1
|
Shi D, Wu W, Li X. Ultrasensitive detection of mercury(II) ions on a hybrid film of a graphene and gold nanoparticle-modified electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2161-2167. [PMID: 35593172 DOI: 10.1039/d2ay00413e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aggravated by human and industrial activities, heavy metal pollution has become a severe problem, causing widespread concern in society, and cannot be ignored. Herein, a graphene/gold nanoparticle-hybrid (AuNPs/ERGO) was proposed and synthesized by electrochemical methods. Based on the AuNPs/ERGO hybrid, a novel electrochemical sensing platform was established and successfully applied for the selective, quantitative detection of Hg2+, taking advantage of the well-established anodic stripping voltammetry (ASV). This hybrid material not only increases the surface area and charge transfer rate but also provides more active sites for Hg deposition due to the formation of homogeneous, high density and monodispersed AuNPs on the ERGO film. The prepared AuNPs/ERGO hybrid was modified on a glassy carbon electrode (GCE) to detect Hg2+ with a linear range from 0.5 to 20 μg L-1 and a low limit of detection (LOD) of 0.06 μg L-1. The selectivity and stability of the as-prepared electrode were investigated and showed promising results. In addition, a screen-printed carbon electrode (SPCE) was also employed to verify the practical application ability of our assay with an excellent performance, which presents a bright application prospect for in situ Hg2+ detection.
Collapse
Affiliation(s)
- Dongmin Shi
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong S.A.R., China.
| | - Wenzhan Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong S.A.R., China.
| | - Xiaoyuan Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong S.A.R., China.
| |
Collapse
|
2
|
Rapid electrochemical detection of COVID-19 genomic sequence with dual-function graphene nanocolloids based biosensor. FLATCHEM 2022; 32. [PMCID: PMC8771053 DOI: 10.1016/j.flatc.2022.100336] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Discovered in December 2019, the Severe Acute Respiratory Syndrome Coronavirus 2 (aka SARS-CoV-2 or 2019-nCoV) has attracted worldwide attention and concerns due to its high transmissibility and the severe health consequences experienced upon its infection, particularly by elderly people. Over 329 million people have been infected till date and over 5.5 million people could not survive the respiratory illness known as COVID-19 syndrome. Rapid and low-cost detection methods are of utmost importance to monitor the diffusion of the virus and to aid in the global fight against the pandemic. We propose here the use of graphene oxide nanocolloids (GONC) as an electroactive nanocarbon material that can act simultaneously as a transducing platform as well as the electroactive label for the detection of 2019-nCoV genomic sequences. The ability of GONC to provide an intrinsic electrochemical signal arising from the reduction of the electrochemically reducible oxygen functionalities present on its surface, allows GONC to be used as a simple and sensitive biosensing platform. Different intrinsic electroactivity of the material was obtained at each step of the genosensing process, starting from the immobilization of a short-stranded DNA probe and followed by the incubation with different concentrations of the target 2019-nCoV DNA strand. Monitoring such variations enabled the quantification of the target analyte over a wide dynamic range between 10−10 and 10−5 M. All in all, this proof-of-concept system serves as a stepping stone for the development of a rapid, sensitive and selective analytical tool for the detection of 2019-nCoV as well as other similar viral vectors. The use of cost-effective electrochemical detection methods coupled with the vast availability and suitability of carbon-based nanomaterials make this sensing system a valid candidate for low-cost and point-of-care analysis.
Collapse
|
3
|
Hydrothermally reduced graphene oxide as a sensing material for electrically transduced pH sensors. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Veloso AD, Oliveira MC. Redox-active water-soluble carbon nanomaterials generated from graphite. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Bettazzi F, Ingrosso C, Sfragano PS, Pifferi V, Falciola L, Curri ML, Palchetti I. Gold nanoparticles modified graphene platforms for highly sensitive electrochemical detection of vitamin C in infant food and formulae. Food Chem 2020; 344:128692. [PMID: 33349504 DOI: 10.1016/j.foodchem.2020.128692] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
An easy and reliable method based on a novel electroanalytical nanostructured sensor has been developed to perform quantification of vitamin C in commercial and fortified cow-milk-based formulae and foods for infants and young children. The work is motivated by the need of a reliable analytical tool to be applied in quality control laboratories for the quantitative assessment of vitamin C where its rapid and cost-effective monitoring is essential. The ad hoc designed sensor, based on disposable screen-printed carbon electrodes modified with Au nanoparticles decorated reduced graphene oxide flakes, exhibits a LOD of 0.088 mg L-1. The low cost, easy sample preparation, fast response and high reproducibility (RSD ≈ 8%) of the proposed method highlight its suitability for usage in quality control laboratories for determining vitamin C in real complex food matrices, envisaging the application of the sensing platform in the determination of other compounds relevant in food chemistry and food manufacturing.
Collapse
Affiliation(s)
- Francesca Bettazzi
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Chiara Ingrosso
- CNR-IPCF Istituto per i Processi Chimico-Fisici, Sez. Bari, c/o Dip. Chimica Via Orabona 4, 70126 Bari, Italy; INSTM, Via G. Giusti 9, 50121 Firenze, Italy
| | - Patrick Severin Sfragano
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Valentina Pifferi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Luigi Falciola
- INSTM, Via G. Giusti 9, 50121 Firenze, Italy; Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - M Lucia Curri
- CNR-IPCF Istituto per i Processi Chimico-Fisici, Sez. Bari, c/o Dip. Chimica Via Orabona 4, 70126 Bari, Italy; INSTM, Via G. Giusti 9, 50121 Firenze, Italy; Dipartimento di Chimica, Università degli Studi di Bari, Via Orabona 4, 70126 Bari, Italy
| | - Ilaria Palchetti
- Dipartimento di Chimica, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy; INSTM, Via G. Giusti 9, 50121 Firenze, Italy.
| |
Collapse
|
6
|
Moyano A, Serrano-Pertierra E, Salvador M, Martínez-García JC, Piñeiro Y, Yañez-Vilar S, Gónzalez-Gómez M, Rivas J, Rivas M, Blanco-López MC. Carbon-Coated Superparamagnetic Nanoflowers for Biosensors Based on Lateral Flow Immunoassays. BIOSENSORS 2020; 10:E80. [PMID: 32707868 PMCID: PMC7460469 DOI: 10.3390/bios10080080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/09/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
Superparamagnetic iron oxide nanoflowers coated by a black carbon layer (Fe3O4@C) were studied as labels in lateral flow immunoassays. They were synthesized by a one-pot solvothermal route, and they were characterized (size, morphology, chemical composition, and magnetic properties). They consist of several superparamagnetic cores embedded in a carbon coating holding carboxylic groups adequate for bioconjugation. Their multi-core structure is especially efficient for magnetic separation while keeping suitable magnetic properties and appropriate size for immunoassay reporters. Their functionality was tested with a model system based on the biotin-neutravidin interaction. For this, the nanoparticles were conjugated to neutravidin using the carbodiimide chemistry, and the lateral flow immunoassay was carried out with a biotin test line. Quantification was achieved with both an inductive magnetic sensor and a reflectance reader. In order to further investigate the quantifying capacity of the Fe3O4@C nanoflowers, the magnetic lateral flow immunoassay was tested as a detection system for extracellular vesicles (EVs), a novel source of biomarkers with interest for liquid biopsy. A clear correlation between the extracellular vesicle concentration and the signal proved the potential of the nanoflowers as quantifying labels. The limit of detection in a rapid test for EVs was lower than the values reported before for other magnetic nanoparticle labels in the working range 0-3 × 107 EVs/μL. The method showed a reproducibility (RSD) of 3% (n = 3). The lateral flow immunoassay (LFIA) rapid test developed in this work yielded to satisfactory results for EVs quantification by using a precipitation kit and also directly in plasma samples. Besides, these Fe3O4@C nanoparticles are easy to concentrate by means of a magnet, and this feature makes them promising candidates to further reduce the limit of detection.
Collapse
Affiliation(s)
- Amanda Moyano
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| | - María Salvador
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - José Carlos Martínez-García
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - Yolanda Piñeiro
- Department of Applied Physics, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; (Y.P.); (S.Y.-V.); (M.G.-G.); (J.R.)
| | - Susana Yañez-Vilar
- Department of Applied Physics, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; (Y.P.); (S.Y.-V.); (M.G.-G.); (J.R.)
| | - Manuel Gónzalez-Gómez
- Department of Applied Physics, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; (Y.P.); (S.Y.-V.); (M.G.-G.); (J.R.)
| | - José Rivas
- Department of Applied Physics, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain; (Y.P.); (S.Y.-V.); (M.G.-G.); (J.R.)
| | - Montserrat Rivas
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - M. Carmen Blanco-López
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| |
Collapse
|
7
|
Chernysheva M, Rychagov A, Kornilov D, Tkachev S, Gubin S. Investigation of sulfuric acid intercalation into thermally expanded graphite in order to optimize the synthesis of electrochemical graphene oxide. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113774] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Facile Electrodeposition of Poly(3,4-ethylenedioxythiophene) on Poly(vinyl alcohol) Nanofibers as the Positive Electrode for High-Performance Asymmetric Supercapacitor. ENERGIES 2019. [DOI: 10.3390/en12173382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poly(vinyl alcohol)/poly(3,4-ethylenedioxythiophene) (PVA/PEDOT) nanofibers were synthesized as a positive electrode for high-performance asymmetric supercapacitor (ASC). PVA/PEDOT nanofibers were prepared through electrospinning and electrodeposition meanwhile reduced graphene oxide (rGO) was obtained by electrochemical reduction. The PVA/PEDOT nanofibers demonstrated cauliflower-like morphology showing that PEDOT was uniformly coated on the smooth cross-linking structure of PVA nanofibers. In addition, the ASC showed a remarkable energy output efficiency by delivering specific energy of 21.45 Wh·kg−1 at a specific power of 335.50 W·kg−1 with good cyclability performance (83% capacitance retained) after 5000 CV cycles. The outstanding supercapacitive performance is contributed from the synergistic effects of both PVA/PEDOT//rGO, which gives promising materials for designing high-performance supercapacitor applications.
Collapse
|
9
|
Arslanov VV, Kalinina MA, Ermakova EV, Raitman OA, Gorbunova YG, Aksyutin OE, Ishkov AG, Grachev VA, Tsivadze AY. Hybrid materials based on graphene derivatives and porphyrin metal-organic frameworks. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4878] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Marrani AG, Motta A, Schrebler R, Zanoni R, Dalchiele EA. Insights from experiment and theory into the electrochemical reduction mechanism of graphene oxide. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Ingrosso C, Corricelli M, Bettazzi F, Konstantinidou E, Bianco GV, Depalo N, Striccoli M, Agostiano A, Curri ML, Palchetti I. Au nanoparticle in situ decorated RGO nanocomposites for highly sensitive electrochemical genosensors. J Mater Chem B 2019; 7:768-777. [DOI: 10.1039/c8tb02514b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel hybrid nanocomposite formed by RGO flakes, surface functionalized by 1-pyrene carboxylic acid (PCA), densely and uniformly in situ decorated by Au NPs, is reported, for miRNA detection.
Collapse
Affiliation(s)
- Chiara Ingrosso
- CNR-IPCF S. S. Bari
- c/o Dep. of Chemistry
- Università di Bari
- I-70126 Bari
- Italy
| | - Michela Corricelli
- CNR-IPCF S. S. Bari
- c/o Dep. of Chemistry
- Università di Bari
- I-70126 Bari
- Italy
| | - Francesca Bettazzi
- Dep. of Chemistry Ugo Schiff
- Università degli Studi di Firenze
- Firenze
- Italy
| | | | | | - Nicoletta Depalo
- CNR-IPCF S. S. Bari
- c/o Dep. of Chemistry
- Università di Bari
- I-70126 Bari
- Italy
| | | | - Angela Agostiano
- CNR-IPCF S. S. Bari
- c/o Dep. of Chemistry
- Università di Bari
- I-70126 Bari
- Italy
| | - M. Lucia Curri
- CNR-IPCF S. S. Bari
- c/o Dep. of Chemistry
- Università di Bari
- I-70126 Bari
- Italy
| | - Ilaria Palchetti
- Dep. of Chemistry Ugo Schiff
- Università degli Studi di Firenze
- Firenze
- Italy
| |
Collapse
|
12
|
Affiliation(s)
- Vanessa Koh
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371
| | - Wei Li Ang
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371
| | - Alessandra Bonanni
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637371
| |
Collapse
|
13
|
Cheng ZX, Bonanni A. All-in-One: Electroactive Nanocarbon as Simultaneous Platform and Label for Single-Step Biosensing. Chemistry 2018; 24:6380-6385. [PMID: 29315887 DOI: 10.1002/chem.201705729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 11/06/2022]
Abstract
We demonstrate here that an electroactive nanocarbon material can simultaneously work as both platform and label for the detection of mycotoxins. The versatility of the material for the immobilization of biorecognition elements was combined with its ability to provide an intrinsic electrochemical signal upon reduction of the oxygen functionalities on its surface. The intensity of peak current reflects the availability of oxygen functionalities for reduction, which can be directly correlated to the specific biorecognition event. We show that the use of electroactive nanocarbon as all-in-one biosensing component enables sensitive quantification of Fumonisin B1 (FB1 ) as model mycotoxin analyte, but it can be easily implemented to develop label-free, cost-effective and fast bioanalytical devices for universal biosensing.
Collapse
Affiliation(s)
- Zhao Xuan Cheng
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Alessandra Bonanni
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
14
|
Graphene-Based Nanomaterials and Their Applications in Biosensors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:61-71. [PMID: 30471026 DOI: 10.1007/978-981-13-0445-3_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently graphene has been drawing tremendous attention mainly due to its potential contributions to applications in biology, information technology and energy. Among these applications graphene-based biosensors have been particularly progressed caused in part by development of diverse derivatives of graphene such as graphene oxides (GOs) and graphene quantum dots (GQDs). In this chapter preparation and functionalization of the graphene and GOQs are described together with their optoelectronic properties. Recent progresses in graphene and GQD-based biosensors are also highlighted with emphasis on immunoassay which utilizes unique interaction between antigen and antibody, and oligonucleotide assay which utilizes hybridization process. Since electrical and optical features are the most prominent characteristics of graphene-based nanomaterials, biosensor systems will be focused on electrochemical and fluorescence-based detection scheme.
Collapse
|
15
|
Li Y, Wang H, Yan B, Zhang H. An electrochemical sensor for the determination of bisphenol A using glassy carbon electrode modified with reduced graphene oxide-silver/poly-l-lysine nanocomposites. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.10.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Brownson DAC, Smith GC, Banks CE. Graphene oxide electrochemistry: the electrochemistry of graphene oxide modified electrodes reveals coverage dependent beneficial electrocatalysis. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171128. [PMID: 29291099 PMCID: PMC5717673 DOI: 10.1098/rsos.171128] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/04/2017] [Indexed: 05/21/2023]
Abstract
The modification of electrode surfaces is widely implemented in order to try and improve electron transfer kinetics and surface interactions, most recently using graphene related materials. Currently, the use of 'as is' graphene oxide (GO) has been largely overlooked, with the vast majority of researchers choosing to reduce GO to graphene or use it as part of a composite electrode. In this paper, 'as is' GO is explored and electrochemically characterized using a range of electrochemical redox probes, namely potassium ferrocyanide(II), N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), dopamine hydrochloride and epinephrine. Furthermore, the electroanalytical efficacy of GO is explored towards the sensing of dopamine hydrochloride and epinephrine via cyclic voltammetry. The electrochemical response of GO is benchmarked against pristine graphene and edge plane-/basal plane pyrolytic graphite (EPPG and BPPG respectively) alternatives, where the GO shows an enhanced electrochemical/electroanalytical response. When using GO as an electrode material, the electrochemical response of the analytes studied herein deviate from that expected and exhibit altered electrochemical responses. The oxygenated species encompassing GO strongly influence and dominate the observed voltammetry, which is crucially coverage dependent. GO electrocatalysis is observed, which is attributed to the presence of beneficial oxygenated species dictating the response in specific cases, demonstrating potential for advantageous electroanalysis to be realized. Note however, that crucial coverage based regions are observed at GO modified electrodes, owing to the synergy of edge plane sites and oxygenated species. We report the true beneficial electrochemistry of GO, which has enormous potential to be beneficially used in various electrochemical applications 'as is' rather than be simply used as a precursor to making graphene and is truly a fascinating member of the graphene family.
Collapse
Affiliation(s)
- Dale A. C. Brownson
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - Graham C. Smith
- Faculty of Science and Engineering, Department of Natural Sciences, University of Chester, Thornton Science Park, Pool Lane, Ince, Chester CH2 4NU, UK
| | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
- Author for correspondence: Craig E. Banks e-mail:
| |
Collapse
|
17
|
Tian H, Sofer Z, Pumera M, Bonanni A. Investigation on the ability of heteroatom-doped graphene for biorecognition. NANOSCALE 2017; 9:3530-3536. [PMID: 28244518 DOI: 10.1039/c6nr09313b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Doped graphene platforms have been attracting considerable attention due to their improved electrochemical performances. Recent studies have shown the advantage of using either p-type or n-type doped graphene materials as transducers for the detection of various electroactive probes. Here we wanted to take a step forward and extend the study to investigate the ability of heteroatom doped graphene as an electrochemical platform for biorecognition. To this aim, a boron-doped graphene, a nitrogen-doped graphene and an undoped graphene material prepared under similar conditions were employed for the detection of fumonisin B1, a highly carcinogenic mycotoxin found in food commodities. We found that the material structural features, such as the amount of oxygen functionalities, had a stronger influence on the sensitivity of biorecognition rather than the kind and amount of dopant. Our findings may be essential for the choice of a proper platform for the assessment of food safety.
Collapse
Affiliation(s)
- Huidi Tian
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | - Zdenek Sofer
- Department of Inorganic Chemistry, Institute of Chemical Technology, 166 28 Prague 6, Czech Republic
| | - Martin Pumera
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | - Alessandra Bonanni
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| |
Collapse
|
18
|
Yardım Y, Vandeput M, Çelebi M, Şentürk Z, Kauffmann JM. A Reduced Graphene Oxide-based Electrochemical DNA Biosensor for the Detection of Interaction between Cisplatin and DNA based on Guanine and Adenine Oxidation Signals. ELECTROANAL 2017. [DOI: 10.1002/elan.201600804] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yavuz Yardım
- Yuzuncu Yil University; Faculty of Pharmacy, Department of Analytical Chemistry; 65080 Van Turkey
| | - Marie Vandeput
- Free University of Brussels; ULB, Faculty of Pharmacy, Laboratory of Instrumental Analysis and Bioelectrochemistry, ULB 205/6, Campus Plaine; B-1050 Brussels Belgium
| | - Metin Çelebi
- Yuzuncu Yil University; Faculty of Science, Department of Inorganic Chemistry; 65080 Van Turkey
| | - Zuhre Şentürk
- Yuzuncu Yil University; Faculty of Science, Department of Analytical Chemistry; 65080 Van Turkey
| | - Jean-Michel Kauffmann
- Free University of Brussels; ULB, Faculty of Pharmacy, Laboratory of Instrumental Analysis and Bioelectrochemistry, ULB 205/6, Campus Plaine; B-1050 Brussels Belgium
| |
Collapse
|
19
|
Lalitha M, Lakshmipathi S. Gas adsorption efficacy of graphene sheets functionalised with carboxyl, hydroxyl and epoxy groups in conjunction with Stone–Thrower–Wales (STW) and inverse Stone–Thrower–Wales (ISTW) defects. Phys Chem Chem Phys 2017; 19:30895-30913. [DOI: 10.1039/c7cp06900f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The complete reduction of graphene oxide is difficult to achieve, and hence oxygen-containing functional groups do exist in graphene, along with structural defects.
Collapse
Affiliation(s)
- Murugan Lalitha
- Department of Physics
- Bharathiar University
- Coimbatore-641 046
- India
| | | |
Collapse
|
20
|
Gao YX, Wu D, Yang YX, Wang WJ, Xie SY, Shiu KK, Shi K. Mechanistic study on the interfacial variation of carbon electrode under electrochemical oxidation. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Eng AYS, Chua CK, Pumera M. Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling. NANOSCALE 2015; 7:20256-66. [PMID: 26579848 DOI: 10.1039/c5nr05891k] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chemical modification and functionalization of inherent functional groups within graphite oxide (GO) are essential aspects of graphene-based nano-materials used in wide-ranging applications. Despite extensive research, there remains some discrepancy in its structure, with current knowledge limited primarily to spectroscopic data from XPS, NMR and vibrational spectroscopies. We report herein an innovative electrochemistry-based approach. Four electroactive labels are chosen to selectively functionalize groups in GO, and quantification of each group is achieved by voltammetric analysis. This allows for the first time quantification of absolute amounts of each group, with a further advantage of distinguishing various carbonyl species: namely ortho- and para-quinones from aliphatic ketones. Intrinsic variations in the compositions of permanganate versus chlorate-oxidized GOs were thus observed. Principal differences include permanganate-GO exhibiting substantial quinonyl content, in comparison to chlorate-GO with the vast majority of its carbonyls as isolated ketones. The results confirm that carboxylic groups are rare in actuality, and are in fact entirely absent from chlorate-GO. These observations refine and advance our understanding of GO structure by addressing certain disparities in past models resulting from employment of different oxidation routes, with the vital implication that GO production methods cannot be used interchangeably in the manufacture of graphene-based devices.
Collapse
Affiliation(s)
- Alex Yong Sheng Eng
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
| | | | | |
Collapse
|
22
|
Hui KH, Ambrosi A, Pumera M, Bonanni A. Improving the Analytical Performance of Graphene Oxide towards the Assessment of Polyphenols. Chemistry 2015; 22:3830-4. [PMID: 26584712 DOI: 10.1002/chem.201503852] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Indexed: 11/07/2022]
Abstract
The presence of oxygen functionalities on graphene surface has enormous influence on its electrochemical and electroanalytical properties. The oxygen-containing groups on graphene platforms can strongly affect the electrochemical response, being either detrimental for the heterogeneous charge transfer or promoting a favourable interaction with the specific analyte. In this study, by electrochemically reducing graphene oxide material at increasing negative potentials (from -0.25 to -1.50 V) we obtained eight electrochemically reduced graphene oxide (ERGO) platforms carrying a decreasing amount of oxygen functionalities. Subsequently, we analysed the electroanalytical response of each ERGO material for the detection of gallic acid, a standard polyphenol that is correlated to the antioxidant activity of food and beverages. The graphene platform providing the best electroanalytical performance in terms of sensitivity, selectivity and linearity of response was then employed for the analysis of commercial fruit juice samples. Herein we demonstrated that graphene materials can be electrochemically tuned to optimise their electrochemical response towards the detection of biologically important analytes.
Collapse
Affiliation(s)
- Kai Hwee Hui
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Adriano Ambrosi
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Martin Pumera
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Alessandra Bonanni
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
23
|
Hui KH, Pumera M, Bonanni A. Chemically Modified Graphene: The Influence of Structural Properties on the Assessment of Antioxidant Capacity. Chemistry 2015; 21:11793-8. [DOI: 10.1002/chem.201501691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 11/10/2022]
|
24
|
Ocaña C, Lukic S, del Valle M. Aptamer-antibody sandwich assay for cytochrome c employing an MWCNT platform and electrochemical impedance. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1540-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
A novel interlocked Prussian blue/reduced graphene oxide nanocomposites as high-performance supercapacitor electrodes. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2785-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Loo AH, Bonanni A, Pumera M. Mycotoxin Aptasensing Amplification by using Inherently Electroactive Graphene-Oxide Nanoplatelet Labels. ChemElectroChem 2015. [DOI: 10.1002/celc.201402403] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Santhiago M, Maroneze CM, Silva CCC, Camargo MNL, Kubota LT. Electrochemical Oxidation of Glassy Carbon Provides Similar Electrochemical Response as Graphene Oxide Prepared by Tour or Hummers Routes. ChemElectroChem 2015. [DOI: 10.1002/celc.201402387] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
|
29
|
Eng AYS, Ambrosi A, Sofer Z, Šimek P, Pumera M. Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method. ACS NANO 2014; 8:12185-98. [PMID: 25453501 DOI: 10.1021/nn503832j] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Beyond MoS2 as the first transition metal dichalcogenide (TMD) to have gained recognition as an efficient catalyst for the hydrogen evolution reaction (HER), interest in other TMD nanomaterials is steadily beginning to proliferate. This is particularly true in the field of electrochemistry, with a myriad of emerging applications ranging from catalysis to supercapacitors and solar cells. Despite this rise, current understanding of their electrochemical characteristics is especially lacking. We therefore examine the inherent electroactivities of various chemically exfoliated TMDs (MoSe2, WS2, WSe2) and their implications for sensing and catalysis of the hydrogen evolution and oxygen reduction reactions (ORR). The TMDs studied are found to possess distinctive inherent electroactivities and together with their catalytic effects for the HER are revealed to strongly depend on the chemical exfoliation route and metal-to-chalcogen composition particularly in MoSe2. Despite its inherent activity exhibiting large variations depending on the exfoliation procedure, it is also the most efficient HER catalyst with a low overpotential of -0.36 V vs RHE (at 10 mA cm(-2) current density) and fairly low Tafel slope of ∼65 mV/dec after BuLi exfoliation. In addition, it demonstrates a fast heterogeneous electron transfer rate with a k0obs of 9.17×10(-4) cm s(-1) toward ferrocyanide, better than that seen for conventional glassy carbon electrodes. Knowledge of TMD electrochemistry is essential for the rational development of future applications; inherent TMD activity may potentially limit certain purposes, but intended objectives can nonetheless be achieved by careful selection of TMD compositions and exfoliation methods.
Collapse
Affiliation(s)
- Alex Yong Sheng Eng
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 637371, Singapore
| | | | | | | | | |
Collapse
|
30
|
Ambrosi A, Pumera M. Labeling Graphene Oxygen Groups with Europium. Chemphyschem 2014; 16:331-4. [DOI: 10.1002/cphc.201402742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 11/10/2022]
|
31
|
Ambrosi A, Chua CK, Bonanni A, Pumera M. Electrochemistry of Graphene and Related Materials. Chem Rev 2014; 114:7150-88. [DOI: 10.1021/cr500023c] [Citation(s) in RCA: 826] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Adriano Ambrosi
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Chun Kiang Chua
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Alessandra Bonanni
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Martin Pumera
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
32
|
Bonanni A, Ambrosi A, Chua CK, Pumera M. Oxidation debris in graphene oxide is responsible for its inherent electroactivity. ACS NANO 2014; 8:4197-204. [PMID: 24783949 DOI: 10.1021/nn404255q] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Graphene oxide is known to exhibit many interesting properties, ranging from inherent fluorescence to inherent electrochemistry, just to name a few. Recent research has found that graphene oxide is a composite material consisting of the so-called "oxidation debris" and unoxidized graphene fragments. Surprisingly, the oxidation debris, which contains small and highly oxidized aromatic fragments adsorbed on graphene surfaces, is responsible for the excellent solubility and inherent fluorescence of graphene oxide. Here, we examine the origin of the inherent electroactivity of graphene oxide and demonstrate that such phenomenon is attributed to the presence of oxidation debris. We separate oxidation debris from the less oxidized graphene backbone in "as-prepared" graphene oxide nanoplatelets using ultrasonication. We found that the extension of ultrasonication time corresponded to a larger amount of oxidation debris released from the graphene oxide nanoplatelets' surfaces and subsequently caused detrimental effects to the inherent electroactivity of the graphene material. Since graphene oxide is often the material of choice for energy storage devices, such as batteries and supercapacitors, a thorough understanding on the origin of such inherent electrochemical properties of graphene oxide is of very high importance.
Collapse
Affiliation(s)
- Alessandra Bonanni
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 637371
| | | | | | | |
Collapse
|
33
|
Humeres E, Debacher NA, Smaniotto A, de Castro KM, Benetoli LOB, de Souza EP, Moreira RDFPM, Lopes CN, Schreiner WH, Canle M, Santaballa JA. Selective insertion of sulfur dioxide reduction intermediates on graphene oxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4301-4309. [PMID: 24605942 DOI: 10.1021/la500140m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Graphite microparticles (d50 6.20 μm) were oxidized by strong acids, and the resultant graphite oxide was thermally exfoliated to graphene oxide sheets (MPGO, C/O 1.53). Graphene oxide was treated with nonthermal plasma under a SO2 atmosphere at room temperature. The XPS spectrum showed that SO2 was inserted only as the oxidized intermediate at 168.7 eV in the S 2p region. Short thermal shocks at 600 and 400 °C, under an Ar atmosphere, produced reduced sulfur and carbon dioxide as shown by the XPS spectrum and TGA analysis coupled to FTIR. MPGO was also submitted to thermal reaction with SO2 at 630 °C, and the XPS spectrum in the S 2p region at 164.0 eV showed that this time only the nonoxidized episulfide intermediate was inserted. Plasma and thermal treatment produced a partial reduction of MPGO. The sequence of thermal reaction followed by plasma treatment inserted both sulfur intermediates. Because oxidized and nonoxidized intermediates have different reactivities, this selective insertion would allow the addition of selective types of organic fragments to the surface of graphene oxide.
Collapse
Affiliation(s)
- Eduardo Humeres
- Departamento de Química and ‡Departamento de Engenharia Química e de Alimentos, Universidade Federal de Santa Catarina , Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang Z, Yin J. Sensitive detection of uric acid on partially electro-reduced graphene oxide modified electrodes. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.12.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Ko S, Tatsuma T, Sakoda A, Sakai Y, Komori K. Electrochemical properties of oxygenated cup-stacked carbon nanofiber-modified electrodes. Phys Chem Chem Phys 2014; 16:12209-13. [DOI: 10.1039/c4cp01278j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical reaction kinetics of Fe2+/3+ and [Fe(CN)6]3−/4− is tunable by controlling the oxygen/carbon atomic ratio at the CSCNF surface.
Collapse
Affiliation(s)
- Seongjae Ko
- Institute of Industrial Science
- University of Tokyo
- Tokyo 153-8505, Japan
| | - Tetsu Tatsuma
- Institute of Industrial Science
- University of Tokyo
- Tokyo 153-8505, Japan
| | - Akiyoshi Sakoda
- Institute of Industrial Science
- University of Tokyo
- Tokyo 153-8505, Japan
| | - Yasuyuki Sakai
- Institute of Industrial Science
- University of Tokyo
- Tokyo 153-8505, Japan
| | - Kikuo Komori
- Institute of Industrial Science
- University of Tokyo
- Tokyo 153-8505, Japan
| |
Collapse
|
36
|
Lounasvuori MM, Rosillo-Lopez M, Salzmann CG, Caruana DJ, Holt KB. Electrochemical characterisation of graphene nanoflakes with functionalised edges. Faraday Discuss 2014; 172:293-310. [DOI: 10.1039/c4fd00034j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Graphene nanoflakes (GNF) of diameter ca. 30 nm and edge-terminated with carboxylic acid (COOH) or amide functionalities were characterised electrochemically after drop-coating onto a boron-doped diamond (BDD) electrode. In the presence of the outer-sphere redox probe ferrocenemethanol there was no discernible difference in electrochemical response between the clean BDD and GNF-modified electrodes. When ferricyanide or hydroquinone were used as redox probes there was a marked difference in response at the electrode modified with COOH-terminated GNF in comparison to the unmodified BDD and amide-terminated GNF electrode. The response of the COOH-terminated GNF electrode was highly pH dependent, with the most dramatic differences in response noted at pH < 8. This pH range coincides with partial protonation of the carboxylic acid groups as determined by titration. The acid edge groups occupy a range of bonding environments and are observed to undergo deprotonation over a pH range ca. 3.7 to 8.3. The protonation state of the GNF influences the oxidation mechanism of hydroquinone and in particular the number of solution protons involved in the reaction mechanism. The voltammetric response of ferricyanide is very inhibited by the presence of COOH-terminated GNF at pH < 8, especially in low ionic strength solution. While the protonation state of the GNF is clearly a major factor in the observed response, the exact role of the acid group in the redox process has not been firmly established. It may be that the ferricyanide species is unstable in the solution environment surrounding the GNF, where dynamic protonation equilibria are at play, perhaps through disruption to ion pairing.
Collapse
Affiliation(s)
| | | | | | - Daren J. Caruana
- Department of Chemistry
- University College London
- London WC1H 0AJ, United Kingdom
| | - Katherine B. Holt
- Department of Chemistry
- University College London
- London WC1H 0AJ, United Kingdom
| |
Collapse
|
37
|
Bonanni A, Chua CK, Pumera M. Rational Design of Carboxyl Groups Perpendicularly Attached to a Graphene Sheet: A Platform for Enhanced Biosensing Applications. Chemistry 2013; 20:217-22. [DOI: 10.1002/chem.201303582] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Indexed: 11/12/2022]
|
38
|
Eng AYS, Sofer Z, Šimek P, Kosina J, Pumera M. Highly Hydrogenated Graphene through Microwave Exfoliation of Graphite Oxide in Hydrogen Plasma: Towards Electrochemical Applications. Chemistry 2013; 19:15583-92. [DOI: 10.1002/chem.201303164] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Indexed: 11/12/2022]
|
39
|
Loo AH, Bonanni A, Pumera M. Inherently electroactive graphene oxide nanoplatelets as labels for specific protein-target recognition. NANOSCALE 2013; 5:7844-7848. [PMID: 23846404 DOI: 10.1039/c3nr02101g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Graphene related materials have been widely employed as highly efficient transducers for biorecognition. Here we show a conceptually new approach of using graphene oxide nanoplatelets (50 × 50 nm) as voltammetric inherently active labels for specific protein-target molecule recognition. This proof-of-principle is demonstrated by biotin-avidin recognition, which displays that graphene oxide nanoplatelet labels show excellent selectivity. Therefore, it is expected that inherently electroactive graphene oxide nanoplatelet labels will play a similar role as electroactive gold nanoparticle labels which were developed more than a decade ago.
Collapse
Affiliation(s)
- Adeline Huiling Loo
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | | | | |
Collapse
|
40
|
Mendes RG, Koch B, Bachmatiuk A, El-Gendy AA, Krupskaya Y, Springer A, Klingeler R, Schmidt O, Büchner B, Sanchez S, Rümmeli MH. Synthesis and toxicity characterization of carbon coated iron oxide nanoparticles with highly defined size distributions. Biochim Biophys Acta Gen Subj 2013; 1840:160-9. [PMID: 24007898 DOI: 10.1016/j.bbagen.2013.08.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 08/16/2013] [Accepted: 08/27/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Iron oxide nanoparticles hold great promise for future biomedical applications. To this end numerous studies on iron oxide nanoparticles have been conducted. One aspect these studies reveal is that nanoparticle size and shape can trigger different cellular responses through endocytic pathways, cell viability and early apoptosis. However, systematic studies investigating the size dependence of iron oxide nanoparticles with highly defined diameters across multiple cells lines are not available yet. METHODS Iron oxide nanoparticles with well-defined size distributions were prepared. All samples were thoroughly characterized and the cytotoxicity for four standard cell lines (HeLa Kyoto, human osteosarcoma (U2OS), mouse fibroblasts (NIH 3T3) and mouse macrophages (J7442)) where investigated. RESULTS Our findings show that small differences in size distribution (ca. 10nm) of iron oxide nanoparticles do not influence cytotoxicity, while uptake is size dependent. Cytotoxicity is dose-dependent. Broad distributions of nanoparticles are more easily internalized as compared to the narrow distributions for two of the cell lines tested (HeLa Kyoto and mouse macrophages (J7442)). CONCLUSION The data indicate that it is not feasible to probe changes in cytotoxicity within a small size range (10nm). However, TEM investigations of the nanoparticles indicate that cellular uptake is size dependent. GENERAL SIGNIFICANCE The present work compares narrow and broad distributions for various samples of carbon-coated iron oxide nanoparticles. The data highlights that cells differentiate between nanoparticle sizes as indicated by differences in cellular uptake. This information provides valuable knowledge to better understand the interaction of nanoparticles and cells.
Collapse
Affiliation(s)
- Rafael Gregorio Mendes
- Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01171 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Eng AYS, Ambrosi A, Chua CK, Šaněk F, Sofer Z, Pumera M. Unusual Inherent Electrochemistry of Graphene Oxides Prepared Using Permanganate Oxidants. Chemistry 2013; 19:12673-83. [DOI: 10.1002/chem.201301889] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Indexed: 11/11/2022]
|
42
|
Ambrosi A, Pumera M. Precise tuning of surface composition and electron-transfer properties of graphene oxide films through electroreduction. Chemistry 2013; 19:4748-53. [PMID: 23436748 DOI: 10.1002/chem.201204226] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Indexed: 11/11/2022]
Abstract
Graphene materials are generally prepared from the exfoliation of graphite oxide (GO) to graphene oxide, followed by subsequent chemical or thermal reduction. These methods, although efficient in removing most of the oxygen functionalities from the GO material, lack control over the extent of the reduction process. We demonstrate here an electrochemical reduction procedure that not only allows for precise control of the reduction process to obtain a graphene material with a well-defined C/O ratio in the range of 3 to 10, but also one that is able to tune the electrocatalytic properties of the reduced material. A method that is able to precisely control the amount and density of the oxygen functionalities on the graphene material as well as its electrochemical behaviour is very important for several applications such as electronics, bio-composites and electrochemical devices.
Collapse
Affiliation(s)
- Adriano Ambrosi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | | |
Collapse
|
43
|
Yang T, Guan Q, Guo X, Meng L, Du M, Jiao K. Direct and freely switchable detection of target genes engineered by reduced graphene oxide-poly(m-aminobenzenesulfonic acid) nanocomposite via synchronous pulse electrosynthesis. Anal Chem 2013; 85:1358-66. [PMID: 23256634 DOI: 10.1021/ac3030009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel one-step electrochemical synthesis of the reduced graphene oxide and poly(m-aminobenzenesulfonic acid, ABSA) nanocomposite (PABSA-rGNO) via pulse potentiostatic method (PPM) for direct and freely switchable detection of target genes is presented. Unlike most electrochemical preparation of hybrids based on rGNO and polymer, electrochemical synthesis of PABSA (during the pulse electropolymerization period of PPM) and electrochemical reduction of rGNO (during the resting period of PPM), in this paper, were alternately performed. The total progress synchronously resulted in PABSA-rGNO nanocomposite. This nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier Transform infrared spectroscopy (FT-IR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The PABSA-rGNO nanocomposite integrated graphene (a single-atom thick, two-dimensional sheet of sp(2) bonded conjugated carbon) with PABSA (owning rich-conjugated structures, functional groups, and excellent electrochemical activity), which could serve as an ideal electrode material for biosensing and electrochemical cell, etc. As an example, the immobilization of the specific probe DNA was successfully conducted via the noncovalent method due to the π-π* interaction between conjugated nanocomposite and DNA bases. The hybridization between the probe DNA and target DNA induced the product dsDNA to be released from conjugated nanocomposite, accompanied with the self-signal regeneration of nanocomposite ("signal-on"). The self-signal changes served as a powerful tool for direct and freely switchable detection of different target genes, and the synergistic effect of PABSA-rGNO nanocomposite effectively improved the sensitivity for the target DNA detection.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | | | | | | | | | | |
Collapse
|
44
|
Du ZZ, Li W, Ai W, Tai Q, Xie LH, Cao Y, Liu JQ, Yi MD, Ling HF, Li ZH, Huang W. Chemoselective reduction of graphene oxide and its application in nonvolatile organic transistor memory devices. RSC Adv 2013. [DOI: 10.1039/c3ra43819h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
|
46
|
Bonanni A, Chua CK, Zhao G, Sofer Z, Pumera M. Inherently electroactive graphene oxide nanoplatelets as labels for single nucleotide polymorphism detection. ACS NANO 2012; 6:8546-51. [PMID: 22992186 DOI: 10.1021/nn301359y] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Graphene materials are being widely used in electrochemistry due to their versatility and excellent properties as platforms for biosensing. However, no records show the use of inherent redox properties of graphene oxide as a label for detection. Here for the first time we used graphene oxide nanoplatelets (GONPs) as electroactive labels for DNA analysis. The working signal comes from the reduction of the oxygen-containing groups present on the surface of GONPs. The different ability of the graphene oxide nanoplatelets to conjugate to DNA hybrids obtained with complementary, noncomplementary, and one-mismatch sequences allows the discrimination of single-nucleotide polymorphism correlated with Alzheimer's disease. We believe that our findings are very important to open a new route in the use of graphene oxide in electrochemistry.
Collapse
Affiliation(s)
- Alessandra Bonanni
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | | | | | | | | |
Collapse
|
47
|
Viinikanoja A, Wang Z, Kauppila J, Kvarnström C. Electrochemical reduction of graphene oxide and its in situ spectroelectrochemical characterization. Phys Chem Chem Phys 2012; 14:14003-9. [DOI: 10.1039/c2cp42253k] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
|