1
|
Echavarría JAC, El Hajj S, Irankunda R, Selmeczi K, Paris C, Udenigwe CC, Canabady-Rochelle L. Screening, separation and identification of metal-chelating peptides for nutritional, cosmetics and pharmaceutical applications. Food Funct 2024; 15:3300-3326. [PMID: 38488016 DOI: 10.1039/d3fo05765h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Metal-chelating peptides, which form metal-peptide coordination complexes with various metal ions, can be used as biofunctional ingredients notably to enhance human health and prevent diseases. This review aims to discuss recent insights into food-derived metal-chelating peptides, the strategies set up for their discovery, their study, and identification. After understanding the overall properties of metal-chelating peptides, their production from food-derived protein sources and their potential applications will be discussed, particularly in nutritional, cosmetics and pharmaceutical fields. In addition, the review provides an overview of the last decades of progress in discovering food-derived metal-chelating peptides, addressing several screening, separation and identification methodologies. Furthermore, it emphasizes the methods used to assess peptide-metal interaction, allowing for better understanding of chemical and thermodynamic parameters associated with the formation of peptide-metal coordination complexes, as well as the specific amino acid residues that play important roles in the metal ion coordination.
Collapse
Affiliation(s)
| | - Sarah El Hajj
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | | | | | - Cédric Paris
- Université de Lorraine, LIBIO, F-54000 Nancy, France
| | - Chibuike C Udenigwe
- School of Nutrition Science, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | |
Collapse
|
2
|
Yu X, Liu X, Zhou D. A critical review of a typical research system for food-derived metal-chelating peptides: Production, characterization, identification, digestion, and absorption. Compr Rev Food Sci Food Saf 2024; 23:e13277. [PMID: 38284607 DOI: 10.1111/1541-4337.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 01/30/2024]
Abstract
In the past decade, food-derived metal-chelating peptides (MCPs) have attracted significant attention from researchers working towards the prevention of metal (viz., iron, zinc, and calcium) deficiency phenomenon by primarily inhibiting the precipitation of metals caused by the gastrointestinal environment and exogenous substances (including phytic and oxalic acids). However, for the improvement of limits of current knowledge foundations and future investigation directions of MCP or their derivatives, several review categories should be improved and emphasized. The species' uniqueness and differences in MCP productions highly contribute to the different values of chelating ability with particular metal ions, whereas comprehensive reviews of chelation characterization determined by various kinds of technique support different horizons for explaining the chelation and offer options for the selection of characterization methods. The reviews of chelation mechanism clearly demonstrate the involvement of potential groups and atoms in chelating metal ions. The discussions of digestive stability and absorption in various kinds of absorption model in vitro and in vivo as well as the theory of involved cellular absorption channels and pathways are systematically reviewed and highlighted compared with previous reports as well. Meanwhile, the chelation mechanism on the molecular docking level, the binding mechanism in amino acid identification level, the utilizations of everted rat gut sac model for absorption, and the involvement of cellular absorption channels and pathway are strongly recommended as novelty in this review. This review makes a novel contribution to the literature by the comprehensive prospects for the research and development of food-derived mineral supplements.
Collapse
Affiliation(s)
- Xuening Yu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
3
|
Khare E, Grewal DS, Buehler MJ. Bond clusters control rupture force limit in shear loaded histidine-Ni 2+ metal-coordinated proteins. NANOSCALE 2023; 15:8578-8588. [PMID: 37092811 DOI: 10.1039/d3nr01287e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Dynamic noncovalent interactions are pivotal to the structure and function of biological proteins and have been used in bioinspired materials for similar roles. Metal-coordination bonds, in particular, are especially tunable and enable control over static and dynamic properties when incorporated into synthetic materials. Despite growing efforts to engineer metal-coordination bonds to produce strong, tough, and self-healing materials, the systematic characterization of the exact contribution of these bonds towards mechanical strength and the effect of geometric arrangements is missing, limiting the full design potential of these bonds. In this work, we engineer the cooperative rupture of metal-coordination bonds to increase the rupture strength of metal-coordinated peptide dimers. Utilizing all-atom steered molecular dynamics simulations on idealized bidentate histidine-Ni2+ coordinated peptides, we show that histidine-Ni2+ bonds can rupture cooperatively in groups of two to three bonds. We find that there is a strength limit, where adding additional coordination bonds does not contribute to the additional increase in the protein rupture strength, likely due to the highly heterogeneous rupture behavior exhibited by the coordination bonds. Further, we show that this coordination bond limit is also found natural metal-coordinated biological proteins. Using these insights, we quantitatively suggest how other proteins can be rationally designed with dynamic noncovalent interactions to exhibit cooperative bond breaking behavior. Altogether, this work provides a quantitative analysis of the cooperativity and intrinsic strength limit for metal-coordination bonds with the aim of advancing clear guiding molecular principles for the mechanical design of metal-coordinated materials.
Collapse
Affiliation(s)
- Eesha Khare
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, 33 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Darshdeep S Grewal
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, 33 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, 33 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Xia X. Multiple regulatory mechanisms for pH homeostasis in the gastric pathogen, Helicobacter pylori. ADVANCES IN GENETICS 2022; 109:39-69. [PMID: 36334916 DOI: 10.1016/bs.adgen.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acid-resistance in gastric pathogen Helicobacter pylori requires the coordination of four essential processes to regulate urease activity. Firstly, urease expression above a base level needs to be finely tuned at different ambient pH. Secondly, as nickel is needed to activate urease, nickel homeostasis needs to be maintained by proteins that import and export nickel ions, and sequester, store and release nickel when needed. Thirdly, urease accessary proteins that activate urease activity by nickel insertion need to be expressed. Finally, a reliable source of urea needs to be maintained by both intrinsic and extrinsic sources of urea. Two-component systems (arsRS and flgRS), as well as a nickel response regulator (NikR), sense the change in pH and act on a variety of genes to accomplish the function of acid resistance without causing cellular overalkalization and nickel toxicity. Nickel storage proteins also feature built-in switches to store nickel at neutral pH and release nickel at low pH. This review summarizes the current status of H. pylori research and highlights a number of hypotheses that need to be tested.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, Ottawa, Canada.
| |
Collapse
|
5
|
Witkowska D, Szebesczyk A, Wątły J, Braczkowski M, Rowińska-Żyrek M. A Comparative Study on Nickel Binding to Hpn-like Polypeptides from Two Helicobacter pylori Strains. Int J Mol Sci 2021; 22:ijms222413210. [PMID: 34948007 PMCID: PMC8704837 DOI: 10.3390/ijms222413210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 01/15/2023] Open
Abstract
Combined potentiometric titration and isothermal titration calorimetry (ITC) methods were used to study the interactions of nickel(II) ions with the N-terminal fragments and histidine-rich fragments of Hpn-like protein from two Helicobacter pylori strains (11637 and 26695). The ITC measurements were performed at various temperatures and buffers in order to extract proton-independent reaction enthalpies of nickel binding to each of the studied protein fragments. We bring up the problem of ITC results of nickel binding to the Hpn-like protein being not always compatible with those from potentiometry and MS regarding the stoichiometry and affinity. The roles of the ATCUN motif and multiple His and Gln residues in Ni(II) binding are discussed. The results provided the possibility to compare the Ni(II) binding properties between N-terminal and histidine-rich part of Hpn-like protein and between N-terminal parts of two Hpn-like strains, which differ mainly in the number of glutamine residues.
Collapse
Affiliation(s)
- Danuta Witkowska
- Institute of Health Sciences, University of Opole, Katowicka 68, 45-060 Opole, Poland;
- Correspondence:
| | - Agnieszka Szebesczyk
- Institute of Health Sciences, University of Opole, Katowicka 68, 45-060 Opole, Poland;
| | - Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (J.W.); (M.R.-Ż.)
| | - Michał Braczkowski
- Institute of Medical Sciences, University of Opole, Oleska 48, 45-052 Opole, Poland;
| | - Magdalena Rowińska-Żyrek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; (J.W.); (M.R.-Ż.)
| |
Collapse
|
6
|
Griffith DM, Li H, Werrett MV, Andrews PC, Sun H. Medicinal chemistry and biomedical applications of bismuth-based compounds and nanoparticles. Chem Soc Rev 2021; 50:12037-12069. [PMID: 34533144 DOI: 10.1039/d0cs00031k] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bismuth as a relatively non-toxic and inexpensive metal with exceptional properties has numerous biomedical applications. Bismuth-based compounds are used extensively as medicines for the treatment of gastrointestinal disorders including dyspepsia, gastric ulcers and H. pylori infections. Recently, its medicinal application was further extended to potential treatments of viral infection, multidrug resistant microbial infections, cancer and also imaging, drug delivery and biosensing. In this review we have highlighted the unique chemistry and biological chemistry of bismuth-209 as a prelude to sections covering the unique antibacterial activity of bismuth including a description of research undertaken to date to elucidate key molecular mechanisms of action against H. pylori, the development of novel compounds to treat infection from microbes beyond H. pylori and the significant role bismuth compounds can play as resistance breakers. Furthermore we have provided an account of the potential therapeutic application of bismuth-213 in targeted alpha therapy as well as a summary of the biomedical applications of bismuth-based nanoparticles and composites. Ultimately this review aims to provide the state of the art, highlight the untapped biomedical potential of bismuth and encourage original contributions to this exciting and important field.
Collapse
Affiliation(s)
- Darren M Griffith
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.,SSPC, Synthesis and Solid State Pharmaceutical Centre, Ireland
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | | | - Philip C Andrews
- School of Chemistry, Monash University, Melbourne, VIC, Australia
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
7
|
Denic M, Turlin E, Michel V, Fischer F, Khorasani-Motlagh M, Zamble D, Vinella D, de Reuse H. A novel mode of control of nickel uptake by a multifunctional metallochaperone. PLoS Pathog 2021; 17:e1009193. [PMID: 33444370 PMCID: PMC7840056 DOI: 10.1371/journal.ppat.1009193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/27/2021] [Accepted: 11/26/2020] [Indexed: 01/08/2023] Open
Abstract
Cellular metal homeostasis is a critical process for all organisms, requiring tight regulation. In the major pathogen Helicobacter pylori, the acquisition of nickel is an essential virulence determinant as this metal is a cofactor for the acid-resistance enzyme, urease. Nickel uptake relies on the NixA permease and the NiuBDE ABC transporter. Till now, bacterial metal transporters were reported to be controlled at their transcriptional level. Here we uncovered post-translational regulation of the essential Niu transporter in H. pylori. Indeed, we demonstrate that SlyD, a protein combining peptidyl-prolyl isomerase (PPIase), chaperone, and metal-binding properties, is required for the activity of the Niu transporter. Using two-hybrid assays, we found that SlyD directly interacts with the NiuD permease subunit and identified a motif critical for this contact. Mutants of the different SlyD functional domains were constructed and used to perform in vitro PPIase activity assays and four different in vivo tests measuring nickel intracellular accumulation or transport in H. pylori. In vitro, SlyD PPIase activity is down-regulated by nickel, independently of its C-terminal region reported to bind metals. In vivo, a role of SlyD PPIase function was only revealed upon exposure to high nickel concentrations. Most importantly, the IF chaperone domain of SlyD was shown to be mandatory for Niu activation under all in vivo conditions. These data suggest that SlyD is required for the active functional conformation of the Niu permease and regulates its activity through a novel mechanism implying direct protein interaction, thereby acting as a gatekeeper of nickel uptake. Finally, in agreement with a central role of SlyD, this protein is essential for the colonization of the mouse model by H. pylori. Metal ions are essential for the viability of all living organisms. Indeed, more than one-third of all proteins need metal cofactors for their function. Intracellular metal concentrations require tight control as non-physiological amounts are very toxic. In particular, nickel plays a unique role in Helicobacter pylori, a bacterial pathogen that colonizes the stomach of about half of the human population worldwide and is associated with the development of gastric cancer. Nickel is essential for H. pylori as it is the cofactor of urease, an enzyme indispensable for resistance to the gastric acidity of the stomach and thus for in vivo colonization. To import nickel despite its scarcity in the human body, H. pylori requires efficient uptake mechanisms. Till now, control of nickel uptake was only reported to rely on transcriptional regulators. In the present study, we uncovered a novel mechanism of regulation of nickel acquisition. SlyD, a multifunctional enzyme was found to control, by direct protein interaction, the activity of an essential nickel uptake system in H. pylori. We revealed that the SlyD chaperone activity is mandatory for the active conformation and thus functionality of the nickel permease.
Collapse
Affiliation(s)
- Milica Denic
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Paris, France
- Université de Paris, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Evelyne Turlin
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Paris, France
| | - Valérie Michel
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Paris, France
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, Strasbourg, France
| | | | - Deborah Zamble
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Vinella
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Paris, France
- * E-mail: (DV); (HDR)
| | - Hilde de Reuse
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Paris, France
- * E-mail: (DV); (HDR)
| |
Collapse
|
8
|
Saylor Z, Maier R. Helicobacter pylori nickel storage proteins: recognition and modulation of diverse metabolic targets. Microbiology (Reading) 2018; 164:1059-1068. [DOI: 10.1099/mic.0.000680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Zachary Saylor
- Department of Microbiology and Center for Metalloprotein Studies, University of Georgia, Athens, GA, USA
| | - Robert Maier
- Department of Microbiology and Center for Metalloprotein Studies, University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
|
10
|
Hecel A, Wątły J, Rowińska-Żyrek M, Świątek-Kozłowska J, Kozłowski H. Histidine tracts in human transcription factors: insight into metal ion coordination ability. J Biol Inorg Chem 2018; 23:81-90. [PMID: 29218639 PMCID: PMC5756558 DOI: 10.1007/s00775-017-1512-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022]
Abstract
Consecutive histidine repeats are chosen both by nature and by molecular biologists due to their high affinity towards metal ions. Screening of the human genome showed that transcription factors are extremely rich in His tracts. In this work, we examine two of such His-rich regions from forkhead box and MAFA proteins-MB3 (contains 18 His) and MB6 (with 21 His residues), focusing on the affinity and binding modes of Cu2+ and Zn2+ towards the two His-rich regions. In the case of Zn2+ species, the availability of imidazole nitrogen donors enhances metal complex stability. Interestingly, an opposite tendency is observed for Cu2+ complexes at above physiological pH, in which amide nitrogens participate in binding.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wrocław, Poland.
| | - Joanna Wątły
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | | | | | - Henryk Kozłowski
- Public Higher Medical Professional School in Opole, Katowicka 68, 45-060, Opole, Poland.
- Wroclaw Research Centre EIT+, Stabłowicka 147, 54-066, Wrocław, Poland.
| |
Collapse
|
11
|
He X, Liao X, Li H, Xia W, Sun H. Bismuth-Induced Inactivation of Ferric Uptake Regulator from Helicobacter pylori. Inorg Chem 2017; 56:15041-15048. [DOI: 10.1021/acs.inorgchem.7b02380] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaojun He
- MOE Key Laboratory
of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiangwen Liao
- MOE Key Laboratory
of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, S.A.R, China
| | - Wei Xia
- MOE Key Laboratory
of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongzhe Sun
- MOE Key Laboratory
of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, S.A.R, China
| |
Collapse
|
12
|
Lai YT, Yang Y, Hu L, Cheng T, Chang YY, Koohi-Moghadam M, Wang Y, Xia J, Wang J, Li H, Sun H. Integration of fluorescence imaging with proteomics enables visualization and identification of metallo-proteomes in living cells. Metallomics 2017; 9:38-47. [PMID: 27830853 DOI: 10.1039/c6mt00169f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metalloproteins account for nearly one-third of proteins in proteomes. To date, the identification of metalloproteins relies mainly on protein purification and the subsequent characterization of bound metals, which often leads to losses of metal ions bound weakly and transiently. Herein, we developed a strategy to visualize and subsequently identify endogenous metalloproteins and metal-binding proteins in living cells via integration of fluorescence imaging with proteomics. We synthesized a "metal-tunable" fluorescent probe (denoted as Mn+-TRACER) that rapidly enters cells to target proteins with 4-40 fold fluorescence enhancements. By using Ni2+-TRACER as an example, we demonstrate the feasibility of tracking Ni2+-binding proteins in vitro, while cellular small molecules exhibit negligible interference on the labeling. We identified 44 Ni2+-binding proteins from microbes using Helicobacter pylori as a showcase. We further applied Cu2+-TRACER to mammalian cells and found 54 Cu2+-binding proteins. The strategy we report here provides a great opportunity to track various endogenous metallo-proteomes and to mine potential targets of metallodrugs.
Collapse
Affiliation(s)
- Yau-Tsz Lai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Ya Yang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Ligang Hu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Tianfan Cheng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Yuen-Yan Chang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Mohamad Koohi-Moghadam
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Yuchuan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Junwen Wang
- Center for Individualized Medicine & Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ 85259 USA and Department of Biomedical Informatics, Arizona State University, Scottsdale, AZ 85259 USA
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China.
| |
Collapse
|
13
|
Metal Binding Properties of the N-Terminus of the Functional Amyloid Orb2. Biomolecules 2017; 7:biom7030057. [PMID: 28763009 PMCID: PMC5618238 DOI: 10.3390/biom7030057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022] Open
Abstract
The cytoplasmic polyadenylation element binding protein (CPEB) homologue Orb2 is a functional amyloid that plays a key regulatory role for long-term memory in Drosophila. Orb2 has a glutamine, histidine-rich (Q/H-rich) domain that resembles the Q/H-rich, metal binding domain of the Hpn-like protein (Hpnl) found in Helicobacter pylori. In the present study, we used chromatography and isothermal titration calorimetry (ITC) to show that the Q/H-rich domain of Orb2 binds Ni2+ and other transition metals ions with μM affinity. Using site directed mutagenesis, we show that several histidine residues are important for binding. In particular, the H61Y mutation, which was previously shown to affect the aggregation of Orb2 in cell culture, completely inhibited metal binding of Orb2. Finally, we used thioflavin T fluorescence and electron microscopy images to show that Ni2+ binding induces the aggregating of Orb2 into structures that are distinct from the amyloid fibrils formed in the absence of Ni2+. These data suggest that transition metal binding might be important for the function of Orb2 and potentially long-term memory in Drosophila.
Collapse
|
14
|
Xia W, Li H, Sun H. Nickel Metallochaperones: Structure, Function, and Nickel-Binding Properties. THE BIOLOGICAL CHEMISTRY OF NICKEL 2017. [DOI: 10.1039/9781788010580-00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nickel-containing enzymes catalyze a series of important biochemical processes in both prokaryotes and eukaryotes. The maturation of the enzymes requires the proper assembly of the nickel-containing active sites, which involves a battery of nickel metallochaperones that exert metal delivery and storage functions. “Cross-talk” also exists between different nickel enzyme maturation processes. This chapter summarizes the updated knowledge about the nickel chaperones based on biochemical and structural biology research, and discusses the possible nickel delivery mechanisms.
Collapse
Affiliation(s)
- Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong Hong Kong SAR China
| | - Hongzhe Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry Sun Yat-sen University Guangzhou 510275 China
- Department of Chemistry, The University of Hong Kong Hong Kong SAR China
| |
Collapse
|
15
|
Eckert E, Lu L, Unsworth LD, Chen L, Xie J, Xu R. Biophysical and in vitro absorption studies of iron chelating peptide from barley proteins. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
16
|
De Santis E, Edwards AA, Alexander BD, Holder SJ, Biesse-Martin AS, Nielsen BV, Mistry D, Waters L, Siligardi G, Hussain R, Faure S, Taillefumier C. Selective complexation of divalent cations by a cyclic α,β-peptoid hexamer: a spectroscopic and computational study. Org Biomol Chem 2016; 14:11371-11380. [DOI: 10.1039/c6ob01954d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The first report on metal binding ability of a cyclic α,β-peptoid hexamer towards a selection of metal cations is presented.
Collapse
Affiliation(s)
- E. De Santis
- Medway School of Pharmacy
- Universities of Kent and Greenwich at Medway
- Chatham Maritime
- UK
| | - A. A. Edwards
- Medway School of Pharmacy
- Universities of Kent and Greenwich at Medway
- Chatham Maritime
- UK
| | | | - S. J. Holder
- Functional Materials Group
- School of Physical Sciences
- University of Kent
- Canterbury
- UK
| | - A.-S. Biesse-Martin
- Université Clermont Auvergne
- Université Blaise Pascal
- Institut de Chimie de Clermont-Ferrand
- F-63000 Clermont-Ferrand
- France
| | - B. V. Nielsen
- School of Science
- University of Greenwich
- Chatham Maritime
- UK
| | - D. Mistry
- Division of Pharmacy and Pharmaceutical Sciences
- University of Huddersfield
- Huddersfield
- UK
| | - L. Waters
- Division of Pharmacy and Pharmaceutical Sciences
- University of Huddersfield
- Huddersfield
- UK
| | | | | | - S. Faure
- Université Clermont Auvergne
- Université Blaise Pascal
- Institut de Chimie de Clermont-Ferrand
- F-63000 Clermont-Ferrand
- France
| | - C. Taillefumier
- Université Clermont Auvergne
- Université Blaise Pascal
- Institut de Chimie de Clermont-Ferrand
- F-63000 Clermont-Ferrand
- France
| |
Collapse
|
17
|
Vinella D, Fischer F, Vorontsov E, Gallaud J, Malosse C, Michel V, Cavazza C, Robbe-Saule M, Richaud P, Chamot-Rooke J, Brochier-Armanet C, De Reuse H. Evolution of Helicobacter: Acquisition by Gastric Species of Two Histidine-Rich Proteins Essential for Colonization. PLoS Pathog 2015; 11:e1005312. [PMID: 26641249 PMCID: PMC4671568 DOI: 10.1371/journal.ppat.1005312] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/05/2015] [Indexed: 02/07/2023] Open
Abstract
Metal acquisition and intracellular trafficking are crucial for all cells and metal ions have been recognized as virulence determinants in bacterial pathogens. Virulence of the human gastric pathogen Helicobacter pylori is dependent on nickel, cofactor of two enzymes essential for in vivo colonization, urease and [NiFe] hydrogenase. We found that two small paralogous nickel-binding proteins with high content in Histidine (Hpn and Hpn-2) play a central role in maintaining non-toxic intracellular nickel content and in controlling its intracellular trafficking. Measurements of metal resistance, intracellular nickel contents, urease activities and interactomic analysis were performed. We observed that Hpn acts as a nickel-sequestration protein, while Hpn-2 is not. In vivo, Hpn and Hpn-2 form homo-multimers, interact with each other, Hpn interacts with the UreA urease subunit while Hpn and Hpn-2 interact with the HypAB hydrogenase maturation proteins. In addition, Hpn-2 is directly or indirectly restricting urease activity while Hpn is required for full urease activation. Based on these data, we present a model where Hpn and Hpn-2 participate in a common pathway of controlled nickel transfer to urease. Using bioinformatics and top-down proteomics to identify the predicted proteins, we established that Hpn-2 is only expressed by H. pylori and its closely related species Helicobacter acinonychis. Hpn was detected in every gastric Helicobacter species tested and is absent from the enterohepatic Helicobacter species. Our phylogenomic analysis revealed that Hpn acquisition was concomitant with the specialization of Helicobacter to colonization of the gastric environment and the duplication at the origin of hpn-2 occurred in the common ancestor of H. pylori and H. acinonychis. Finally, Hpn and Hpn-2 were found to be required for colonization of the mouse model by H. pylori. Our data show that during evolution of the Helicobacter genus, acquisition of Hpn and Hpn-2 by gastric Helicobacter species constituted a decisive evolutionary event to allow Helicobacter to colonize the hostile gastric environment, in which no other bacteria persistently thrives. This acquisition was key for the emergence of one of the most successful bacterial pathogens, H. pylori. Helicobacter pylori is a bacterium that persistently colonizes the stomach of half of the human population. Infection by H. pylori is associated with gastritis, peptic ulcer disease and adenocarcinoma. To resist gastric acidity and proliferate in the stomach, H. pylori relies on urease, an enzyme that contains a nickel-metallocenter at its active site. Thus, nickel is a virulence determinant for H. pylori. Our aim is to characterize how H. pylori controls the intracellular nickel concentration to avoid toxicity, which protein partners are involved, and how they impact urease activity and virulence. We characterized two H. pylori proteins, Hpn and Hpn-2 that are rich in Histidine residues. We demonstrated that Hpn is involved in nickel sequestration, that the two proteins interact with each other and that their combined activities participate in a nickel transfer pathway to urease. Hpn is only expressed in gastric Helicobacter species able to colonize the stomach and Hpn-2 is restricted to the H. pylori and its close relative H. acinonychis. We found that both proteins are essential for colonization of a mouse model by H. pylori. We conclude that during evolution, the acquisition of Hpn and Hpn-2 by gastric Helicobacter species was decisive for their capacity to colonize the stomach.
Collapse
Affiliation(s)
- Daniel Vinella
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
| | - Frédéric Fischer
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
| | - Egor Vorontsov
- Institut Pasteur, Département de Biologie Structurale et Chimie, Unité Spectrométrie de Masse Structurale et Protéomique, CNRS UMR 3528, Paris, France
| | - Julien Gallaud
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Christian Malosse
- Institut Pasteur, Département de Biologie Structurale et Chimie, Unité Spectrométrie de Masse Structurale et Protéomique, CNRS UMR 3528, Paris, France
| | - Valérie Michel
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
| | | | - Marie Robbe-Saule
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
| | - Pierre Richaud
- CEA, DSV, IBEB, SBVME and CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France and Aix Marseille Université, BVME UMR7265, Marseille, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Département de Biologie Structurale et Chimie, Unité Spectrométrie de Masse Structurale et Protéomique, CNRS UMR 3528, Paris, France
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Hilde De Reuse
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, ERL CNRS 3526, Paris, France
- * E-mail:
| |
Collapse
|
18
|
Yang X, Li H, Cheng T, Xia W, Lai YT, Sun H. Nickel translocation between metallochaperones HypA and UreE in Helicobacter pylori. Metallomics 2015; 6:1731-6. [PMID: 25010720 DOI: 10.1039/c4mt00134f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Incorporation of nickel ions to the active sites of urease and hydrogenase is prerequisite for the appropriate functions of the metalloenzymes. Such a process requires the participation of several accessory proteins. Interestingly, some of them are shared by the two enzymes in their maturation processes. In this work, we characterized the molecular details of the interaction of metallochaperones UreE and HypA in Helicobacter pylori. We show by chemical cross-linking and static light scattering that the UreE dimer binds to HypA to form a hetero-complex i.e. HypA-(UreE)2. The dissociation constant (Kd) of the protein complex was determined by ITC to be 1 μM in the absence of nickel ions; whereas binding of Ni(2+) but not Zn(2+) to UreE resulted in ca. one fold decrease in the affinity. The putative interfaces on HypA unveiled by NMR chemical shift perturbation were found mainly at the nickel binding domain and in the cleft between α1 and β1/β6. We also identified that the C-domain of UreE, in particular the C-terminal residues of 158-170 are indispensable for the interaction of UreE and HypA. Such an interaction was also observed intracellularly by GFP-fragment reassembly assay. Moreover, we demonstrated using a fluorescent probe that nickel is transferred from HypA to UreE via the specific protein-protein interaction. Deletion of the C-terminus (residues 158-170) of UreE abolished nickel transfer and led to a significant decrease in urease activity. This study provides direct in vitro and in vivo evidence as well as molecular details of nickel translocation mediated by protein-protein interaction.
Collapse
Affiliation(s)
- Xinming Yang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China.
| | | | | | | | | | | |
Collapse
|
19
|
Yang X, Li H, Lai TP, Sun H. UreE-UreG complex facilitates nickel transfer and preactivates GTPase of UreG in Helicobacter pylori. J Biol Chem 2015; 290:12474-85. [PMID: 25752610 DOI: 10.1074/jbc.m114.632364] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 11/06/2022] Open
Abstract
The pathogenicity of Helicobacter pylori relies heavily on urease, which converts urea to ammonia to neutralize the stomach acid. Incorporation of Ni(2+) into the active site of urease requires a battery of chaperones. Both metallochaperones UreE and UreG play important roles in the urease activation. In this study, we demonstrate that, in the presence of GTP and Mg(2+), UreG binds Ni(2+) with an affinity (Kd) of ∼0.36 μm. The GTPase activity of Ni(2+)-UreG is stimulated by both K(+) (or NH4 (+)) and HCO3 (-) to a biologically relevant level, suggesting that K(+)/NH4 (+) and HCO3 (-) might serve as GTPase elements of UreG. We show that complexation of UreE and UreG results in two protein complexes, i.e. 2E-2G and 2E-G, with the former being formed only in the presence of both GTP and Mg(2+). Mutagenesis studies reveal that Arg-101 on UreE and Cys-66 on UreG are critical for stabilization of 2E-2G complex. Combined biophysical and bioassay studies show that the formation of 2E-2G complex not only facilitates nickel transfer from UreE to UreG, but also enhances the binding of GTP. This suggests that UreE might also serve as a structural scaffold for recruitment of GTP to UreG. Importantly, we demonstrate for the first time that UreE serves as a bridge to grasp Ni(2+) from HypA, subsequently donating it to UreG. The study expands our horizons on the molecular details of nickel translocation among metallochaperones UreE, UreG, and HypA, which further extends our knowledge on the urease maturation process.
Collapse
Affiliation(s)
- Xinming Yang
- From the Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongyan Li
- From the Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Tsz-Pui Lai
- From the Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongzhe Sun
- From the Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
20
|
Chang YY, Lai YT, Cheng T, Wang H, Yang Y, Sun H. Selective interaction of Hpn-like protein with nickel, zinc and bismuth in vitro and in cells by FRET. J Inorg Biochem 2014; 142:8-14. [PMID: 25299958 DOI: 10.1016/j.jinorgbio.2014.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 01/14/2023]
Abstract
Hpn-like (Hpnl) is a unique histidine- and glutamine-rich protein found only in Helicobacter pylori and plays a role on nickel homeostasis. We constructed the fluorescent sensor proteins CYHpnl and CYHpnl_1-48 (C-terminal glutamine-rich region truncated) using enhanced cyan and yellow fluorescent proteins (eCFP and eYFP) as the donor-acceptor pair to monitor the interactions of Hpnl with metal ions and to elucidate the role of conserved Glu-rich sequence in Hpnl by fluorescence resonance energy transfer (FRET). CYHpnl and CYHpnl_1-48 exhibited largest responses towards Ni(II) and Zn(II) over other metals studied and the binding of Bi(III) to CYHpnl was observed in the presence of an excess amount of Bi(III) ions (Kd=115±4.8 μM). Moreover, both CYHpnl and CYHpnl_1-48 showed positive FRET responses towards the binding to Ni(II) and Zn(II) in Escherichia coli cells overexpressing CYHpnl and CYHpnl_1-48, whereas a decrease in FRET upon Bi(III)-binding in E. coli cells overexpressing the latter. Our study provides clear evidence on Hpnl binding to nickel in cells, and intracellular interaction of Hpnl with Bi(III) could disrupt the protein function, thus probably contributing to the efficacy of Bi(III) drugs against H. pylori.
Collapse
Affiliation(s)
- Yuen-Yan Chang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yau-Tsz Lai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Tianfan Cheng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Haibo Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ya Yang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
21
|
Rowinska-Zyrek M, Zakrzewska-Czerwinska J, Zawilak-Pawlik A, Kozlowski H. Ni2+chemistry in pathogens – a possible target for eradication. Dalton Trans 2014; 43:8976-89. [DOI: 10.1039/c4dt00421c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nickel homeostasis inHelicobacter pyloriand potential histidine-rich binding sites from various bacterial and fungal pathogens are discussed.
Collapse
Affiliation(s)
| | - Jolanta Zakrzewska-Czerwinska
- Faculty of Biotechnology
- University of Wroclaw
- 50-383 Wroclaw, Poland
- Institute of Immunology and Experimental Therapy
- Polish Academy of Sciences
| | - Anna Zawilak-Pawlik
- Institute of Immunology and Experimental Therapy
- Polish Academy of Sciences
- Department of Microbiology
- 53-114 Wrocław, Poland
| | | |
Collapse
|
22
|
de Reuse H, Vinella D, Cavazza C. Common themes and unique proteins for the uptake and trafficking of nickel, a metal essential for the virulence of Helicobacter pylori. Front Cell Infect Microbiol 2013; 3:94. [PMID: 24367767 PMCID: PMC3856676 DOI: 10.3389/fcimb.2013.00094] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/21/2013] [Indexed: 12/22/2022] Open
Abstract
Nickel is a virulence determinant for the human gastric pathogen Helicobacter pylori. Indeed, H. pylori possesses two nickel-enzymes that are essential for in vivo colonization, [NiFe] hydrogenase and urease, an abundant virulence factor that contains 24 nickel ions per active complex. Because of these two enzymes, survival of H. pylori relies on an important supply of nickel, implying a tight control of its distribution and storage. In this review, we will present the pathways of activation of the nickel enzymes as well as original mechanisms found in H. pylori for the uptake, trafficking and distribution of nickel between the two enzymes. These include (i) an outer-membrane nickel uptake system, the FrpB4 TonB-dependent transporter, (ii) overlapping protein complexes and interaction networks involved in nickel trafficking and distribution between urease and hydrogenase and, (iii) Helicobacter specific nickel-binding proteins that are involved in nickel storage and can play the role of metallo-chaperones. Finally, we will discuss the implication of the nickel trafficking partners in virulence and propose them as novel therapeutic targets for treatments against H. pylori infection.
Collapse
Affiliation(s)
- Hilde de Reuse
- Unité Pathogenèse de Helicobacter, Département de Microbiologie, Institut Pasteur, ERL CNRS 3526 Paris, France
| | - Daniel Vinella
- Unité Pathogenèse de Helicobacter, Département de Microbiologie, Institut Pasteur, ERL CNRS 3526 Paris, France
| | - Christine Cavazza
- Metalloproteins Group, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, CEA, CNRS, Université Joseph Fourier-Grenoble 1 Grenoble, France
| |
Collapse
|
23
|
Grasso G, Magrì A, Bellia F, Pietropaolo A, La Mendola D, Rizzarelli E. The copper(II) and zinc(II) coordination mode of HExxH and HxxEH motif in small peptides: the role of carboxylate location and hydrogen bonding network. J Inorg Biochem 2013; 130:92-102. [PMID: 24184693 DOI: 10.1016/j.jinorgbio.2013.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
Copper(II) and zinc(II) complexes with two hexapeptides encompassing HExxH and HxxEH motif were characterized by means of a combined experimental and theoretical approach. Parallel tempering and density functional theory (DFT) investigations show the presence of different hydrogen bonding networks between the copper(II) and zinc(II) complexes with the two peptides, suggesting a significant contribution of these non-covalent interactions to the stability constant values. The glutamate carboxylate group has a direct role in metal ion binding. The location of this amino acid along the sequence of the investigated peptides is critical to determine thermodynamic and spectroscopic features of the copper(II) complex species, whereas is less relevant in the zinc(II) complexes formation. Electrospray ionization mass spectrometry (ESI-MS) characterization of the zinc(II) complex species show that in the [ZnH-2L] two deprotonated amide nitrogen atoms are involved in the metal coordination environment, an uncommon behavior in zinc(II) complexes for multi-histidine ligands.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Kozlowski H, Potocki S, Remelli M, Rowinska-Zyrek M, Valensin D. Specific metal ion binding sites in unstructured regions of proteins. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.01.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Heyl KA, Fischer A, Göbel UB, Henklein P, Heimesaat MM, Bereswill S. Inhibition of Helicobacter pylori urease activity in vivo by the synthetic nickel binding protein Hpn. Eur J Microbiol Immunol (Bp) 2013; 3:77-80. [PMID: 24265922 DOI: 10.1556/eujmi.3.2013.1.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/13/2013] [Accepted: 01/14/2013] [Indexed: 11/19/2022] Open
Abstract
Helicobacter pylori infection is the most common cause of gastroduodenal ulcerations worldwide. Adaptation of H. pylori to the acidic environment is mediated by urease splitting urea into carbon dioxide and ammonia. Whereas neutralization of acid by ammonia is essential for gastric H. pylori colonization, the catalytic activity of urease is mediated by nickel ions. Therefore, nickel uptake and metabolism play key roles in H. pylori infection and urease is considered first line target for drug development and vaccination. Since nickel binding within H. pylori cells is mediated by the Histidine-rich protein designated Hpn, we investigated whether nickel binding by a synthetic Hpn is capable of abrogating urease activity of live H. pylori in liquid cultures. Supplementation of growth media with synthetic Hpn completely inhibited urease acitivity in live cells, indicating that H. pylori nickel uptake is effectively blocked by Hpn. Thus, nickel chelation by Hpn is stronger than nickel uptake of H. pylori offering therapeutic use of Hpn. Although the nickel binding of Hpn was confirmed by binding assays in vitro, its use in anti-H. pylori directed strategy will further need to be adapted to the gastric environment given that protons interfere with nickel binding and Hpn is degraded by pepsin.
Collapse
|
26
|
Cun S, Lai YT, Chang YY, Sun H. Structure-oriented bioinformatic approach exploring histidine-rich clusters in proteins. Metallomics 2013; 5:904-12. [DOI: 10.1039/c3mt00026e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Inoue K, Aoki M, Fujiwara K. Protein cohesion induced by metal ions observed with fluorescence correlation spectroscopy. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:1311-1317. [PMID: 23705606 DOI: 10.1080/10934529.2013.781861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nine metal ions were evaluated in the point of denaturating action of proteins. When some metal ions were added to the diluted protein solutions, aggregates appear: stronger denaturation causes the appearance of the larger-size aggregate. The size of the aggregatates are determined by fluorescence correlation spectroscopy (FCS). Green fluorescent protein (ZsGreen) and PE(phycoerythrin)-conjugated human-antibody monoclonal protein were employed as the target protein, of which solution was diluted 100-500 times and mixed with metal ions. According to this process, the denaturation power of metal ions is in the order of Mn(2+)≈ Fe(2+)< Co(2+)< Ni(2+)< Tl(+)< Cd(2+)< Cu(+)< Cu(2+)< Pb(2+)for ZsGreen, and Tl(+)≈ Ni(2+)< Cd(2+)< Fe(2+)< Cr(3+)≪ Pb(2+)for PE-conjugated antibody protein. Pb(2+)exhibits the strongest power of denaturation. In the case of ZsGreen, the denaturation power of metal ions is on the order of the Irving-Williams series, which provide the coordination tendency against ligands possessing nitrogen and oxygen. The present method with FCS is effective to evaluate the denaturation power of metal ions against proteins.
Collapse
Affiliation(s)
- Kana Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | | |
Collapse
|
28
|
|
29
|
Rowinska-Zyrek M, Witkowska D, Potocki S, Remelli M, Kozlowski H. His-rich sequences – is plagiarism from nature a good idea? NEW J CHEM 2013. [DOI: 10.1039/c2nj40558j] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Zuorro A, Lavecchia R. Experimental study on the interaction between lead and serum albumin. ASIA-PAC J CHEM ENG 2012. [DOI: 10.1002/apj.1652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Antonio Zuorro
- Department of Chemical Engineering, Materials and Environment; Sapienza University; Via Eudossiana 18; I-00184; Roma; Italy
| | - Roberto Lavecchia
- Department of Chemical Engineering, Materials and Environment; Sapienza University; Via Eudossiana 18; I-00184; Roma; Italy
| |
Collapse
|
31
|
Li H, Sun H. Recent advances in bioinorganic chemistry of bismuth. Curr Opin Chem Biol 2012; 16:74-83. [PMID: 22322154 PMCID: PMC7108238 DOI: 10.1016/j.cbpa.2012.01.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/05/2012] [Accepted: 01/09/2012] [Indexed: 01/21/2023]
Abstract
Bismuth has been used in medicine for over two centuries for the treatment of various diseases, in particular for gastrointestinal disorders, owing to its antimicrobial activity. Recent structural characterization of bismuth drugs provides an insight into assembly and pharmacokinetic pathway of the drugs. Mining potential protein targets inside the pathogen via metallomic/metalloproteomic approach and further characterization on the interactions of bismuth drugs with these targets laid foundation in understanding the mechanism of action of bismuth drugs. Such studies would be beneficial in rational design of new potential drugs.
Collapse
|
32
|
Xia W, Li H, Yang X, Wong KB, Sun H. Metallo-GTPase HypB from Helicobacter pylori and its interaction with nickel chaperone protein HypA. J Biol Chem 2011; 287:6753-63. [PMID: 22179820 DOI: 10.1074/jbc.m111.287581] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The maturation of [NiFe]-hydrogenase is highly dependent on a battery of chaperone proteins. Among these, HypA and HypB were proposed to exert nickel delivery functions in the metallocenter assembly process, although the detailed mechanism remains unclear. Herein, we have overexpressed and purified wild-type HypB as well as two mutants, K168A and M186L/F190V, from Helicobacter pylori. We demonstrated that all proteins bind Ni(2+) at a stoichiometry of one Ni(2+) per monomer of the proteins with dissociation constants at micromolar levels. Ni(2+) elevated GTPase activity of WT HypB, which is attributable to a lower affinity of the protein toward GDP as well as Ni(2+)-induced dimerization. The disruption of GTP-dependent dimerization has led to GTPase activities of both mutants in apo-forms almost completely abolished, compared with the wild-type protein. The GTPase activity is partially restored for HypB(M186L/F190V) mutant but not for HypB(K168A) mutant upon Ni(2+) binding. HypB forms a complex with its partner protein HypA with a low affinity (K(d) of 52.2 ± 8.8 μM). Such interactions were also observed in vivo both in the absence and presence of nickel using a GFP-fragment reassembly technique. The putative protein-protein interfaces on H. pylori HypA and HypB proteins were identified by NMR chemical shift perturbation and mutagenesis studies, respectively. Intriguingly, the unique N terminus of H. pylori HypB was identified to participate in the interaction with H. pylori HypA. These structural and functional studies provide insight into the molecular mechanism of Ni(2+) delivery during maturation of [NiFe]-hydrogenase.
Collapse
Affiliation(s)
- Wei Xia
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | |
Collapse
|
33
|
Kaluarachchi H, Siebel JF, Kaluarachchi-Duffy S, Krecisz S, Sutherland DEK, Stillman MJ, Zamble DB. Metal selectivity of the Escherichia coli nickel metallochaperone, SlyD. Biochemistry 2011; 50:10666-77. [PMID: 22047179 DOI: 10.1021/bi2014882] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SlyD is a Ni(II)-binding protein that contributes to nickel homeostasis in Escherichia coli. The C-terminal domain of SlyD contains a rich variety of metal-binding amino acids, suggesting broader metal binding capabilities, and previous work demonstrated that the protein can coordinate several types of first-row transition metals. However, the binding of SlyD to metals other than Ni(II) has not been previously characterized. To improve our understanding of the in vitro metal-binding activity of SlyD and how it correlates with the in vivo function of this protein, the interactions between SlyD and the series of biologically relevant transition metals [Mn(II), Fe(II), Co(II), Cu(I), and Zn(II)] were examined by using a combination of optical spectroscopy and mass spectrometry. Binding of SlyD to Mn(II) or Fe(II) ions was not detected, but the protein coordinates multiple ions of Co(II), Zn(II), and Cu(I) with appreciable affinity (K(D) values in or below the nanomolar range), highlighting the promiscuous nature of this protein. The order of affinities of SlyD for the metals examined is as follows: Mn(II) and Fe(II) < Co(II) < Ni(II) ~ Zn(II) ≪ Cu(I). Although the purified protein is unable to overcome the large thermodynamic preference for Cu(I) and exclude Zn(II) chelation in the presence of Ni(II), in vivo studies reveal a Ni(II)-specific function for the protein. Furthermore, these latter experiments support a specific role for SlyD as a [NiFe]-hydrogenase enzyme maturation factor. The implications of the divergence between the metal selectivity of SlyD in vitro and the specific activity in vivo are discussed.
Collapse
Affiliation(s)
- Harini Kaluarachchi
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| | | | | | | | | | | | | |
Collapse
|