, Imberty A, Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem Rev 2014; 115:525-61. [DOI: 10.1021/cr500303t] [Citation(s) in RCA: 381] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samy Cecioni
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Anne Imberty
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
| | - Sébastien Vidal
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| |
Collapse
|
16
|
Tan Y, Li J, Huo J, Xue F, Wang Z. Synthesis of 2(5H)-Furanone Derivatives with Symmetrical and Unsymmetrical Bis-1,2,3-triazole Structure. SYNTHETIC COMMUN 2014. [DOI: 10.1080/00397911.2014.914220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yuehe Tan
- a School of Chemistry and Environment , South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education , Guangzhou , China
| | - Jianxiao Li
- a School of Chemistry and Environment , South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education , Guangzhou , China
| | - Jingpei Huo
- a School of Chemistry and Environment , South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education , Guangzhou , China
| | - Fuling Xue
- a School of Chemistry and Environment , South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education , Guangzhou , China
| | - Zhaoyang Wang
- a School of Chemistry and Environment , South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education , Guangzhou , China
| |
Collapse
|
17
|
Shang J, Piskarev VE, Xia M, Huang P, Jiang X, Likhosherstov LM, Novikova OS, Newburg DS, Ratner DM. Identifying human milk glycans that inhibit norovirus binding using surface plasmon resonance. Glycobiology 2013; 23:1491-8. [PMID: 24026239 DOI: 10.1093/glycob/cwt077] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human milk glycans inhibit binding between norovirus and its host glycan receptor; such competitive inhibition by human milk glycans is associated with a reduced risk of infection. The relationship between the presence of specific structural motifs in the human milk glycan and its ability to inhibit binding by specific norovirus strains requires facile, accurate and miniaturized-binding assays. Toward this end, a high-throughput biosensor platform was developed based on surface plasmon resonance imaging (SPRi) of glycan microarrays. The SPRi was validated, and its utility was tested, by measuring binding specificities between defined human milk glycan epitopes and the capsids of two common norovirus strains, VA387 and Norwalk. Human milk oligosaccharide (HMOS)-based neoglycoconjugates, including chemically derived neoglycoproteins and oligosaccharide-glycine derivatives, were used to represent polyvalent glycoconjugates and monovalent oligosaccharides, respectively, in human milk. SPRi binding results established that the glycan motifs that bind norovirus capsids depend upon strain; VA387 capsid interacts with two neoglycoproteins, whereas Norwalk capsid binds to a different set of HMOS motifs in the form of both polyvalent neoglycoproteins and monovalent oligosaccharides. SPRi competitive binding assays further demonstrated that specific norovirus-binding glycans are able to inhibit norovirus capsid binding to their host receptors. A polyvalent neoglycoconjugate with clustered carbohydrate moieties is required for the inhibition of VA387 capsid binding to host receptor glycans, whereas both monovalent oligosaccharides and polyvalent neoglycoconjugates are able to inhibit Norwalk capsid binding to its host receptor. Binding of HMOS and HMOS-based neoglycoconjugates to norovirus capsids depends upon the specific strain characteristics, implying that HMOS and their polyvalent derivatives are potential anti-adhesive agents for norovirus prophylaxis.
Collapse
Affiliation(s)
- Jing Shang
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Elduque X, Sánchez A, Sharma K, Pedroso E, Grandas A. Protected maleimide building blocks for the decoration of peptides, peptoids, and peptide nucleic acids. Bioconjug Chem 2013; 24:832-9. [PMID: 23582188 DOI: 10.1021/bc4000614] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Monomers allowing for the introduction of [2,5-dimethylfuran]-protected maleimides into polyamides such as peptides, peptide nucleic acids, and peptoids were prepared, as well as the corresponding oligomers. Suitable maleimide deprotection conditions were established in each case. The stability of the adducts generated by Michael-type maleimide-thiol reaction and Diels-Alder cycloaddition to maleimide deprotection conditions was exploited to prepare a variety of conjugates from peptide and PNA scaffolds incorporating one free and one protected maleimide. The target molecules were synthesized by using two subsequent maleimide-involving click reactions separated by a maleimide deprotection step. Carrying out maleimide deprotection and conjugation simultaneously gave better results than performing the two reactions subsequently.
Collapse
Affiliation(s)
- Xavier Elduque
- Departament de Química Orgànica and IBUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
19
|
Niu TF, Gu L, Wang L, Yi WB, Cai C. Chemoselective Preparation of Unsymmetrical Bis(1,2,3-triazole) Derivatives and Application in Bis(1,2,3-triazole)-Modified Peptidomimetic Synthesis. European J Org Chem 2012. [DOI: 10.1002/ejoc.201201096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Yuan Z, Kuang GC, Clark RJ, Zhu L. Chemoselective Sequential “Click” Ligation Using Unsymmetrical Bisazides. Org Lett 2012; 14:2590-3. [DOI: 10.1021/ol300899n] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhao Yuan
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Gui-Chao Kuang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Ronald J. Clark
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
21
|
Bhunia A, Bhattacharjya S, Chatterjee S. Applications of saturation transfer difference NMR in biological systems. Drug Discov Today 2012; 17:505-13. [DOI: 10.1016/j.drudis.2011.12.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/10/2011] [Accepted: 12/14/2011] [Indexed: 01/08/2023]
|
22
|
Gómez-García M, Benito JM, Butera AP, Mellet CO, Fernández JMG, Blanco JLJ. Probing Carbohydrate-Lectin Recognition in Heterogeneous Environments with Monodisperse Cyclodextrin-Based Glycoclusters. J Org Chem 2012; 77:1273-88. [DOI: 10.1021/jo201797b] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Marta Gómez-García
- Departamento
de Química
Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1,
E-41012 Sevilla, Spain
| | - Juan M. Benito
- Instituto de Investigaciones
Químicas, CSIC - Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla,
Spain
| | - Anna P. Butera
- Departamento
de Química
Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1,
E-41012 Sevilla, Spain
| | - Carmen Ortiz Mellet
- Departamento
de Química
Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1,
E-41012 Sevilla, Spain
| | - José M. García Fernández
- Instituto de Investigaciones
Químicas, CSIC - Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla,
Spain
| | - José L. Jiménez Blanco
- Departamento
de Química
Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González 1,
E-41012 Sevilla, Spain
| |
Collapse
|
23
|
Dou D, He G, Mandadapu SR, Aravapalli S, Kim Y, Chang KO, Groutas WC. Inhibition of noroviruses by piperazine derivatives. Bioorg Med Chem Lett 2011; 22:377-9. [PMID: 22119464 DOI: 10.1016/j.bmcl.2011.10.122] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 11/27/2022]
Abstract
There is currently an unmet need for the development of small-molecule therapeutics for norovirus infection. The piperazine scaffold, a privileged structure embodied in many pharmacological agents, was used to synthesize an array of structurally-diverse derivatives which were screened for anti-norovius activity in a cell-based replicon system. The studies described herein demonstrate for the first time that functionalized piperazine derivatives possess anti-norovirus activity. Furthermore, these studies have led to the identification of two promising compounds (6a and 9l) that can be used as a launching pad for the optimization of potency, cytotoxicity, and drug-like characteristics.
Collapse
Affiliation(s)
- Dengfeng Dou
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Dou D, Mandadapu SR, Alliston KR, Kim Y, Chang KO, Groutas WC. Cyclosulfamide-based derivatives as inhibitors of noroviruses. Eur J Med Chem 2011; 47:59-64. [PMID: 22063754 DOI: 10.1016/j.ejmech.2011.10.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/06/2011] [Accepted: 10/08/2011] [Indexed: 11/15/2022]
Abstract
An optimization campaign focused on improving pharmacological activity and physicochemical properties of a recently-identified class of cyclosulfamide-based norovirus inhibitors has been carried out. Dimeric compound 4 was found to be a ∼10-fold more potent norovirus inhibitor (ED(50) 0.4 μM) compared to the original hit, however, isonipecotic acid ester derivatives 7e and 10a were shown to have superior therapeutic indices.
Collapse
Affiliation(s)
- Dengfeng Dou
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | | | | | | | | |
Collapse
|
25
|
Dou D, Mandadapu SR, Alliston KR, Kim Y, Chang KO, Groutas WC. Design and synthesis of inhibitors of noroviruses by scaffold hopping. Bioorg Med Chem 2011; 19:5749-55. [PMID: 21893416 DOI: 10.1016/j.bmc.2011.08.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 08/06/2011] [Accepted: 08/15/2011] [Indexed: 11/30/2022]
Abstract
A scaffold hopping strategy was employed to identify new chemotypes that inhibit noroviruses. The replacement of the cyclosulfamide scaffold by an array of heterocyclic scaffolds lead to the identification of additional series of compounds that possessed anti-norovirus activity in a cell-based replicon system.
Collapse
Affiliation(s)
- Dengfeng Dou
- Department of Chemistry, Wichita State University, Wichita, KS 67260, United States
| | | | | | | | | | | |
Collapse
|