1
|
Han M, Liu C, Hu L. Enzyme-Catalyzed Dynamic Kinetic Resolution of 2-Formylbenzoic Acids for the Asymmetric Synthesis of Phthalidyl Esters and Related Prodrugs. J Org Chem 2023; 88:3897-3902. [PMID: 36821136 DOI: 10.1021/acs.joc.2c02531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
An enzyme-catalyzed dynamic kinetic resolution strategy was applied for the asymmetric synthesis of phthalidyl esters in high yields (up to 95%) and enantiomeric purities (up to 99% ee) through a direct one-pot procedure. Preparation of phthalidyl ester prodrugs and a scale-up reaction demonstrated the potential of this method for practical applications.
Collapse
Affiliation(s)
- Maochun Han
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Changming Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Lei Hu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
2
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022; 61:e202201168. [PMID: 35447003 DOI: 10.1002/anie.202201168] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 12/21/2022]
Abstract
Sulfur has been important in dynamic covalent chemistry (DCC) since the beginning of the field. Mainly as part of disulfides and thioesters, dynamic sulfur-based bonds (DSBs) have a leading role in several remarkable reactions. Part of this success is due to the almost ideal properties of DSBs for the preparation of dynamic covalent systems, including high reactivity and good reversibility under mild aqueous conditions, the possibility of exploiting supramolecular interactions, access to isolable structures, and easy experimental control to turn the reaction on/off. DCC is currently witnessing an increase in the importance of DSBs. The chemical flexibility offered by DSBs opens the door to multiple applications. This Review presents an overview of all the DSBs used in DCC, their applications, and remarks on the interesting properties that they confer on dynamic chemical systems, especially those containing several DSBs.
Collapse
Affiliation(s)
- A Gastón Orrillo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| | - Ricardo L E Furlan
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| |
Collapse
|
3
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alfredo Gastón Orrillo
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| | - Ricardo L. E. Furlan
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| |
Collapse
|
4
|
Yang LC, Deng H, Renata H. Recent Progress and Developments in Chemoenzymatic and Biocatalytic Dynamic Kinetic Resolution. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Li-Cheng Yang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Heping Deng
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Hans Renata
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
5
|
Biocatalytic enantioselective construction of 1,3-oxathiolan-5-ones via dynamic covalent kinetic resolution of hemithioketals. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
García-Calvo J, López-Andarias J, Maillard J, Mercier V, Roffay C, Roux A, Fürstenberg A, Sakai N, Matile S. HydroFlipper membrane tension probes: imaging membrane hydration and mechanical compression simultaneously in living cells. Chem Sci 2022; 13:2086-2093. [PMID: 35308858 PMCID: PMC8849034 DOI: 10.1039/d1sc05208j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/22/2022] [Indexed: 12/29/2022] Open
Abstract
HydroFlippers are introduced as the first fluorescent membrane tension probes that report simultaneously on membrane compression and hydration. The probe design is centered around a sensing cycle that couples the mechanical planarization of twisted push–pull fluorophores with the dynamic covalent hydration of their exocyclic acceptor. In FLIM images of living cells, tension-induced deplanarization is reported as a decrease in fluorescence lifetime of the dehydrated mechanophore. Membrane hydration is reported as the ratio of the photon counts associated to the hydrated and dehydrated mechanophores in reconvoluted lifetime frequency histograms. Trends for tension-induced decompression and hydration of cellular membranes of interest (MOIs) covering plasma membrane, lysosomes, mitochondria, ER, and Golgi are found not to be the same. Tension-induced changes in mechanical compression are rather independent of the nature of the MOI, while the responsiveness to changes in hydration are highly dependent on the intrinsic order of the MOI. These results confirm the mechanical planarization of push–pull probes in the ground state as most robust mechanism to routinely image membrane tension in living cells, while the availability of simultaneous information on membrane hydration will open new perspectives in mechanobiology. HydroFlippers respond to membrane compression and hydration in the same fluorescence lifetime imaging microscopy histogram: the responses do not correlate.![]()
Collapse
Affiliation(s)
- José García-Calvo
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Javier López-Andarias
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Jimmy Maillard
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Chloé Roffay
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Aurélien Roux
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Alexandre Fürstenberg
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Ma XL, Wang YH, Shen JH, Hu Y. Progress in the Synthesis of Heterocyclic Compounds Catalyzed by Lipases. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1736233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Heterocyclic compounds are representative of a larger class of organic compounds, and worthy of attention for many reasons, chief of which is the participation of heterocyclic scaffolds in the skeleton structure of many drugs. Lipases are enzymes with catalytic versatility, and play a key role in catalyzing the reaction of carbon–carbon bond formation, allowing the production of different compounds. This article reviewed the lipase-catalyzed aldol reaction, Knoevenagel reaction, Michael reaction, Mannich reaction, etc., in the synthesis of several classes of heterocyclic compounds with important physiological and pharmacological activities, and also prospected the research focus in lipase-catalyzed chemistry transformations in the future.
Collapse
Affiliation(s)
- Xiao-Long Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yu-Han Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jin-Hua Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Kato T, Strakova K, García-Calvo J, Sakai N, Matile S. Mechanosensitive Fluorescent Probes, Changing Color Like Lobsters during Cooking: Cascade Switching Variations. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Takehiro Kato
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Karolina Strakova
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - José García-Calvo
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
García-Calvo J, Maillard J, Fureraj I, Strakova K, Colom A, Mercier V, Roux A, Vauthey E, Sakai N, Fürstenberg A, Matile S. Fluorescent Membrane Tension Probes for Super-Resolution Microscopy: Combining Mechanosensitive Cascade Switching with Dynamic-Covalent Ketone Chemistry. J Am Chem Soc 2020; 142:12034-12038. [PMID: 32609500 DOI: 10.1021/jacs.0c04942] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the design, synthesis, and evaluation of fluorescent flipper probes for single-molecule super-resolution imaging of membrane tension in living cells. Reversible switching from bright-state ketones to dark-state hydrates, hemiacetals, and hemithioacetals is demonstrated for twisted and planarized mechanophores in solution and membranes. Broadband femtosecond fluorescence up-conversion spectroscopy evinces ultrafast chalcogen-bonding cascade switching in the excited state in solution. According to fluorescence lifetime imaging microscopy, the new flippers image membrane tension in live cells with record red shifts and photostability. Single-molecule localization microscopy with the new tension probes resolves membranes well below the diffraction limit.
Collapse
Affiliation(s)
- José García-Calvo
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Jimmy Maillard
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Ina Fureraj
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Karolina Strakova
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Adai Colom
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Aurelien Roux
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Eric Vauthey
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Alexandre Fürstenberg
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
10
|
Zhang Y, Sun Y, Tang H, Zhao Q, Ren W, Lv K, Yang F, Wang F, Liu J. One-Pot Enzymatic Synthesis of Enantiopure 1,3-Oxathiolanes Using Trichosporon laibachii Lipase and the Kinetic Model. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210,United States
| | - Yangjian Sun
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210,United States
| | - Hui Tang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Qiuxiang Zhao
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Wenjie Ren
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Kuiying Lv
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Fengke Yang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Fanye Wang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Junhong Liu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| |
Collapse
|
11
|
Zhang Y, Zhang Y, Ramström O. Dynamic Covalent Kinetic Resolution. CATALYSIS REVIEWS, SCIENCE AND ENGINEERING 2019; 62:66-95. [PMID: 33716355 PMCID: PMC7953846 DOI: 10.1080/01614940.2019.1664031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Implemented with the highly efficient concept of Dynamic Kinetic Resolution (DKR), dynamic covalent chemistry can be a useful strategy for the synthesis of enantioenriched compounds. This gives rise to dynamic covalent kinetic resolution (DCKR), a subset of DKR that over the last decades has emerged as increasingly fruitful, with many applications in asymmetric synthesis and catalysis. All DKR protocols are composed of two important parts: substrate racemization and asymmetric transformation, which can lead to yields of >50% with good enantiomeric excesses (ee) of the products. In DCKR systems, by utilizing reversible covalent reactions as the racemization strategy, the substrate enantiomers can be easily interconverted without the presence of any racemase or transition metal catalyst. Enzymes or other chiral catalysts can then be adopted for the resolution step, leading to products with high enantiopurities. This tutorial review focuses on the development of DCKR systems, based on different reversible reactions, and their applications in asymmetric synthesis.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yang Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., MA, 01854 Lowell, USA
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
12
|
Zhang Y, Xie S, Yan M, Ramström O. Enzyme- and ruthenium-catalyzed dynamic kinetic resolution involving cascade alkoxycarbonylations for asymmetric synthesis of 5-Substituted N-Aryloxazolidinones. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Ren Y, Hu L, Ramström O. Multienzymatic cascade synthesis of an enantiopure (2R,5R)-1,3-oxathiolane anti-HIV agent precursor. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Xu J, Hu L. Asymmetric one-pot synthesis of five- and six-membered lactones via dynamic covalent kinetic resolution: Exploring the regio- and stereoselectivities of lipase. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Nonsuwan P, Matsugami A, Hayashi F, Hyon SH, Matsumura K. Controlling the degradation of an oxidized dextran-based hydrogel independent of the mechanical properties. Carbohydr Polym 2019; 204:131-141. [DOI: 10.1016/j.carbpol.2018.09.081] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 11/26/2022]
|
16
|
Ren Y, Svensson PH, Ramström O. A Multicontrolled Enamine Configurational Switch Undergoing Dynamic Constitutional Exchange. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yansong Ren
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Per H. Svensson
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Research Institutes of Sweden RISE Bioscience and Materials Forskargatan 18 15136 Södertälje Sweden
| | - Olof Ramström
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Department of Chemistry University of Massachusetts Lowell 1 University Avenue Lowell MA 01854 USA
| |
Collapse
|
17
|
Ren Y, Svensson PH, Ramström O. A Multicontrolled Enamine Configurational Switch Undergoing Dynamic Constitutional Exchange. Angew Chem Int Ed Engl 2018; 57:6256-6260. [DOI: 10.1002/anie.201802994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Yansong Ren
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Per H. Svensson
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Research Institutes of Sweden RISE Bioscience and Materials Forskargatan 18 15136 Södertälje Sweden
| | - Olof Ramström
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Department of Chemistry University of Massachusetts Lowell 1 University Avenue Lowell MA 01854 USA
| |
Collapse
|
18
|
Nath U, Chowdhury D, Pan SC. Nonenzymatic Dynamic Kinetic Resolution of in situ
Generated Hemithioacetals: Access to 1,3-Disubstituted Phthalans. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Utpal Nath
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam India 781039, Fax: (+91)-361-258-2349; phone: (+91)-361-258-3304
| | - Deepan Chowdhury
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam India 781039, Fax: (+91)-361-258-2349; phone: (+91)-361-258-3304
| | - Subhas Chandra Pan
- Department of Chemistry; Indian Institute of Technology Guwahati; Assam India 781039, Fax: (+91)-361-258-2349; phone: (+91)-361-258-3304
| |
Collapse
|
19
|
Han MY, Yang FY, Zhou D, Xu Z. Organobase-catalyzed [1,2]-Brook rearrangement of silyl glyoxylates. Org Biomol Chem 2017; 15:1418-1425. [DOI: 10.1039/c7ob00005g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient [1,2]-Brook rearrangement of silyl glyoxylates has been developed using DBU as the organo-base catalyst.
Collapse
Affiliation(s)
- Man-Yi Han
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P.R. China
| | - Fei-Yan Yang
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P.R. China
| | - Di Zhou
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P.R. China
| | - Zhigang Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies
- Faculty for Materials and Energy
- Southwest University
- Chongqing 400715
- P.R. China
| |
Collapse
|
20
|
Zhang Y, Gao X, Wang C, Zheng Z, Wang L, Liu J. One-pot stereoselective synthesis of chiral 1, 3-oxathiolane by Trichosporon laibachii lipase: Optimization by response surface methodology integrated a desirability function approach. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
21
|
Zhang Y, Zhang Y, Xie S, Yan M, Ramström O. Lipase-catalyzed kinetic resolution of 3-phenyloxazolidin-2-one derivatives: Cascade O- and N-alkoxycarbonylations. CATAL COMMUN 2016. [DOI: 10.1016/j.catcom.2016.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
22
|
Brachvogel RC, von Delius M. The Dynamic Covalent Chemistry of Esters, Acetals and Orthoesters. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600388] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- René-Chris Brachvogel
- Institute of Organic Chemistry and Advanced Materials; University of Ulm; Albert-Einstein-Allee 11 89081 Ulm Germany
- Friedrich-Alexander University Erlangen-Nürnberg (FAU); Department of Chemistry and Pharmacy & Interdisciplinary Center of Molecular Materials (ICMM); Henkestr. 42 91054 Erlangen Germany
| | - Max von Delius
- Institute of Organic Chemistry and Advanced Materials; University of Ulm; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
23
|
Orrillo AG, Escalante AM, Furlan RLE. Dithioacetal Exchange: A New Reversible Reaction for Dynamic Combinatorial Chemistry. Chemistry 2016; 22:6746-9. [PMID: 26990904 DOI: 10.1002/chem.201600208] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 12/22/2022]
Abstract
Reversibility of dithioacetal bond formation is reported under acidic mild conditions. Its utility for dynamic combinatorial chemistry was explored by combining it with orthogonal disulfide exchange. In such a setup, thiols are positioned at the intersection of both chemistries, constituting a connecting node between temporally separated networks.
Collapse
Affiliation(s)
- A Gastón Orrillo
- Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Ocampo y Esmeralda, Rosario, 2000), Argentina
| | - Andrea M Escalante
- Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Ocampo y Esmeralda, Rosario, 2000), Argentina
| | - Ricardo L E Furlan
- Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Ocampo y Esmeralda, Rosario, 2000), Argentina. .,Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000), Argentina.
| |
Collapse
|
24
|
Zhang Y, Jayawardena HSN, Yan M, Ramström O. Enzyme classification using complex dynamic hemithioacetal systems. Chem Commun (Camb) 2016; 52:5053-6. [PMID: 26987550 PMCID: PMC4820758 DOI: 10.1039/c6cc01823h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A complex dynamic hemithioacetal system was used in combination with pattern recognition methodology to classify lipases into distinct groups.
A complex dynamic hemithioacetal system was generated for the evaluation of lipase reactivities in organic media. In combination with pattern recognition methodology, twelve different lipases were successfully classified into four distinct groups following their reaction selectivities and reactivities. A probe lipase was further categorized using the training matrix with predicted reactivity.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry, KTH - Royal Institute of Technology, Teknikringen 30, 10044 Stockholm, Sweden.
| | | | | | | |
Collapse
|
25
|
Zhang Y, Zhang Y, Ren Y, Ramström O. Synthesis of chiral oxazolidinone derivatives through lipase-catalyzed kinetic resolution. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
de Miranda AS, Miranda LS, de Souza RO. Lipases: Valuable catalysts for dynamic kinetic resolutions. Biotechnol Adv 2015; 33:372-93. [DOI: 10.1016/j.biotechadv.2015.02.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/10/2015] [Accepted: 02/25/2015] [Indexed: 12/22/2022]
|
27
|
Schaufelberger F, Ramström O. Dynamic covalent organocatalysts discovered from catalytic systems through rapid deconvolution screening. Chemistry 2015; 21:12735-40. [PMID: 26174068 PMCID: PMC4557047 DOI: 10.1002/chem.201502088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 11/11/2022]
Abstract
The first example of a bifunctional organocatalyst assembled through dynamic covalent chemistry (DCC) is described. The catalyst is based on reversible imine chemistry and can catalyze the Morita-Baylis-Hillman (MBH) reaction of enones with aldehydes or N-tosyl imines. Furthermore, these dynamic catalysts were shown to be optimizable through a systemic screening approach, in which large mixtures of catalyst structures were generated, and the optimal catalyst could be directly identified by using dynamic deconvolution. This strategy allowed one-pot synthesis and in situ evaluation of several potential catalysts without the need to separate, characterize, and purify each individual structure. The systems were furthermore shown to catalyze and re-equilibrate their own formation through a previously unknown thiourea-catalyzed transimination process.
Collapse
Affiliation(s)
- Fredrik Schaufelberger
- Department of Chemistry, KTH - Royal Institute of TechnologyTeknikringen 30, 10044 Stockholm (Sweden) E-mail:
| | - Olof Ramström
- Department of Chemistry, KTH - Royal Institute of TechnologyTeknikringen 30, 10044 Stockholm (Sweden) E-mail:
| |
Collapse
|
28
|
Hu L, Ren Y, Ramström O. Chirality Control in Enzyme-Catalyzed Dynamic Kinetic Resolution of 1,3-Oxathiolanes. J Org Chem 2015; 80:8478-81. [DOI: 10.1021/acs.joc.5b01585] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Hu
- Department of Chemistry, KTH - Royal Institute of Technology, Teknikringen 30, Stockholm S-10044, Sweden
| | - Yansong Ren
- Department of Chemistry, KTH - Royal Institute of Technology, Teknikringen 30, Stockholm S-10044, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH - Royal Institute of Technology, Teknikringen 30, Stockholm S-10044, Sweden
| |
Collapse
|
29
|
Gelation-driven Dynamic Systemic Resolution: in situ Generation and Self-Selection of an Organogelator. Sci Rep 2015; 5:11065. [PMID: 26062041 PMCID: PMC4462186 DOI: 10.1038/srep11065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/15/2015] [Indexed: 01/26/2023] Open
Abstract
An organogelator was produced and identified from a dynamic imine system, resolved and amplified by selective gelation. The formation of the organogel was monitored in situ by (1)H NMR, showing the existence of multiple reversible reactions operating simultaneously, and the redistribution of the involved species during gelation. The formed organogelator proved effective with a range of organic solvents, including DMSO, toluene, and longer, linear alcohols.
Collapse
|
30
|
Hsu CW, Miljanić OŠ. Adsorption-Driven Self-Sorting of Dynamic Imine Libraries. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409741] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Hsu CW, Miljanić OŠ. Adsorption-Driven Self-Sorting of Dynamic Imine Libraries. Angew Chem Int Ed Engl 2014; 54:2219-22. [DOI: 10.1002/anie.201409741] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/22/2014] [Indexed: 11/11/2022]
|
32
|
Ji Q, Lirag RC, Miljanić OŠ. Kinetically controlled phenomena in dynamic combinatorial libraries. Chem Soc Rev 2014; 43:1873-84. [PMID: 24445841 DOI: 10.1039/c3cs60356c] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dynamic combinatorial libraries (DCLs) are collections of structurally related compounds that can interconvert through reversible chemical reaction(s). Such reversibility endows DCLs with adaptability to external stimuli, as rapid interconversion allows quick expression of those DCL components which best respond to the disturbing stimulus. This Tutorial Review focuses on the kinetically controlled phenomena that occur within DCLs. Specifically, it will describe dynamic chiral resolution of DCLs, their self-sorting under the influence of irreversible chemical and physical stimuli, and the autocatalytic behaviours within DCLs which can result in self-replicating systems. A brief discussion of precipitation-induced phenomena will follow and the review will conclude with the presentation of covalent organic frameworks (COFs)-porous materials whose synthesis critically depends on the fine tuning of the crystal growth and error correction rates within large DCLs.
Collapse
Affiliation(s)
- Qing Ji
- Department of Chemistry, University of Houston, 112 Fleming Building, Houston, TX 77204-5003, USA.
| | | | | |
Collapse
|
33
|
Herrmann A. Dynamic combinatorial/covalent chemistry: a tool to read, generate and modulate the bioactivity of compounds and compound mixtures. Chem Soc Rev 2014; 43:1899-933. [PMID: 24296754 DOI: 10.1039/c3cs60336a] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reversible covalent bond formation under thermodynamic control adds reactivity to self-assembled supramolecular systems, and is therefore an ideal tool to assess complexity of chemical and biological systems. Dynamic combinatorial/covalent chemistry (DCC) has been used to read structural information by selectively assembling receptors with the optimum molecular fit around a given template from a mixture of reversibly reacting building blocks. This technique allows access to efficient sensing devices and the generation of new biomolecules, such as small molecule receptor binders for drug discovery, but also larger biomimetic polymers and macromolecules with particular three-dimensional structural architectures. Adding a kinetic factor to a thermodynamically controlled equilibrium results in dynamic resolution and in self-sorting and self-replicating systems, all of which are of major importance in biological systems. Furthermore, the temporary modification of bioactive compounds by reversible combinatorial/covalent derivatisation allows control of their release and facilitates their transport across amphiphilic self-assembled systems such as artificial membranes or cell walls. The goal of this review is to give a conceptual overview of how the impact of DCC on supramolecular assemblies at different levels can allow us to understand, predict and modulate the complexity of biological systems.
Collapse
Affiliation(s)
- Andreas Herrmann
- Firmenich SA, Division Recherche et Développement, Route des Jeunes 1, B. P. 239, CH-1211 Genève 8, Switzerland.
| |
Collapse
|
34
|
Asymmetric synthesis of 1,3-oxathiolan-5-one derivatives through dynamic covalent kinetic resolution. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.03.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Zhang Y, Ramström O. Thiazolidinones derived from dynamic systemic resolution of complex reversible-reaction networks. Chemistry 2014; 20:3288-91. [PMID: 24677507 PMCID: PMC4497320 DOI: 10.1002/chem.201304690] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Indexed: 11/27/2022]
Abstract
A complex dynamic system based on a network of multiple reversible reactions has been established. The network was applied to a dynamic systemic resolution protocol based on kinetically controlled lipase-catalyzed transformations. This resulted in the formation of cyclized products, where two thiazolidinone compounds were efficiently produced from a range of potential transformations.
Collapse
Affiliation(s)
- Yan Zhang
- KTH Royal Institute of Technology, Department of ChemistryTeknikringen 30, 10044 Stockholm (Sweden)
| | - Olof Ramström
- KTH Royal Institute of Technology, Department of ChemistryTeknikringen 30, 10044 Stockholm (Sweden)
| |
Collapse
|
36
|
Zhang Y, Vongvilai P, Sakulsombat M, Fischer A, Ramström O. Asymmetric Synthesis of Substituted Thiolanes through Domino Thia-Michael-Henry Dynamic Covalent Systemic Resolution using Lipase Catalysis. Adv Synth Catal 2014; 356:987-992. [PMID: 26190961 PMCID: PMC4498465 DOI: 10.1002/adsc.201301033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/15/2014] [Indexed: 12/12/2022]
Abstract
Dynamic systems based on consecutive thia-Michael and Henry reactions were generated and transformed using lipase-catalyzed asymmetric transformation. Substituted thiolane structures with three contiguous stereocenters were resolved in the process in high yields and high enantiomeric excesses.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry, KTH Royal Institute of Technology Teknikringen 30, S-10044 Stockholm, Sweden E-mail:
| | - Pornrapee Vongvilai
- Department of Chemistry, KTH Royal Institute of Technology Teknikringen 30, S-10044 Stockholm, Sweden E-mail:
| | - Morakot Sakulsombat
- Department of Chemistry, KTH Royal Institute of Technology Teknikringen 30, S-10044 Stockholm, Sweden E-mail:
| | - Andreas Fischer
- Department of Chemistry, KTH Royal Institute of Technology Teknikringen 30, S-10044 Stockholm, Sweden E-mail:
| | - Olof Ramström
- Department of Chemistry, KTH Royal Institute of Technology Teknikringen 30, S-10044 Stockholm, Sweden E-mail:
| |
Collapse
|
37
|
Vasconcelos MG, Briggs RH, Aguiar LC, Freire DM, Simas AB. Efficient desymmetrization of 4,6-di-O-benzyl-myo-inositol by Lipozyme TL-IM. Carbohydr Res 2014; 386:7-11. [DOI: 10.1016/j.carres.2013.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/27/2013] [Accepted: 11/11/2013] [Indexed: 10/26/2022]
|
38
|
Hu L, Zhang Y, Ramström O. Lipase-catalyzed asymmetric synthesis of oxathiazinanones through dynamic covalent kinetic resolution. Org Biomol Chem 2014; 12:3572-5. [DOI: 10.1039/c4ob00365a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A domino addition–lactonization pathway has been applied to a dynamic covalent resolution protocol, leading to efficient asymmetric synthesis of oxathiazinanones.
Collapse
Affiliation(s)
- Lei Hu
- Royal Institute of Technology
- Department of Chemistry
- Stockholm, Sweden
| | - Yan Zhang
- Royal Institute of Technology
- Department of Chemistry
- Stockholm, Sweden
| | - Olof Ramström
- Royal Institute of Technology
- Department of Chemistry
- Stockholm, Sweden
| |
Collapse
|
39
|
Hu L, Ramström O. Silver-catalyzed dynamic systemic resolution of α-iminonitriles in a 1,3-dipolar cycloaddition process. Chem Commun (Camb) 2014; 50:3792-4. [DOI: 10.1039/c4cc00944d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A silver-catalyzed dynamic azomethine ylide system was kinetically resolved in a tandem cycloaddition process, yielding an exclusive pyrrolidine product.
Collapse
Affiliation(s)
- Lei Hu
- Department of Chemistry
- KTH – Royal Institute of Technology
- Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry
- KTH – Royal Institute of Technology
- Stockholm, Sweden
| |
Collapse
|
40
|
IUPAC 2013 Distinguished Women in Chemistry or Chemical Engineering / New Members of the Royal Swedish Academy of Sciences. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/anie.201305827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
IUPAC 2013 Distinguished Women in Chemistry or Chemical Engineering / Neue Mitglieder der königlichen schwedischen Akademie der Wissenschaften. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Zhang Y, Hu L, Ramström O. Double parallel dynamic resolution through lipase-catalyzed asymmetric transformation. Chem Commun (Camb) 2013; 49:1805-7. [DOI: 10.1039/c3cc38203f] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Hu L, Schaufelberger F, Zhang Y, Ramström O. Efficient asymmetric synthesis of lamivudine via enzymatic dynamic kinetic resolution. Chem Commun (Camb) 2013; 49:10376-8. [DOI: 10.1039/c3cc45551c] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anti-HIV nucleoside lamivudine was asymmetrically synthesized in only three steps via a novel surfactant-treated subtilisin Carlsberg-catalyzed dynamic kinetic resolution protocol.
Collapse
Affiliation(s)
- Lei Hu
- Royal Institute of Technology
- Department of Chemistry
- Stockholm
- Sweden
| | | | - Yan Zhang
- Royal Institute of Technology
- Department of Chemistry
- Stockholm
- Sweden
| | - Olof Ramström
- Royal Institute of Technology
- Department of Chemistry
- Stockholm
- Sweden
| |
Collapse
|