1
|
Anti-CD44 antibodies grafted immunoaffinity Fe 3O 4@MnO 2 nanozymes with highly oxidase-like catalytic activity for specific detection of triple-negative breast cancer MDA-MB-231 cells. Anal Chim Acta 2023; 1249:340947. [PMID: 36868774 DOI: 10.1016/j.aca.2023.340947] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/07/2023]
Abstract
Cell-enzyme-linked immunosorbent assay (CELISA) is extensively applied for cancer diagnosis and screening because of its simple operation, high sensitivity, and intuitive color change. However, the unstable horseradish peroxidase (HRP), hydrogen peroxide (H2O2) and non-specificity have led to a high false negative rate, which limits its application. In this study, we have developed an innovative immunoaffinity nanozyme aided CELISA based on anti-CD44 monoclonal antibodies (mAbs) bioconjugated manganese dioxide-modified magnetite nanoparticles (Fe3O4@MnO2 NPs) for the specific detection of triple-negative breast cancer MDA-MB-231 cells. The CD44FM nanozymes were fabricated to replace unstable HRP and H2O2 to counteract possible negative effects in conventional CELISA. Results suggested that CD44FM nanozymes displayed remarkable oxidase-like activities over an extensive pH and temperature range. The bioconjugation of CD44 mAbs enabled CD44FM nanozymes to enter MDA-MB-231 cells selectively via over-expressed CD44 antigens on the membrane surface of these cells, and then catalyzed oxidation of the chromogenic substrate TMB, further achieving specific detection of these cells. Additionally, this study exhibited high sensitivity and low detection limit for MDA-MB-231 cells with a quantitation range of just 186 cells. To sum up, this report developed a simple, specific and sensitive assay platform based on CD44FM nanozymes, which could provide a promising strategy for targeted diagnosis and screening of breast cancer.
Collapse
|
2
|
Alamoudi AO. Radiomics, aptamers and nanobodies: New insights in cancer diagnostics and imaging. Hum Antibodies 2021; 29:1-15. [PMID: 33554897 DOI: 10.3233/hab-200436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
At present, cancer is a major health issue and the second leading cause of mortality worldwide. Researchers have been working hard on investigating not only improved therapeutics but also on early detection methods, both critical to increasing treatment efficacy and developing methods for disease prevention. Diagnosis of cancers at an early stage can promote timely medical intervention and effective treatment and will result in inhibiting tumor growth and development. Several advances have been made in the diagnostics and imagining technologies for early tumor detection and deciding an effective therapy these include radiomics, nanobodies, and aptamers. Here in this review, we summarize the main applications of radiomics, aptamers, and the use of nanobody-based probes for molecular imaging applications in diagnosis, treatment planning, and evaluations in the field of oncology to develop quantitative and personalized medicine. The preclinical data reported to date are quite promising, and it is predicted that nanobody-based molecular imaging agents will play an important role in the diagnosis and management of different cancer types in near future.
Collapse
|
3
|
Han J, Gao L, Wang J, Wang J. Application and development of aptamer in cancer: from clinical diagnosis to cancer therapy. J Cancer 2020; 11:6902-6915. [PMID: 33123281 PMCID: PMC7592013 DOI: 10.7150/jca.49532] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/20/2020] [Indexed: 01/04/2023] Open
Abstract
Traditional anticancer therapies can cause serious side effects in clinical treatment due to their nonspecific of tumor cells. Aptamers, also termed as 'chemical antibodies', are short DNA or RNA oligonucleotides selected from the synthetic large random single-strand oligonucleotide library by systematic evolution of ligands by exponential enrichment (SELEX) to bind to lots of different targets, such as proteins or nucleic acid structures. Aptamers have good affinities and high specificity with target molecules, thus may be able to act as drugs themselves to directly inhibit the proliferation of tumor cells, or own great potentialities in the targeted drug delivery systems which can be used in tumor diagnosis and target specific tumor cells, thereby minimizing the toxicity to normal cells. Here we review the unique properties of aptamer represents a great opportunity when applied to the rapidly developing fields of biotechnology and discuss the recent developments in the use of aptamers as powerful tools for analytic, diagnostic and therapeutic applications for cancer.
Collapse
Affiliation(s)
- Jing Han
- Department of Reproductive Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Liang Gao
- Department of Dermatology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Jinsheng Wang
- Department of Pathology, Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Jia Wang
- Department of Immunology, Changzhi Medical College, Changzhi, Shanxi, 046000 China
| |
Collapse
|
4
|
Beyond native deoxyribonucleic acid, templating fluorescent nanomaterials for bioanalytical applications: A review. Anal Chim Acta 2020; 1105:11-27. [DOI: 10.1016/j.aca.2020.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/16/2022]
|
5
|
Gao G, Liu C, Jain S, Li D, Wang H, Zhao Y, Liu J. Potential use of aptamers for diagnosis and treatment of pancreatic cancer. J Drug Target 2019; 27:853-865. [PMID: 30596288 DOI: 10.1080/1061186x.2018.1564924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer (PC) is highly malignant with a low 5-year survival rate. PC currently does not have good early diagnostic markers and responses poorly to chemotherapeutic drugs. The search for better biomarkers and developing more effective chemotherapy are important ways to improve the healthcare of PC patients. Aptamers are single-stranded nucleic acids with high binding affinity and specificity to target molecules. Many aptamers against different forms of cancer including PC have been selected for both diagnostic and therapeutic use. Aptamers can work as ligands to distinguish tumour cells from normal cells. Using cells as selection targets, the obtained aptamers have been used to discover new cancer biomarkers after identification of the binding target. Aptamers have been shown to have antagonists effect on cancer cell proliferation, apoptosis, and metastasis. In addition, aptamers have been used as carriers to deliver therapeutic agents to selectively kill PC cells. This review summarises the potential use of aptamers in the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Ge Gao
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Can Liu
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Sona Jain
- c Department of Chemistry , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Canada
| | - Dai Li
- c Department of Chemistry , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Canada.,d Department of Pharmacology , Xiangya Hospital, Central South University , Changsha , China
| | - Hai Wang
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Yongxin Zhao
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Juewen Liu
- c Department of Chemistry , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Canada
| |
Collapse
|
6
|
Li J, Liu Y, Li H, Shi W, Bi X, Qiu Q, Zhang B, Huang W, Qian H. pH-Sensitive micelles with mitochondria-targeted and aggregation-induced emission characterization: synthesis, cytotoxicity and biological applications. Biomater Sci 2018; 6:2998-3008. [PMID: 30259038 DOI: 10.1039/c8bm00889b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Subcellular organelle-specific reagents for simultaneous tumor targeting, imaging, and treatment are of enormous interest in cancer therapy. Herein, we present a mitochondria targeting micelle (PEG-AIE-TPP) by conjugating a triphenylphosphonium (TPP) with a fluorogen which can undergo aggregation-induced emission (AIE). At first, the in vitro and in vivo properties of the PEG-AIE-TPP micelle were characterized in detail. It was found that the micelle was reasonably stable at physiological pH and highly sensitive to mildly acidic pH stimuli. Importantly, this micelle could selectively localize and accumulate in the mitochondria, thus generating an aggregation-induced emission (AIE) effect as confirmed by the green fluorescence. Additionally, the micelle exhibited selective cytotoxicity to cancer cells and negligible toxicity to normal cells in vitro. The in vivo imaging and ex vivo imaging results showed that the accumulation tendency of the micelle at the tumor region was obvious. We also further proved the biocompatible, tumor targeting ability and antitumor activity of the PEG-AIE-TPP micelle in MCF-7 tumor-bearing mice. Accordingly, this mitochondria-targeted therapeutic micelle with good stability, biocompatibility, and tumor-targeting and antitumor activity provides a potentially unique tumor-targeted system for cancer therapy.
Collapse
Affiliation(s)
- Jieming Li
- School of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, PR China. and Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Yan Liu
- School of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, PR China.
| | - Huilan Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Xinzhou Bi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Qianqian Qiu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Bo Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China. and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| |
Collapse
|
7
|
Zhou Z, Liu M, Jiang J. The potential of aptamers for cancer research. Anal Biochem 2018; 549:91-95. [PMID: 29548926 DOI: 10.1016/j.ab.2018.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 02/09/2023]
Abstract
Aptamers are promising alternatives to antibodies and can be used as high affinity agents for the cancer detection and the targeted drug transportation. In this manuscript, we highlight the advantages of aptamers, such as high affinities, specificity and excellent chemical stabilities, which are likely to benefit for the diagnosis of cancer in its early stages and then achieve molecular-level treatment. Also, we discuss the challenges and problems in the current application of aptamers.
Collapse
Affiliation(s)
- Zhizhi Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Mingying Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Jiahuan Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, China.
| |
Collapse
|
8
|
Hori SI, Herrera A, Rossi JJ, Zhou J. Current Advances in Aptamers for Cancer Diagnosis and Therapy. Cancers (Basel) 2018; 10:cancers10010009. [PMID: 29301363 PMCID: PMC5789359 DOI: 10.3390/cancers10010009] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/24/2022] Open
Abstract
Nucleic acid aptamers are single-stranded oligonucleotides that interact with target molecules with high affinity and specificity in unique three-dimensional structures. Aptamers are generally isolated by a simple selection process called systematic evolution of ligands by exponential enrichment (SELEX) and then can be chemically synthesized and modified. Because of their high affinity and specificity, aptamers are promising agents for biomarker discovery, as well as cancer diagnosis and therapy. In this review, we present recent progress and challenges in aptamer and SELEX technology and highlight some representative applications of aptamers in cancer therapy.
Collapse
Affiliation(s)
- Shin-Ichiro Hori
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan.
| | - Alberto Herrera
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| |
Collapse
|
9
|
Cui Y, Zhuang D, Tan T, Yang J. Highly sensitive visual detection of mutant DNA based on polymeric nanoparticles-participating amplification. RSC Adv 2016. [DOI: 10.1039/c6ra19860k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Taking advantage of the nanoparticles' large surface area and structural repeating characteristics, polymeric nanoparticles-participating polymerization-based amplification system was designed to enhance the sensitivity of detection.
Collapse
Affiliation(s)
- Yanjun Cui
- State Key Laboratory of Chemical Resource
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Dequan Zhuang
- State Key Laboratory of Chemical Resource
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Tianwei Tan
- State Key Laboratory of Chemical Resource
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| | - Jing Yang
- State Key Laboratory of Chemical Resource
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
| |
Collapse
|
10
|
Jin C, Zheng J, Li C, Qiu L, Zhang X, Tan W. Aptamers Selected by Cell-SELEX for Molecular Imaging. J Mol Evol 2015; 81:162-71. [PMID: 26584804 PMCID: PMC5510553 DOI: 10.1007/s00239-015-9716-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 11/03/2015] [Indexed: 11/29/2022]
Abstract
Conventional diagnostics for cancer rely primarily on anatomical techniques. However, these techniques cannot monitor the changes at the molecular level in normal cells, which possibly signal the onset of cancer at its very earliest stages. For accurate prediction of the carcinogenesis at the molecular level, targeting ligands have been used in combination with imaging probes to monitor this biological process. Among these targeting ligands, aptamers have high binding affinity to various targets ranging from small molecules to whole organisms, and, hence, exceptional recognition ability. Many recent studies have been reported on aptamer-based molecular imaging, clearly indicating its clinical and diagnostic utility. In this review, we will discuss some key results of these studies.
Collapse
Affiliation(s)
- Cheng Jin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China
| | - Jing Zheng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China
| | - Chunmei Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611-7200, USA
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611-7200, USA.
| |
Collapse
|
11
|
Kruspe S, Mittelberger F, Szameit K, Hahn U. Aptamers as drug delivery vehicles. ChemMedChem 2014; 9:1998-2011. [PMID: 25130604 DOI: 10.1002/cmdc.201402163] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/02/2014] [Indexed: 01/22/2023]
Abstract
The benefits of directed and selective therapy for systemic treatment are reasons for increased interest in exploiting aptamers for cell-specific drug delivery. Nucleic acid based pharmaceuticals represent an interesting and novel tool to counter human diseases. Combining inhibitory potential and cargo transfer upon internalization, nanocarriers as well as various therapeutics including siRNAs, chemotherapeutics, photosensitizers, or proteins can be imported via these synthetic nucleic acids. However, widespread clinical application is still hampered by obstacles that must be overcome. In this review, we give an overview of applications and recent advances in aptamer-mediated drug delivery. We also introduce prominent selection methods as well as useful approaches in choice of drug and conjugation method. We discuss the challenges that need to be considered and present strategies that have been applied to achieve intracellular delivery of effectors transported by readily internalized aptamers.
Collapse
Affiliation(s)
- Sven Kruspe
- Institut für Biochemie und Molekularbiologie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg (Germany)
| | | | | | | |
Collapse
|
12
|
Shen J, Li Y, Gu H, Xia F, Zuo X. Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem Rev 2014; 114:7631-77. [PMID: 25115973 DOI: 10.1021/cr300248x] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Juwen Shen
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) , Wuhan 430074, China
| | | | | | | | | |
Collapse
|
13
|
Xiong X, Lv Y, Chen T, Zhang X, Wang K, Tan W. Nucleic acid aptamers for living cell analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:405-426. [PMID: 24896309 DOI: 10.1146/annurev-anchem-071213-015944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cells as the building blocks of life determine the basic functions and properties of a living organism. Understanding the structure and components of a cell aids in the elucidation of its biological functions. Moreover, knowledge of the similarities and differences between diseased and healthy cells is essential to understanding pathological mechanisms, identifying diagnostic markers, and designing therapeutic molecules. However, monitoring the structures and activities of a living cell remains a challenging task in bioanalytical and life science research. To meet the requirements of this task, aptamers, as "chemical antibodies," have become increasingly powerful tools for cellular analysis. This article reviews recent advances in the development of nucleic acid aptamers in the areas of cell membrane analysis, cell detection and isolation, real-time monitoring of cell secretion, and intracellular delivery and analysis with living cell models. Limitations of aptamers and possible solutions are also discussed.
Collapse
Affiliation(s)
- Xiangling Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China
| | | | | | | | | | | |
Collapse
|
14
|
Qu L, Xu J, Tan X, Liu Z, Xu L, Peng R. Dual-aptamer modification generates a unique interface for highly sensitive and specific electrochemical detection of tumor cells. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7309-15. [PMID: 24801611 DOI: 10.1021/am5006783] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Because circulating tumor cells (CTCs) have been proven to be an important clue of the tumor metastasis, their detection thus plays a pivotal role in the diagnosis and prognosis of cancer. Herein, we fabricate an electrochemical sensor by directly conjugating two cell-specific aptamers, TLS1c and TLS11a, which specifically recognize MEAR cancer cells, to the surface of a glassy carbon electrode (GCE) via the formation of amide bonds. The two aptamers are simultaneously conjugated to the GCE surface via precisely controlled linkers: TLS1c through a flexible linker (a single-stranded DNA T15; ss-TLS1c) and TLS11a through a rigid linker (a double-stranded DNA T15/A15; ds-TLS11a). It is found that such ss-TLS1c/ds-TLS11a dual-modified GCEs show greatly improved sensitivity in comparison with those modified with a single type of aptamer alone or ds-TLS1c/ds-TLS11a with both rigid linkers, suggesting that our optimized, rationally designed electrode-aptamer biosensing interface may enable better recognition and thus more sensitive detection of tumor cells. Through the utilization of this dual-aptamer-modified GCE, as few as a single MEAR cell in 10(9) whole blood cells can be successfully detected with a linear range of 1-14 MEAR cells. Our work demonstrates a rather simple yet well-designed and ultrasensitive tumor cell detection method based on the cell-specific aptamer-modified GCE, showing a promising potential for further CTC-related clinical applications.
Collapse
Affiliation(s)
- Liming Qu
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu 215123, China
| | | | | | | | | | | |
Collapse
|
15
|
Wang GL, Xu XF, Qiu L, Dong YM, Li ZJ, Zhang C. Dual responsive enzyme mimicking activity of AgX (X=Cl, Br, I) nanoparticles and its application for cancer cell detection. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6434-6442. [PMID: 24754894 DOI: 10.1021/am501830v] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chitosan (CS) modified silver halide (AgX, X=Cl, Br, I) (CS-AgX) nanoparticles (NPs) were found to possess dual responsive enzyme mimetic activities. In the presence of H2O2, they were able to oxidize various colorimertic dyes, namely, peroxidase-like activity. Upon photoactivation, CS-AgX NPs could also oxidize the typical substrates in the absence of H2O2. Taking CS-AgI as an example, it was found that the photostimulated enzyme mimetics of CS-AgI NPs showed several unprecedented advantages over natural peroxidase or other existing alternatives based on nanomaterials, such as excellent enzyme-like activity over a broad pH range (3.0-7.0), the independence of hydrogen peroxide on activity, the easily regulated activity by light irradiation, and the good reutilization without significant loss of catalytic activity. The mechanism of the dual responsive enzyme-like activity of CS-AgI was investigated. On the basis of these findings, the photoactivated CS-AgI was designed to develop a facile, cheap, rapid, and highly sensitive colorimetric assay to detect cancer cells. The detection limit of the method for MDA-MB-231 was estimated to be as low as 100 cells, which was much lower than that reported by the method using peroxidase mimetics based on nanomaterials. We believe that CS-AgX NPs with dual responsive enzyme-mimicking activity, especially the excellent photostimulated enzyme-like activity, may find widely potential applications in biosensors.
Collapse
Affiliation(s)
- Guang-Li Wang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, P. R. China
| | | | | | | | | | | |
Collapse
|
16
|
Xu L, Yuan L, Liu S. Macroinitiator triggered polymerization for versatile immunoassay. RSC Adv 2014. [DOI: 10.1039/c3ra45504a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
17
|
Demeritte T, Fan Z, Sinha SS, Duan J, Pachter R, Ray PC. Gold Nanocage Assemblies for Selective Second Harmonic Generation Imaging of Cancer Cell. Chemistry 2013; 20:1017-22. [DOI: 10.1002/chem.201303306] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Indexed: 12/15/2022]
|
18
|
Peng K, Zhao H, Yuan Y, Yuan R, Wu X. Mediator-free triple-enzyme cascade electrocatalytic aptasensor with exonuclease-assisted target recycling and hybridization chain reaction amplification. Biosens Bioelectron 2013; 55:366-71. [PMID: 24419079 DOI: 10.1016/j.bios.2013.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/22/2013] [Accepted: 12/02/2013] [Indexed: 02/04/2023]
Abstract
The amplified sensitive detection of protein is essential to biomedical research as well as clinical diagnosis. Here, we developed an ultrasensitive mediator-free triple-enzyme cascade electrocatalytic aptasensor for thrombin detection on the basis of exonuclease-assisted target recycling and hybridization chain reaction (HCR) amplification strategy. The double strands constructed by the hybridization of thrombin binding aptamer (S1) with its complementary strand (S2) were firstly assembled on the electrode. Upon addition of target to the system, the S1 recognized thrombin and left off electrode to make space for assembly of hybrid-primer probe (H0). Then, the H0 triggered the HCR to form the multi-functional hemin/G-quadruplex DNAzyme nanowires. In the mediator-free triple-enzyme cascade electrocatalytic amplification system, the hemin/G-quadruplex DNAzyme nanowires here simultaneously played three roles: the redox probe, NADH oxidase and HRP-mimicking DNAzyme, respectively, which effectively avoided the fussy redox probe and enzyme labeling process, serving a useful alternative or supplement to conventional assays that typically suffer from complexity and poor sensitivity. Additionally, in order to improve the assembly amount of hemin/G-quadruplex DNAzyme nanowire, the exonuclease-assisted target recycling amplification was used for the continuous removal of S1. As a result, the proposed method can detect thrombin specifically with a detection limit as low as 20 fM.
Collapse
Affiliation(s)
- Kanfu Peng
- Department of Kidney, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Hongwen Zhao
- Department of Kidney, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Yali Yuan
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ruo Yuan
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiongfei Wu
- Department of Kidney, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
19
|
Huang Y, Hu F, Zhao R, Zhang G, Yang H, Zhang D. Tetraphenylethylene Conjugated with a Specific Peptide as a Fluorescence Turn-On Bioprobe for the Highly Specific Detection and Tracing of Tumor Markers in Live Cancer Cells. Chemistry 2013; 20:158-64. [DOI: 10.1002/chem.201303679] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
|
21
|
Tao Y, Lin Y, Huang Z, Ren J, Qu X. Incorporating graphene oxide and gold nanoclusters: a synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:2594-9. [PMID: 23418013 DOI: 10.1002/adma.201204419] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/09/2013] [Indexed: 05/12/2023]
Abstract
A synergistic graphene oxide-gold nanocluster (GO-AuNC) hybrid has been constructed as an enzyme mimic that is able to show high catalytic activity over a broad pH range, especially at neutral pH. Importantly, the target-functionalized hybrid has been applied as a robust nanoprobe for selective, quantitative, and fast colorimetric detection of cancer cells.
Collapse
Affiliation(s)
- Yu Tao
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | | | | | | | |
Collapse
|
22
|
Construction of DNA-templated nanoparticle assemblies using click DNA ligation. Biosens Bioelectron 2013; 41:884-8. [DOI: 10.1016/j.bios.2012.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/07/2012] [Accepted: 09/17/2012] [Indexed: 11/20/2022]
|
23
|
|
24
|
Guo YS, Li XM, Ye SJ, Zhang SS. Modern optical techniques provide a bright outlook for cell analysis. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2012.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Yuan L, Xu L, Liu S. Integrated tyramide and polymerization-assisted signal amplification for a highly-sensitive immunoassay. Anal Chem 2012. [PMID: 23181414 DOI: 10.1021/ac302439v] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel strategy for ultrasensitive detection of model protein based on the integration of tyramide signal amplification (TSA) and polymerization-assisted signal amplification was proposed. The surface-initiated atom transfer radical polymerization (SI-ATRP) of glycidyl methacrylate (GMA) was triggered by the initiator-coupled protein immobilized on the electrode surface through sandwiched immunoreactions. Growth of long chain polymeric materials provided numerous epoxy groups for subsequent coupling of horseradish peroxidase (HRP), which in turn significantly increased the loading of quantum dots (QDs) labeled tyramide in the presence of hydrogen peroxide. As a result, electrochemiluminescence (ECL) and square-wave voltammetric (SWV) measurements showed 9.4- and 10.5-fold increase in detection signal in comparison with the unamplified method, respectively. To demonstrate the feasibility of this approach, human immunoglobulin G antigen (IgG) as a model target protein was employed and the detection limits were 0.73 and 0.09 pg mL(-1) for ECL and SWV, respectively. The results showed that sensitivity of the presented immunoassay significantly increased by one-order of magnitude and offered great application promises in providing a sensitive, specific, and potent method for biological detection.
Collapse
Affiliation(s)
- Liang Yuan
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, 211189, P.R. China
| | | | | |
Collapse
|
26
|
Li B, Ellington* AD. Electrochemical Techniques as Powerful Readout Methods for Aptamer-based Biosensors. DNA CONJUGATES AND SENSORS 2012. [DOI: 10.1039/9781849734936-00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aptamers are single-stranded nucleic acids that can be selected in vitro with special folding structures to bind to many different small-molecule, protein, and cellular targets. Over the past two decades, aptamers have become novel promising recognition elements for the fabrication of biosensors. These ‘aptasensors’ have several advantages over antibodies in that they are relatively easy to synthesise or modify in vitro, and can be appended with linkers and reporters for adaptation to various sensing strategies. In this chapter, we introduce the various electrochemical techniques that can be used as powerful readout methods for aptasensors, providing a brief introduction to aptamers and related electrochemical techniques, and then a detailed description of various branches within the field, including labelled strategies, unlabelled strategies, and enzyme-amplified strategies. For each type of approach, several basic and improved design principles will be addressed. It is hoped that, through this discussion, readers will get a sense of how several variables (aptamers, targets and redox reporters) are successfully combined with electrochemical techniques in order to produce a series of sensing platforms with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Bingling Li
- Institute for Cellular and Molecular Biology Center for Systems and Synthetic Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 USA
| | - Andrew D. Ellington*
- Institute for Cellular and Molecular Biology Center for Systems and Synthetic Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
27
|
Xiao Z, Farokhzad OC. Aptamer-functionalized nanoparticles for medical applications: challenges and opportunities. ACS NANO 2012; 6:3670-3676. [PMID: 22574989 PMCID: PMC3420009 DOI: 10.1021/nn301869z] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
With advances in aptamer selection technologies and nanomedicine, aptamer-functionalized nanoparticles are being explored as promising platforms for targeted therapeutic and diagnostic applications. In this Perspective, we outline recent progress in this field, as exemplified by Bamrungsap et al. in this issue of ACS Nano. Furthermore, we highlight the challenges and opportunities in translating current proof-of-concept designs into in vivo applications, with emphasis on the intrinsic properties of aptamers and their interplay with nanoparticles. With continuous efforts, we expect aptamer-functionalized nanoparticles to advance from preclinical into clinical development for further evaluation.
Collapse
Affiliation(s)
- Zeyu Xiao
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Omid C. Farokhzad
- Laboratory of Nanomedicine and Biomaterials, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
28
|
DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery. Curr Opin Chem Biol 2012; 16:429-35. [PMID: 22541663 DOI: 10.1016/j.cbpa.2012.03.016] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 11/24/2022]
|
29
|
Sheng Z, Hu D, Zhang P, Gong P, Gao D, Liu S, Cai L. Cation exchange in aptamer-conjugated CdSe nanoclusters: a novel fluorescence signal amplification for cancer cell detection. Chem Commun (Camb) 2012; 48:4202-4. [PMID: 22441352 DOI: 10.1039/c2cc00033d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fluorescence signal amplification by cation exchange in aptamer-conjugated CdSe nanoclusters, a biological self-assembly of CdSe quantum dots, was developed as a novel method for cancer cell detection.
Collapse
Affiliation(s)
- Zonghai Sheng
- CAS Key Lab of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P.R. China
| | | | | | | | | | | | | |
Collapse
|
30
|
Liu J, You M, Pu Y, Liu H, Ye M, Tan W. Recent developments in protein and cell-targeted aptamer selection and applications. Curr Med Chem 2012; 18:4117-25. [PMID: 21838693 DOI: 10.2174/092986711797189619] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 07/13/2011] [Accepted: 07/20/2011] [Indexed: 01/06/2023]
Abstract
Because of their easily modified chemical structures and wide range of targets, aptamers are ideal candidates for various applications, such as biomarker discovery, target diagnosis, molecular imaging, and drug delivery. Aptamers are oligonucleotide sequences that can bind to their targets specifically via unique three dimensional (3-D) structures. Usually, aptamers are obtained from repeated rounds of in vitro or in vivo selection termed SELEX (Systematic Evolution of Ligands by EXponential enrichment), which can generate aptamers with high affinity and specificity for many kinds of targets, such as biomedically important proteins and even cancer cells. In this review, some basic principles and recent developments in the design of SELEX process are discussed, hopefully to provide some guidelines towards performing more efficient aptamer isolation procedures. Moreover, the biomedical and bioanalytical applications of aptamers are further reviewed, based on some smart biochemical modifications of these oligonucleotide structures.
Collapse
Affiliation(s)
- Jun Liu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | | | | | | | | | | |
Collapse
|
31
|
Zhong H, Zhang R, Zhang H, Zhang S. Modular design of an ultrahigh-intensity nanoparticle probe for cancer cell imaging and rapid visual detection of nucleic acids. Chem Commun (Camb) 2012; 48:6277-9. [DOI: 10.1039/c2cc31637d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|